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Interaction among systems of finite size in predictive relativistic mechanics.
III. Short-range interaction and second-order terms
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We compute up to and including all the c terms in the dynamical equations for extend-
ed bodies interacting through electromagnetic, gravitational, or short-range fields. We show
that these equations can be reduced to those of point particles with intrinsic angular
momentum assuming spherical symmetry.

I. INTRODUCTION

The dynamical description of a many-particle sys-
tem requires the use of many variables depending on
the degrees of freedom of the system and the
dynamical theory used. When a system of structure-
less particles is clumped into subsystems whose di-
inensions are much smaller than the distance among
them (finite-size bodies) the motion of these bodies
can be considered ignoring to some extent their
internal structure and the number of variables is re-
duced drastically.

In this series of papers we have investigated what
are appropriate dynamical variables for one such
description, under which conditions it holds, and the
dynamical equations governing such variables
within the framework of predictive relativistic
mechanics (PRM).

We can now take a closer look at the problems
that have been considered and the ones that have
been left.

In the previous papers' (hereafter referred to as I
and II) we have shown that the dynamical descrip-
tion of interacting spherical bodies can be given by
using the mass, center of mass, velocity, and the
spin of bodies as variables. Qur results within the
slow-motion approximation were developed only for
two long-range interactions (electromagnetic and
gravitational) and neglecting nonlinear terms
(second order in the coupling constant). In general,
however, the static nonlinear terms are of order c
and they must be considered in a slow-motion ap-
proximation scheme.

In this paper we shall take up the two problems
just meritioned. First, we will apply the method to a
short-range interaction such as the scalar short-
range interaction. Second, we will include the non-
linear terms and will study whether their inclusion

requires the use of new dynamical variables or not.
The plan and contents of the paper are as follows:
In Sec. II the scalar short-range interaction is con-

sidered including the two possible theories which are
characterized by a parameter y (y=0, 1). We first
deduce, in the framework of PRM, the acceleration
for a system of pointlike particles interacting via a
short-range field including all the c terins. They
are the starting point for the evaluation of the
dynamical equations of the finite-size subsystems.
For the y= 1 theory the acceleration agrees with the
acceleration that can be deduced from the Bopp La-
grangian which does not include quadratic terms in
the coupling constant. Qur results include as a par-
ticular case those of Bel and Martin for a two-
particle system.

In Sec. III we make use of the results for pointlike
particles to evaluate the quantities H;, P;, J;, and
K; for a body i (i =1,2) and the equivalent set of
variables M;, X;, V;, and S; which were defined in
paper I and have the physical meaning of the mass,
center of mass, velocity, and spin of the bodies. The
dynamical equations for these variables are then
evaluated up to the order c in the linear approxi-
mation, assuming that the range of the field, p ', is
larger than the dimension of the bodies. Some pecu-
liarities of the interaction are that although the ac-
celeration of the center of mass of a body has depen-
dence on the spin S;, it has no direct dependence on
the "magnetic" moment, p; =e'e, r, )& v„and it
contains no spin-spin terms. These are features not
shared by the electromagnetic and gravitational in-
teractions. This may be explained by the fact that
being a scalar interaction the coupling with the spin
is weaker than in vector or tensor interactions.

In Sec. IV a Lagrangian formulation is given
which describes the short-range interaction of finite
size bodies. The construction of the Lagrangian can
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be made if a coordinate transforraation is perforrried
from the "physical" coordinates mentioned above to
some "canonical" coordinates. A similar coordinate
transforiiiation has been studied by Bel and Martin
for the electromagnetic interaction, by Barker and
O'Connell6 for the gravitational interaction, and also
in paper II.

Finally, in the last section we consider the non-
linear terms in the coupling constant for the three
interactions considered. The main difference from
the linear terms is that they give rise to terms of
self-energy and their derivatives which prevent a
multipolar development. However, they can be
properly included in our scheme without the need
for new dynamical variables. Their role is some-
what different for each interaction.

For the electromagnetic interaction the self-
energy teriris cancel each other. The remaining non-
linear terirls are identical to those for the interaction
of pointlike particles.

For the gravitational interaction the situation is
different since the self-energy teriris do not cancel.
However, "renormalizing" the mass of the bodies at
the c order by including their self-energy, we ob-
tain results for spinless bodies that are also identical
with those for pointlike particles. This result is
similar to that from the parametrized-post-
Newtonian (PPN) formalism for extended fluid
spheres.

For the scalar short-range interaction, y= 1

theory, a similar result to the gravitational case is
obtained renormalizing the scalar charge. However,
for the y=0 theory the renormalization is not possi-
ble and the dynamical variables proposed are not

I

II. THE SHORT-RANCiE SCALAR INTERACTION

The short-range scalar field is defined as the solu-
tion of the Klein-Gordon equation

(CI —]u, )N(x) =4~p(x) (2.1)

where 0=8"B„and p ' is the interaction range. We
use signature + 2, and c = l.

A pointlike particle with scalar charge e is the
source of a scalar field whose charge density is given

p(x)=e f de [x —P (e)]

where P (~) is the world line of the charge. The
Klein-Gordon equation can easily be solved with
this source term and under suitable boundary condi-
tions one finds

sufficient for the description of this interaction up
to the nonlinear terrris.

In conclusion, the ten dynamical variables
describing the mass, center of mass, velocity, and
spin of finite-size spherical bodies can be used to
describe the dynamical interaction among bodies
under the electromagnetic, the gravitational, and the
scalar short-range (@=1) interactions including all
the effects in the slow-motion approximation (in the
framework of PRM).

Similar formalisms for the electromagnetic in-
teraction, although in a quantum context, have been
studied by Krajcik and Foldy ' (see also references
in paper I). For the gravitational interaction we
should mention the works by Barker and
O' Connell' and references therein. "'

+ 00 ~](s [—y'(~)]'")
4&( ; x)=eeer '+y. f de()[e(e e)]-

y2(&)]1/2
(2.2)

where

y (~)—:x —P (~)

a
r= —[x —

()t (—~)]P (~), P (~)=
d7

e [1+yme@(x)] '(g +u u )
Pl X

(2.3)

mass m submitted to a scalar field C)(x) can be
described by means of the dynamical equation

8 is the Heaviside step function, e takes only the
values —1 or + 1 for the retarded or the advanced
solutions, respectively, w is the value of the parame-
ter ~ for which the world line of the particle inter-
sects the light cone with vertex at x, and J] is the
Bessel function of the first kind and of the first or-
der.

The motion of a particle of scalar charge e and

where y can take the values 0 or 1 only. There are
therefore two different dynamical theories.

As the Klein-Gordon equation is linear the field
produced by a swarm of particles is the linear super-
position of the fields produced by each particle and
Eqs. (2) and (3) are the only ingredients needed from
classical field theory in order to build a predictive
model for the scalar interaction.



INTERACTION AMONG SYSTEMS OF FINITE SIZE. . . . III. . . ~ 327

The technique required is standard' and will not
be explained here. It is well known that if a foi-inal
series expansion in powers of the products of the
charges is used for the acceleration P such as

4= g g"5'"' (g—=e.e. )

the problem posed has only one solution which in
our case turns out to be at first order

where g, '" is the four-acceleration of the a particle
due to the action of the a' particles (a'&a), u is its
four-velocity,

a a a
Xaa =Xa —Xa~

r =—[x„+(x„"u,)2]'~

S„—=(x„"u,)+(u, u, )(x„"u, )

~(i) eg ~ +Frag'
5a e ~a 3ma ~aa'

Xe [x„+S„u,+(x„"u, )u, ]

(2.4)
I

The dot represents a scalar product in Minkowski
space and e' indicates summation for the a' index.

This expression is, as one expects at this order, a
linear superposition of two-body expressions like the
one given by Bel and Martin. Restoring c in this
expression and keeping terrxis only up to order c
we find for the three-acceleration

3
Xaa ~

ea ~ e ~"aa'
E ea

ma

~a ( xga' vg')
(1+@x„) 1 — —(3+3@x„+px„

C 2C Xaa~

l
Xaa~

(1+px„)(x„"v,)(v,' —v,' ) ~

2 (2.5)

Xaa' = Xaa'

Using elementary dimensional analysis the following two results can easily be proved:
(a) Only the g and g tei-iiis can contribute to order c
(b) The contribution of the g teiixis does not depend on the velocities of the particles.
Therefore the complete expression for the three-acceleration up to tea-ignis of order c can be found using

only the next-order teirxi (g ) in the series expansion. The calculation of the g c teria& can be easily done if
we take the limit v, ~O, v, ~0 before the integrations are performed. This is allowed by the second result
stated above.

Using the standard procedure a straightforward but somewhat tedious calculation gives'

i{2)aa
1+@x„

2
e e' e, e,- 2ye,

ma Xaa' Xaa" ma

1+@x
1

Xaa +ea 3Xa'a"
—px

X [(1+pxaa )(xga" xg'g")xgg' —xgg xg g" ]
ma

(2.6)

The values of a' and a" are restricted by the obvious condition that the right-hand side of this equation can-
not be singular.

We find here the two-body ter@is, already found by Bel and Martin and three-body tea-ilis as was expected
owing to the nonlinearity of the equations of predictive relativistic mechanics.

Equation (2.6) when added to (2.5) gives the complete acceleration up to c for a system of interacting par-
ticles.

III. EQUATIONS OF MOTION

—2Using the general procedure given in I we can calculate H;, P;, J;, and K; up to teriris of order c . The re-
sult is (i = 1,2)
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and where the operator R (A, ) is defined by

R(k)f (x,V)=—f(x+AV, V)

H
C4

(3.6)

The y= 1 theory contains only terms up to order g/c, and in this case the expressions can be derived from
the Bopp Lagrangian.

These quantities can be used, as was explained in I, Sec. VIII, in order to define the mass of each subsystem
' 1/2

M; = — — (i =1,2)
C

The center of mass is

1

M 2 r I l rHK —P X J.—
cC

and the spin is

(P; K;)P;
H;/c

(i =1,2) (3.7)

H;
SI = J-

M;c

K;XP, (P; J;)P;
(I =1,2)

Mr(M;c +He )
(3.8)

The derivatives of these expressions can be easily calculated using the method described in II, Sec. III, or
directly. Retaining only the terms linear in the coupling constant up to order c we find
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1 e 1 QiQz-(1+pR) (R V)Qppi+ — (RXVi) Si .
c 1

(3.10)

d Xi
dt

QiQ~ e-~" 2

(1+pR) 1—
I R C

(R Vg)—(3+3pR +3p R ) R-
2c R

(1+pR )(R Vz)V .

QiQz e-&~ RV-(1+pR)VXSi —(3+3pR+p, R ) RXSic Mi R
(3.11)

Where Qi and Qq are the total scalar "charges" of
subsystems 1 and 2, respectively,

pi=e'e, r, XW,

r, and W, are the positions and velocities of the
particles belonging to system 1 measured from its
center of mass,

I

terms which are the same as for pointlike charges
and several spin-dependent teiins. However, it has
no "magnetic"-moment-dependent teExlls nor spin-
spin-dependent tetixis, a peculiarity not shared by
the previously studied interactions.

In fact, the "magnetic" moment only appears in
the spin equation.

dXI 1 PiVi= ——Pi 1—
dt 2c~

1 e 1 QiQz-
c R

(1+pR)RX —Qpp i — Si
2 Mi

R:—Xi —Xq

and

V—=Vi —Vp

Exchange of labels 1 and 2 gives the equations for
the mass, spin derivative, and acceleration of system

IV. LAGRANGIAN FORM OF
THE EQUATIONS OF MOTION

As we did for the electromagnetic and gravita-
tional interactions we have investigated the possibili-
ty of deriving Eq. (3.11) from a Lagrangian.

We find here a similar result. The spin-
independent part of the acceleration can be derived
from the Bopp Lagrangian hereafter abbreviated as

Moreover, since Eq. (3.11) can be written in
the foiiil

d - 1 QiQze &~

dt
Pig — (1+pR)RX Si ——Figc~ Mi

The assumptions under which those equations are
derived were explained in II, Sec.II and they are
essentially quasispherical symmetry and rigidity for
the subsystems as seen in its center-of-mass frame.
The technical consequences of these assumptions
were discussed in the above reference.

To get a closed system of dynamical equations,
one more assumption is needed. Usually one as-
sumes a linear relation between the "magnetic" mo-
ment and the spin such as

where

it is clear that no Lagrangian can be constructed for
this interaction using the X; variables. However, as
we previously found in II, using, instead of the
center of mass X;, the new variable center of spin

pi=gi S, . (3.12)

Using the expression in (3.10), we can show that
the system of equations (3.9)—(3.11) becomes a
closed system of dynamical equations.

The acceleration (3.11) has spin-independent

V;XSg
Z; =Xi+ M. (4.2)

the resulting equations of motion can be derived
from the following Lagrangian:

1 e
—PR Si (RXVi)~=~a+ Qi Qz (1+pR )22 R M)

Sq.(R X Vz)
(4.3)
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H =HtI—

where

where now R=—ZI —Z2 and V; =d—Z;/dt.
A Legendre transfolrIIation now gives the following Hamiltonian:

SI (RXP1) S2.(RXP2)
2c R M2 M

(4.4)

V. SECOND-ORDER TERMS

In order to complete our study of the interactions among extended bodies, including all the terms up to orderc, the contributions quadratic in the coupling constant must be taken into account.
Their computation needs the knowledge of the accelerations for structureless particles up to and including

those teriris. The expression for the scalar interaction has already been given in (2.6). Using the Darwin La-
grangian for the electromagnetic interaction and the Einstein-Infeld-Hoffmann Lagrangian for the gravitation-
al interaction, we find

and

2
1 ea ~ -ea'ea"

8a c m,

Xaa~ Xa'a'~

3 Xaa'+
&aa' &a'a" 3

+aa '+a 'a"
(5.1)

(21 G 2

a, = e'e'm, m, -
C

4X,a
,3

+ 1—
&aa' &aa"

Xgg 'Xg g

2

Xaa'
3 3

&a'a "&aa' +aa'+a'a"
J

(5.2)

respectively. The values taken by a' and a" are only restricted by the obvious condition that the denominators
cannot be singular.

Using the standard procedure given in I we can compute the complete expressions for the ten generating
functions H, P, J, K. The results for the scalar interaction have already been given in (3.1)—(3.4).

For the electromagnetic interaction the expressions (4.1)—(4.4) given in II for these functions need not be
modified, because there are no g /c contributions. For the gravitational interaction only the first of the ex-
pressions (5.1)—(5.4) given in II suffers a correction of order G /c:

2C &aa'Xga"
(5.3)

The complete expressions must now be introduced in the definitions of X;, S;, and M;, and the derivatives of
these quantities must now be calculated taking into account the terms up to order g /c .

It can easily be seen that the expressions for M; and S; are not modified for the three interactions considered,
therefore the Eqs. (3.9) and (3.10) of this paper, (4.17) and (4.18) of II, and (5.21) and (5.22) of II do contain al-
ready all the terms of order c . Only the equations giving the accelerations are modified. Let us examine in
detail how these modifications arise.

From

dXI PI
=V1 —— 1—

t MI

ax,
+a,'(1,2) (5.4)

we find

Ai=—
1

MI

I'
I d PI1—

c dt
1 Pl dP1 Pl d; I)X1

a,'(1,2 (5.5)

and only the first term on the right-hand side can give contributions to the g /c teriris. These terms arise
from

=e a,'(l, 2) m, 5,'+ m u 5,'+ m, u„.uj +e a,'(1,2) (5.6)
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We shall not make here the detailed calculations
of these expressions, which are rather cumbersome,
but we shall indicate how these terms can be han-
dled. We find two general types of terms, those that
can directly be written in tericis of the variables we
have been using as, for instance,

M, —=M, 1+
C2

However, the terms containing the self-energies can
be reabsorbed in the Newtonian term, defining the
effective masses as

G~ ~, ~„my~my ~m~X~g

C &aa' &aW"

G 2R
M)Mp

G R"
where

.2

and those that cannot be analyzed through a mul-
tipolar development as

G~, m, mg . m~'
E E

~
E r~g

C ra A raa

We have borrowed our examples from the gravita-
tional interaction but the same problem arises in the
electromagnetic and scalar cases and the terms are
formally analogous.

What we have proved is that assuming spherical
symmetry and uniform charge distribution all the
terms belonging to the second class can be written as
functions of M;, R;, and U~, were U~ are the self-
energies of the extended bodies (see the Appendix
for more details). It must be noted that these as-
sumptions are by no means additional assumptions.

We shall now analyze the results for each interac-
tion, the expression for the second-class terms as
functions of M;, R;, and U, being given in the Ap-
pendix.

A. Electromagnetic interaction

Gnce we have added all the g /c terms, the
terins containing self-energies cancel each other and
we find

-(&) 1 Ql Q2 R
M(Mp

(5.8)

B. Gravitational interaction

In this case there is no cancellation and we find

The complete electromagnetic acceleration up to
order c among extended bodies is thus given, add-
ing (5.8) to (4.19) in II. In fact (5.8) is identical with
the g /c teini giving the acceleration for pointlike
scalar particles as can be seen from (5.1).'

r; =radius of mass M;

We are left with the contributions

G 2 R
Ai —— (5MpM(+4Mz)

C2

(5.10)

(5.11)

C. Short-range scalar interaction

Case y=O. This dynamical theory differs from
all the previously studied cases in that the
variables M;,X;,S; are not sufficient to describe the
dynamics of extended bodies. The terms containing
the self-energies of the bodies do not cancel and
their lack of symmetry prevents their absorption in
the Newtonian terms. In this theory the self-
energies must be introduced as new dynamical vari-
ables and the scheme proposed breaks down.

Case y=1. This dynamical theory is similar in its
behavior to the gravitational interaction because the
terms containing the self-energies appear symrnetri-
cally and can be reabsorbed in the Newtonian teriris,
if we redefine the charges in the following way:

3Q'
~ ~ ~

Mic

This procedure gives the following g /c terrors:

(5.12)

2
M)R

which have to be added to (2.23) in II to get the
complete accelerations up to order G /c, substitut-
ing everywhere M~ by the "renormalized" masses

Therefore the dynamical variables proposed can
handle the problem. We need only shift the value of
M; to M; which will be the physical mass and to the
expression we gave in II, there is only a contribution
which is the same as for pointlike particles.

(2) G RMiAi —— (5MgM( +4MiMp )

G R+ (MpUi+Mi Up)
C R

(5 9)

(5.13)

which must be added to (3.11) in order to get the
complete c expression substituting everywhere Q;
by the effective charges Q;.
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D. Order-of-magnitude estimates

When the g /c terms we have just calculated are
added to the post-Newtonian terms given in (4.19)
and (5.22) of Ref. 2, or (3.11) of this paper, we can
claim that we know all the c teiiris of the ac-
celeration. At this point it may be interesting to
make some estimates about (i) the validity of the ex-
pansion, (ii) the relative order of magnitude of the
different terms.

In spite of the fact that we have been using quite
independently coupling-constant expansions and
low-velocity expansions, a close look at the expres-
sions we have found reveals that they can be con-
sidered as expansions in powers of the following di-
mensionless parameters:

The relative weight of the first and the last can be
evaluated for bound states via the virial theorem. In
this case they are the same order of magnitude

QiQ2

Mc R
GM
c R

Therefore the effect of three-body forces cannot be
neglected at this order (c ).

The spin-orbit terms are usually smaller, and ele-
mentary calculations prove that a necessary condi-
tion for those terms to be of the same order as the P
terms for gravitationally bound bodies is that r-R
which is out of the range of our approximation.
More information about this point can be found in
Refs. 10 and 16.

(electromagnetic and scalar
mc R

interactions)
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c R

The quantity p=Q /mc can be safely bounded
for ordinary matter and electromagnetic interaction
by 10 r, where r, is the classical electron radius
whereas GM/c =2', where rs is the
Schwarzschild radius. Therefore the expressions we
are using can be safely used in the classical domain
as far as 10 r, /R or rz/R are small quantities,
which covers a wide variety of situations.

The relative order of magnitude of the different
tei-iiis appearing in the accelerations can be estimat-
ed factoring out the factor Q~Q2/M ( —GM) from
the whole expression. Putting aside the Newtonian
teiiii, which is of course the most relevant one, we
have to weight tei-nis which are purely P =v /c
dependent, spin-orbit teriiis containing the product
P(go/cR), where tr is the angular momentum per
unit mass, spin-spin teriiis containing the product
( ger /cR), and the teiiiis originated by three-body
forces characterized by the factor Q & Q2/Mc R
(GM/c R).

APPENDIX

, ~goe' rgb ~2M' U)
raA raa' R
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m, mg, m, ~ Ree e r "rg r~~ —M2U)
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l
ma ma ~ raa'raa'J' J 2 Re'e"

3
d'm, re —MzUi

R

(A3)

(A4)

Similar results can be proved for the electromag-
netic and short-range scalar interactions.

We give here a list of the result that the
spherical-symmetry assumption provides for the
gravitational interaction G tei-ms:
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e r~~ —+ ——M2U), (Al)
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