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It is shown that, at large N, (Ew) is independent of the temperature in the confining phase. This implies
that the temperature at which chiral symmetry is restored is larger than or equal to the critical temperature
for deconfinement. If Tpirai = Tyeconfinings then the chiral transition must be first order.

It is commonly believed that the temperature at which
chiral symmetry is restored (Ty,) is greater than or equal to
the temperature at which a gauge theory switches from a
confining phase to a gas of free quarks and gluons (the
deconfining temperature 7). Coleman and Witten' showed
that, at large N, chiral symmetry is necessarily broken at
zero temperature. The same is generally believed to be true
also at finite N. Monte Carlo studies seem to support this
claim.?2 At finite temperature, however, it is not at all clear
that chiral symmetry must be broken in the confining phase,
because the chiral-anomaly argument (see Ref. 1) cannot
easily be extended to finite temperature (see Ref. 3). In
this Rapid Communication we will argue that, at least in the
limit of an infinite number of colors, T, = T, i.e., confine-
ment implies chiral-symmetry breaking. Note that at N = oo
both temperatures are uniquely defined since Polyakov
loops are a good order parameter for confinement (dynamic
quark loops are suppressed) and () can be used as an or-
der parameter for chiral symmetry. Our proof relies on the
observation that, at large N, (@) must be independent of
the temperature in the confining phase to leading order in
1/N (N for (y)). This of course proves our statement
since if ($p) =0 at T =0 it will also be different from zero
up to 7,. The easiest way to convince oneself that () is
indeed independent of the temperature is as follows: In the
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confining phase the theory behaves effectively as a gas of
noninteracting glueballs and mesons. Then, because of the
large-N counting rules, the shift in expectation value of
($y) in a state where a finite number of glueballs and
mesons is present is only of order 1, while the vacuum ex-
pectation value is of order N. To leading order the expecta-
tion value of iy, in a state of n glueballs (and m mesons),
is equal to the vacuum value,
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Equation (2) of course expresses the fact that, in the nonin-
teracting theory (1), {(yy(0)) is independent of the tem-
perature. The importance of the effective free glueball
theory for the behavior of large-N QCD at finite tempera-
ture was first observed by Thorn, Ref. 4 (see also Ref. 5).
The same conclusion can also be reached in a more formal
way. Following Ref. 6 we can derive the large-N version of
the Schwinger-Dyson equations for quark bilinears at finite
temperature. We will write them using the ‘‘naive’’ action
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by, G(x,x',T), where T is a path from x to x’, the Schwinger-Dyson equations read
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Here djer is the “‘link derivative’ corresponding to the re-
placement
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W denotes a Wilson loop:
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The “link delta §(/|/') is equal to 1 if / and /' are
traversed in the same direction and —1 if they are traversed
in the opposite direction. In Eq. (5) A . is the variation

with respect to the end point of the path I' and consists of
the replacement
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Equation (5) follows from the simple identity
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Note that on the right-hand side (RHS) of Eq. (4) we have
used large- N factorization. Furthermore, note the absence
of “‘string splitting”> terms on the RHS of (4). These corre-
spond to the creation of quark-antiquark pairs and are ab-
sent at large N. The effect of finite physical temperature
enters in Egs. (4) and (5) through the periodicity of the link
delta: The notation 8(/|/'+kB) means that one obtains a
contribution whenever links /and !’ are separated by a mul-
tiple of the ‘‘time”” extent of our lattice related to the tem-

T
perature by
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C, in (4) is a closed path in T" going from /to !/’ and I, is
the remaining part of I" after C”, has been cut out.® Anoth-

er source of temperature dependence, of course, is the pos-
sible explicit dependence of the Wilson loops in Egs. (4)
and (5). In the confining phase, however, these are, to
leading order in 1/A, independent of the temperature.’
Furthermore, in the confining phase all terms with k£ 0 on
the RHS of Egs. (4) and (5) vanish since they are propor-
tional to Polyakov loops which are identically zero in the
confining phase. Note that this is true only at large N,
where the creation of additional quark-antiquark pairs is
suppressed. Hence only the k=0 terms survive and the
equations in the confining phase are identical to the zero-
temperature equations derived in Ref. 6. Assuming that (4)
and (5) uniquely specify G we conclude that it must be in-
dependent of the temperature in the confining phase. This
implies also that ($(0)) is independent of T, since it can
be obtained from G by some limiting procedure. Note that
the antiperiodic boundary conditions on s enter through the
factor ( —)* on the right-hand side of Eq. (5). To summa-
rize, we have shown that, to leading order in 1/N, the order
parameter for chiral-symmetry breaking is constant in the
confining phase. Hence the chiral-symmetry-restoring tem-
perature T, must be greater than or equal to the deconfine-
ment temperature T,. If T, = Tp, our argument shows that
the chiral transition is a first-order phase transition, since
() can only go to zero discontinuously at T}, if it is con-
stant for T < T,. Since we do not know of any proof of
T = Ty, we cannot exclude a second-order chirality transi-
tion, but in such a case we must have T, > T,, that is, an
intermediate phase exists in which quarks are not confined,
but chiral symmetry is broken.
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