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Nahm's equations are solved for the cases corresponding to the spherically symmetric SU(N)
monopoles of %'ilkinson and Bais and their solutions reconstructed using his adaptation of the
Atiyah-Drinfeld-Hitchin-Manin construction for self-dual gauge fields. The analysis of this class of
solutions reveals the remarkably intricate structure of the construction.

I. INTRODUCTION

—,eIJkI'Jk ——B;=D;N, i,j= 1,2, 3, (1.2)

are locally equivalent to the self-duality equations (1.1).
To see this an extra coordinate xq is introduced, on which
nothing depends, and 8'4 is defined to be 4.

Globally, instantons and monopoles are very different.
One of the differences is in the boundary conditions. For
instantons the vector potential approaches a pure gauge as
x" (p = 1, . . . , 4) approaches infinity, but for monopoles

trN~N~a
and

DC&~0 as~x~~~ .
(1.3)

In recent years considerable effort has been expended
towards understanding self-dual fields, that is, gauge
fields Fop satisfying

Fap= *Fap= 2 eapys ys (1.1)

Originally, work concentrated on the search for instanton
solutions, four-dimensional Euclidean self-dual fields with
finite action. Later on, the methods developed to deal
with instantons were extended to the construction of static
monopoles in the Bogomol'nyi-Prasad-Sommerfield (BPS)
limit. ' There the gauge theory is augmented by a scalar
Higgs field in the adjoint representation of the gauge
group and solutions to the classical equation sought when
the scalar self-coupling vanishes. The Bogomol'nyi equa-
tions,

d Tg
~Imn Tm Tn~ I,m, n =1,2,

dz
(1.4)

which are of considerable interest in their own right. In
the spherically symmetric situation T turns out to be a
block tridiagonal matrix with a single unknown function
for each block. Thus, Eq. (1.4) reduces to a coupled set of

Also, instantons have a finite action while BPS monopoles
have a finite energy. They share the property of being lo-
cal minima for the action or the energy, respectively.

A convenient, but not entirely explicit, description of
instantons has been given by Atiyah, Hitchin, Drinfeld,
and Manin {ADHM) (Ref. 3) and recently extended to the
monopole situation by Nahm. " However, little work has
been done using the ADHMN construction to build ex-
plicit monopole solutions. In this paper we investigate the
construction of spherically symmetric monopoles for the
gauge group SU(Nj. Although these solutions have al-
ready been constructed in a different way by Wilkinson
and Bais our purpose here is to understand the mecha-
nisms of Nahm's procedure, and the spherically sym-
metric monopoles are a good vehicle for this. They
demonstrate admirably both the ingredients and the power
of the formulation.

In Sec. II we shall review briefly the main features of
the ADHM formalism that we need and introduce
Nahm's adaptation of it. In Sec. III the requirement of
spherical symmetry and how to implement it in the
ADHMN construction is discussed. At the heart of
Nahm's procedure is the set of equations
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differential equations for those functions. The equations
and their solutions are described in some detail in Sec. IV.
Finally, the necessary steps using the matrices T to con-
struct the monopoles and the details of some special cases
are the subject of the final sections.

II. THE ADHM AND ADHMN CONSTRUCTIONS
A. ADHM

The basic ideas of the ADHM construction have been
extensively reviewed. Here, we shall confine ourselves
to stating the main steps and establishing notation. For
SU(N the gauge potentials JYa, a= 1, . . . , 4, are given in
terms of an (%+2k) &&X matrix function of x, u(x), by
the expression

8' =v8 v, v v=1~. (2.1)

The matrix u is not arbitrary but constructed to satisfy

can be written down explicitly in terms of the basic in-
gredients. Thus, for the fundamental representation of the
gauge group, for example, we have

u (x)u(y)
4&ix —y /2

for the scalar Green's function and

(2.10)

iti=u b(b, 6) ', @=i' e, e=
0 1

—l 0 (2.11)

is a complete set of k solutions to the massless Dirac
equations. [In Eq. (2.11) the transpose only refers to the
spinor indices of 1t.]

On the other hand, given a complete set of k-
independent solutions to the Dirac equation in the back-
ground k-instanton field (with asymptotic behavior
W -g '8~as ~x

~

~oo), normalizedso that

~aiA ij 0~ 3 =1,2, a=1, . . . , k,
i =1, . . . , %+2k, j=l, . . . , X

for the choice

~aiA ~aiA +I aiA'+A'A

(2.2)

(2.3)

f d x gtf=+li, , (2.12)

we can compute A, and p . ' They are given by the
asymptotic behavior of g, and the f-expectation value of
xa, respectively. That is,

where the constant matrices a, b are each (N+2k) &&2k,
and x is defined to be

Axg- —g as~x
i
~a) (2.13)

X =X4+I X 0 =gaea (2.4) and

6'=QUAR, QHSU(n+2k), RESU(k) (2.6)

where Q and R are constant matrices, yields the same vec-
tor potential as b, up to a gauge transformation, we can
write a useful canonical form for a and b. We may choose

A straightforward calculation of the field strength P„
in terms of the basic ingredients a, b yields

F p=vtbe( (Atb. ) 'ep~)b'av, (2.5)

which is sensible and self-dual provided (b, th)z &„,, a
2k )& 2k matrix, is invertible and proportional to the tensor
product of a k&k Hermitian matrix and the unit 2X2
matrix. The action functional computed for the gauge po-
tentials derived as above is Sm k.

Noting that b, ' defined by

f d x '|(i xap= —8 pa (2.14)

B. ADHMN

Nahm's extension of the formalism to encompass mono-
poles also uses the Dirac equation as the cornerstone for
the construction. In this case, in a monopole background
the Dirac equation reads

e D /=0 (or D itic =0), (2.15)

Using these expressions and the completeness of the
Dirac zero modes we can directly verify the conditions
(2.8) and (2.9) and work backwards to reconstruct the
8'a. This demonstrates the completeness of the ADHM
construction and indicates the central role played by the
Dirac equation.

~aiA ~aiA ~ ~aiA

0.=1, . . . , k, A =1,2, i =1, . . . , X
(2.7)

where D =8, + 8', and 8'4 ——4. The vector potentials
and @ are independent of x4. Thus we may take g to be
combinations of solutions of the form

+aiA PaiA i bald ( 12k )aid

a=1, . . . , k, A =1,2, i =%+1, . . . , N+2k,
g=e ' P(x,z),

and, setting @= i/, with—P =P, Eq. (2.1S) reads

(2.16)

(2.8)

and p=p e, with

p =p, a=1, . . . , 4. (2.9)

in which case the conditions on 6 6 may be rephrased:

A, A, +p p=(Hermitian)l, xl, 12
( o"D+P —z)/=0 . (2.17)

It is convenient to write the asymptotic behavior of P in
terms of the projection operators (which are angular func-
tions) Pl on to its various eigenspaces. Thus

One of the strengths of the ADHM construction is that
various Green's functions and solutions to Dirac equations

krf—g Pl zl+
i=i 2fxi

as/ x
/
~a), (2.18)
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N
k(z)= g k(8(z —zi) . (2.20)

In particular, there are no normalizable solutions at all un-
less z lies between the greatest and least eigenvalue of the
asymptotic Higgs field. The number of solutions jumps,
typically, as z moves past an eigenvalue of P, not doing so
only if one of the "charges" k~ happens to vanish. For
maximally embedded spherically symmetric monopoles in
SU(N) the charges are the set

X—1,X—3, . . . , —%+1. (2.21)

Hence, if N is odd there is precisely one zero "jumping
point, " but not otherwise. The k's are ordered so that
g &

k~ )0, for r = 1, . . . , N.
In the absence of zero jumping point the solutions to

the Dirac equation fall off sufficiently rapidly that there
is no contribution from terms like A, in Eqs. (2.13) and
(2.8). The other terms do exist, however, and Nahm de-
fines

(T; )„,= f d3x x;f„(x,z)g, (x,z),
i =1,2, 3; r,s =1, . . . , k(z) (2.22)

and b, (z) to be the differential operator

b, (z) =i +i (T+ x ).o .
dZ

(2.23)

T4 is chosen to be zero by suitable arrangement of the QQ
transformations [Eq. (2.6)] which are now z dependent.
This is done for convenience in subsequent computations.
u is now also a function of z satisfying

r

where the z's and k's are not necessarily distinct. In terms
of these quantities the energy of the monopole is given by

E=4m+ zik(, (2.19)
l=l

and the number of normalizable solutions to the Dirac
equation can be counted using a theorem of Callias.
Their number is crucially dependent on the value of z and
may be written

Given u, computed from (2.34), the vector potential and
Higgs field are recovered from the analog of Eq. (2.1).
Thus

8";= f dzu 8;u,

e= —i f dz~'u,

1= f dzu'u,

(2.27)

(2.28)

(2.29)

(ap), = f d x Q, (x,zp)(o"D+zp)rp(x) (2.30)

where the integrations are to be performed over the range
spanned by the minimum and maximum eigenvalues of
the asymptotic form of &5, conventionally z~ (z (zz.

Some care has to be taken to ensure that Eq. (2.24) has
precisely N independent solutions [for SU(N)] and this
consideration influences the acceptable singularities that
are allowed to occur in T;. Specifically, the singularities
can be no worse than poles in z. These must be con-
strained, if we are solving Eq. (2.25) on the interval [z;,
z;+&], to occur either outside the interval or at z;,z;+& but
not inside. Equation (2.29) cannot be satisfied if the u on
a specific subinterval is singular and so singularities in T
restrict the class of normalizable solutions to Eq. (2.24).
How this works in particular cases will be explained
below. On any given interval between jumping points
[z~,z;+&], say, the dimension of T is fixed, hence we con-
centrate our attention on one interval at a time and sew
the pieces together afterwards. How this can be done for
the cases we consider will be discussed below, in Sec. IV.

When one of the jumping points corresponds to kl ——0
for a particular I, the situation changes qualitatively and
the Dirac solutions are no longer enough to specify com-
pletely the gauge potentials and Higgs field. In that case
there are also solutions to the covariant scalar Laplace
equations (in the fundamental representation)

D ~=0,
which tend to covariant constants asymptotically, and fail
to be normalizable. These solutions exist only for ki =0
and z =zl.

Let the quantities ap and ap be defined by

Ob tu i — +(T+x) o u .
dz

g 24) alld

ap = (ap )p8 p =iap ap
~ f (2.31)

dT.

dZ
l &lmn Tm Tn (2.25)

The conditions (2.8) and (2.9) reduce to a set of dif-
ferential equations for the Hermitian matrices T;: (where P labels any of the zero jumping points). Then the

equations for u and T, Eqs. (2.24) and (2.25), are modified
to

5 u+ g apsp5(z —zp) =0
P

(2.32)When Eq. (2.25) is satisfied 5 b is computed to be

6th= — +(x+T)t (x+T),
dz2

g 26) alld

dTl
=i@( „T T„+g (ap)(5(z —zp), (2.33)which is (usually) invertible.

The general solution to Eq. (2.25) for N=2, k=2 has
been discussed by Brown, Panagopoulos, and Prasad. ' '"
One of the main tasks of this paper is to find the class of
solutions to (2.25) corresponding to the maximally embed-
ded spherical monopoles.

respectively. We ought to remark that in Eq. (2.32) we
have suppressed all indices for clarity, but it should be
noted that sP is a rom vector of length X so that all the di-
mensions match up correctly. Finally, the definitions of
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8' and 4 are also altered to read

8;= f dz U 8;U+ gspB;sp,
P

l@= dzzU U+ Qzpspsp
P

1= f dzU U+ Qspsp

(2.34)

(2.35)

(2.36)

respectively.
We have chosen to use up part of the Q,R equivalence

[Eq. (2.6)] and set T4 ——0. There still remain z-
independent transformations in SU(k(z)), on any particu-
lar interval [z;~;+1], although these must be matched ap-
propriately at the jumping points. Thus, using T', de-
fined by

the tensor product of spin j with spin j ' contains a spin 1

in its decomposition. In other words,

T JJ =0 if
~ j —j '

~
&0, 1, jj ' not both zero . (3.6)

X—2[z„z2]: spin J J=
2

Thus, if we agree to arrange T into blocks whose dimen-
sion increases along the main diagonal, then T is block tri-
diagonal.

For the maximal embedding in SU(N) that we wish to
consider, corresponding to the magnetic "charges" listed
previously, Eq. (2.21), the T's have the following compo-
sition on each interval [z;~;+1]:

T'=Q TQ Q Q=1 dQ
dz

(2.37)
[z2,z3]: spin J,J—1,

instead of T, leads to gauge-equivalent potentials.

III. SPHERICAL SYMMETRY

[z;,z;+1]: spin J,J—1, . . . , J i+—1
until the middle intervals, where either

A monopole solution is spherically symmetric if the ef-
fect of a spatial rotation of coordinates on any field can be
canceled out by performing a compensating gauge
transformation. To construct the fields at x and at its im-
age R x under a spatial rotation we must use b„h" defined
by

or

[ZN/2 ZN/2+ 1]: spin J,J—1, . . . , 0

[zN/2, zN/2+1]: spin J,J—1, . . . , 0 if N is even

[ (N —1)/2t (N+1)/2]
n nl'"

(3.7)

+i x.o +iT.o,
dz

+ibex

cr+iT. o-,
dz

(3.1)

and then, for the rest,

[zN 2,zN 1]: spin J,J—1,
[zN ),zN]: spin J

respectively. However, for each R ESO(3) we can select
an element of SU(2), g (R), so that

Rx cr =g(R)x erg(R ') .

On the main diagonal we write

T'J=aj(z)CJ, j=J,J—1, . . . (3.8)

+i x.o+~R 'T- o-
dz

(3.2)

Thus 6 constructs gauge-equivalent fields to those con-
structed from where CJ corresponds to the maximal embedding of SU(2)

in SU(2j+1). For the other entries TJJ+' and TJ+'J we
may write

The fields will therefore be spherically symmetric provid-
ed we can pick an element Q(R) of SU(k(z)) satisfying

TJJ+'=b, „(z)-CJ+', TJ+'J=b, „(z)+CJ+',

(3.9)
Q(R ')T;Q(R)=R J Tq . (3.3)

where
Clearly, Q(R) represents SO(3) within SU(k(z)) but, it

is not normally an irreducible representation. However,
we can use the freedom (2.37) to organize Q(R) into a
direct sum of its irreducible components

and

Q.(R ') CJ+'Q. +1(R)=R CJ+' (3.10)

Q=Q, .
J

(3.4)

where j is the spin of the representation QJ. Thus, if we
divide T into blocks, TJJ, corresponding to the various
spin components of Q, Eq. (3.3) will read

Q& (R )TJ/ QJ(R)=R.TJJ (3.5)

From Eq. (3.5) we deduce that T/J can be nonzero only if

(
—CJ+1)t +CJ+ (3.11)

It should be remembered that CJ is a (2j —1)X(2j+1)
matrix. The main properties of C J and +C1 are collected
together in Appendix A. Explicit forms can be found in
Ref. 12. All other components of T are zero.

We are now in a position to compute the Nahm equa-
tions (2.25) in terms of the a's and b's belonging to any
particular interval in z. Thus,
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CJ=i (a'Cjn, CJ+b +Cjn, CJ
dz J

+b 2 —C j+1p+C j+i)

C j=i(a, ,b C j 'n, C j+a b C r C j)
dz

and, using the properties of CJ and —+CJ, we obtain

= —[aj +(2J—1)bj ], J=
z 2

(3.12)

zero. (Except when J=1 when this need not happen. )
Thereafter, as i increases, the new spin contributions
aj;+i have a pole at the boundary of adjacent intervals,
the new bj +2 'have a zero, but all other functions are
continuous. The only exception to this rule occurs if 2V' is
odd. In that case a)~2(z), on the two central intervals
I(~ 1)g2, I(~+1)]2, is discontinuous at z(~+1)g2, the "mid-
dle99 eigenvalue. This discontinuity is allowed for by a
corresponding delta-function contribution in the equations
for T on these intervals [Eq. (2.33)]. The specific exam-
ples, discussed in Sec. V, should serve to clarify the rules.

dQJ = —[aJ + (2j —1)bj —(2j+ 3)bj+ ) ],
(3.13)

db) ~

dz
=b [(j'—l)a' i

—(j'+ l)a'] . (3.14)

daJ
dz

That is

2= —QJ

Here, j runs over all the spins less than J which contribute
to the T on a particular interval, and j ' runs over all the
spins greater than the lowest for that interval. If spin 0 is
a possibility [as it is for the central interval for SU(N) and
N even] then ao=0. This is, of course, because we cannot
add spin 0 to itself to obtain spin 1. On the first and last
interval, there is only one spin, and thus a single Q& satis-
fying

IV. THE SOLUTION OF THE SPHERICALLY
SYMMETRIC NAHM EQUATIONS

dP,
dz

=rP, 1, r &0. (4.1)

Although these polynomials are an infinite set, we shall
need to use only the first 2J of them for our solutions.

Define the determinants E„"and F„' by

En det(En )ij~ (En )ij Pn —2(r+) )+i+j r

Equations (3.13) and (3.14) are quite a complicated set
and it is rather remarkable that they can be solved in
terms of a certain set of polynomials. We shall, first of
all, describe how to solve the full set of equations for the
interval I&&2 if N is even, or I()v i)&2 if N is odd, these
containing the maximum number of spins:
j=J,J—1, . . . 0 or —,', respectively. The solutions to the
equations on other intervals can be derived by truncating
these.

The basic set of polynomials P„r)0, is defined by the
recurrence relation

QJ=
Z Z1

or
z zg and

i,j=1, . . . , r+1 (4.2)

The set of equations (3.13) and (3.14) are interesting in
their own right and we shall explain their general solution
in the next section. However, before doing so we need to
say something about the way solutions on adjacent z inter-
vals are patched together. Let us label the intervals as fol-
lows:

dE„'
(n —2r)F„"=

dz
(4.3)

It is quite easy to check that F„"differs from E„"only in its
first column where each polynomial has its index lowered
by one. Thus,

I, =[z, ,z, +, ], i=i, . . . , N

On the interval I; the contributing spins are

(3.15) F„"=det(F„");1, (Fn);j (En");j, j+I, i——=l, . . . , r+1
(F")')=P 2(„+i)+ l =1 . . . r'+1 (4.4)

j=J J—1, . . . , J—i+1, i =1, . . . , —or & —1

(3.16)

It is sometimes convenient to think of E„" and F„" as sub-
determinants of the persymmetric matrix P defined by

j =J,J—1, . . . , J+i —%+1, PgJ P, +J 9 l 7j—0, 1,27 ~ ~ ~ ~ (4.5)

i=—+1or, . . . , X —1.N %+1
2 2

For I1, I~ 1 there is a unique spin, the corresponding
aq(z) is a single pole occurring at z=zi, z)v, respectively.
The residue of the pole is an-irreducible representation of
the SU(2) Lie algebra for spin J. For I2, I~ 2 there are
two spins. For the larger J az is continuous at z=z2,
z& 1, respectively, but for the other, J—1, aJ 1 develops
a pole at z2 and z& 1. The corresponding bJ's will go to

') ' ' ' ' ' j) ' ' ' j '~+ jp( )
'

peHI1 p s=1
~r~n q01 ~ ~ rn —2r, . . . n —r 7

z, rFn q01 ~ r; n —2r —1,n —2r+ 1, . . . n —r .

(4.6)

(4.7)

(4.&)

Let q;;.J J be the determinant of the rXr sub-

matrix of P formed from the elements in the rows i1
and the columns j1 j„. Then
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The determinants q satisfy a generalization of persym-
metry

~&i+P &2+P. ~ ~ ~ & +P' Ji —P J2 —P ~ ~ ~ .J —P ~&i ' '
& i Ji ' ' ' J

(4.9)

the differential relation

d
dz gg ~ ~ ~

g
i J ~ ~ ~ J &s% . i —1. i J J'

s ' r& I r
s

where

and

i~ n 90, 1, . . . , r; n —2r —2, n —2r + 1, . . . , n —r

i~n 90, 1, . . . , r; n —2r —1,n —2r, n —2r +2, . . . , n —r

Alternatively, we could also write, using the persymmetry
of F„",

F =qn 91,2, . . . , r+1; n —2r —2, n —2r, . . . , n —r —1

+ gj, a; . . . ;.J . . . J 1 . . . q, (4.10)
s

and are totally antisymmetric in the i or j indices separate-
ly, and symmetric under the interchange of all the i's and

j s, i.e.,

in which case

dF„'

dz
=G„"+(n 2r 2)—H„'+—(n —2r)E„",

where

(4.15)

; Ji ' J qJi' 'J; si''') ~ (4.11)
~r
Gn q0, 2, . . . , r+1; n —2r —2, n —2r, . . . , n —r —1

In terms of E„",F„" the solution to the Nahm equations
on the interval Ixy2 o I(w —1)y2 «s

Comparing (4.14) and (4.15) we derive the relation

G„'=H„'+E„' . (4.16)

F2J
~J —r

E2J

Fr —1
2J

Er —1
2J

(4.12a)
In Appendix B we use Jacobi's theorem on submatrices of
an adjugate matrix to derive two useful identities amongst
the various determinants introduced above:

(bJ „) =—E' E' 2J 1
~ 2 ' r 0'1' 'J 1or

(Ezf )'

(4.12b)

and

FrGr (Fr)2 ~r+1~r —1

Hr —1Er ~~rEr —1 Fr —1Fr
n n+ n n n n

(4.17)

(4.18)

with the conventions
—1 —1 0 0F2J —Oy E2J 1 p E2J P2Jp F2J P2J

Proving this assertion is straightforward for Eq. (3.14),
less so for the others, Eqs. (3.13). In the case of (3.14) we
can make direct use of the differential relation (4.3) to
evaluate

dbJ

bJ , dz

Explicitly, we have

Armed with these expressions and relations (4.14)—(4.18)
it is now a matter of straightforward algebra to check the
rest of Nahm's equations for the maximal number of
spins.

So far we have discussed Nahm's equations on the cen-
tral intervals I~iq or I11v 11i2 for N even or odd, respec-
tively. On the other intervals, fewer spins enter but the
same solution [(4.12a) and (4.12b)] will still work provided
we arrange that Ezj+ =0 when r=J—jm;„[where
j;„=J i +1 on the —interval I;, Eq. (3.16)]. We can ar-
range this by setting

dbJ

bJ „ dz
(J r+ 1)— —F" F"

E" E"

r+1
I'„= g A,k(z —a„)", n=2J

k=1
(4.19)

Fr+1
+(J r —1)—F2J

where )1,k and ak are constants. Then, each of the r+2
columns of EzJ+' is a linear combination of columns with
entries

(l,z —a;, (z —a;), . . . , (z —a;)'+')

(J r+1)aJ, +(J r—1)—aq——

(4.13)

dF„' = (n 2r —1)H„"+(n 2r + 1)X„"—, —(4.14)

which corresponds to Eq. (3.14) with j '=J—r.
To check the other equations we shall need an expres-

sion for dF~/dz and identities involving subdeterminants
of a persymmetric matrix Using Eq. . (4.10) we have

P2J=A, ,(z —z1) + +A~(z —z ) (4.20)

for i =1, . . . , r+1. This construction yields the correct
number of effective parameters for each interval, namely
Zr +1=2(J—j;„)+ 1.

The final issue to be settled in this section is the prob-
lem of matching the solutions on each interval I; with
solutions on the adjacent intervals I;+1. We shall consider
the two cases N even and odd separately. If X is even we
can arrange the correct continuity, poles, and zeros on all
the z intervals up to and including the central one by mak-
ing the choice
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on each of the intervals I, for m=1,2, .. .N/2. ,Equally,
to the right and including the central interval we can
make the choice

Pzj= —[I, +)(z —z +)) + . . +A~(z —z~) ] (4.21)

on the intervals I~ for m=N/2, . . . , N 1.—Matching
the solutions on the middle interval requires that (4.20)
and (4.21) be identical for z&&&&z(z&~@+&. In other
words,

N

g A,„(z„)'=0 for 0&s &2J,

1
z& &z&zz. Pz ——A, ~(z —z~), a~ ——

(z —z, )

zp &z &z3. Pg ——A)(z —z] ) +Az(z —zp )

A 3(z z3 ) —A,4(z —z4 )
2 2

(5.4)

(Pt) —PzPp Pi
ap ——0, (b))=,a)—

(P, )'

(5.5)

we need only display the polynomials Pz on each interval.
Thus, for

which may be solved for A,„, r = 1, . . . N, yielding

X,= +(z„—z, )-'. (4.22)

1
z3 &z &z4. Pp ———A,4(z —z4), a)

(z —z4)
(5.6)

0T= z) &z &zp
2(z —z, )

'

(5.1)T=, zP &z &z3 .
2(z —z3)

'

Each is a simple pole at one of the extreme jumping points
whose residue is an irreducible representation of the SU(2)
Lie algebra of dimension 2. The discontinuity n is com-
puted to be

(z, —z, )

(z2 —z~ )(z3 —zp)
(5.2)

S=P

If X is odd, then to the left of the central jumping point
z~~+~~~q, we take (4.20) and to the right of it we take
(4.21). For z=z~~+~~~q we must match the two expres-
sions and also the expressions for P, , . . . , Pzf, derived
from them. a&~z can be discontinuous at z=z~N+~~~q so
Po need not be matched. These conditions lead to the
same expression (4.22), for the A, 's in terms of the jumping
points z

& zN.
In the next section we shall consider some special cases

of these solutions to illustrate the general theory.

V. DETAILED EXAMPLES FOR N=3,4

For %=2, the T matrices are all zero and the solution is
the BPS monopole in the usual way.

For N= 3 there are two intervals, z& & z &zz and
zp &z &z3 and correspondingly on each interval there is a

~ ~ 1
single spin J=—,, and the T's may be written

v w =constant, (6.2)

and v may be obtained by inverting the w matrix.
We shall have to solve Eq. (6.1) on each of the z inter-

vals I&, . . . , I», but as before, to begin with, we shall
consider the central intervals containing the maximal
number of spins contributing to T. Recalling that 6 has
the form

5=i +(x+T ) cr.
dz

(6.3)

a suitable basis in which to express w consists of the ten-
sor product of spin —, with each of the constituent spins in

T. Thus we may write

Observe that the a~ functions are continuous across each
jumping point and that b ~ does not have a zero at zz or z3
(as it need not do according to Nahm's rules). The central
interval Iz contains two spins (1,0), but ap is always zero.

To complete the analysis the other part of the story has
to be considered. We shall need to solve Eq. (2.32) for the
U's (and, when appropriate, the s's). This is the subject of
the remainder of the paper.

VI. ANALYSIS OF THE EQUATION FOR U

The strategy we shall adopt to determine U is the follow-
ing, again following Nahm. It is a little simpler first to
solve

(6.1)

Then, if U solves b,tu=0, u and w satisfy (d/dz)(utw) =0 or

and a4 must be chosen suitably. To see how to choose o;4
we need to ensure that a„e„ is rank one so that we can
identify a row vector a and write a„e„=ia~a. Thus

(z3 —z) )
CX4=l 1p

(zq —z~ )(z3 zp)

w(z)=
j=0 or—1

2

j+21

1m=-j ——
2

1J—
2

wj+, ~(z)
1 j ~'J+ 2

and
1/2

(z3 —z, )
(0, 1,—1,0) .

(z2 —z ) )(z3 —zz )
(5.3)

m= —j+—1

Jill (z)
I J ~ Y~J —T~

(6.4)

For %=4 we have three intervals and the solution may
be conveniently described in terms of the polynomials Po,
P~, Pz. Indeed, because of the relationship equation (4.1)

Substituting (6.4) into (6.1) using the expressions for T and
properties of the C, +-C (Appendix A), we obtain a set of
coupled differential equations for the coefficients wj~(z):



28 CONSTRUCTION OF SPHERICALLY SYMMETRIC MONOPOLES. . . 3107

dz
+jajwj++[(2j+1)(2j+3)]' bj+lwj+i +x3 wj+ —2X3 . wj =0 for

I
m

I
&j+—,

'

2J+1 2j+1
(6.5a)

wj+m ——o for Im I &j—2, j=J,J—I, . . . , o or —,
' .

—(j +1)ajwj +[(2j—1)(2j+1)]' bjwj+, —x3 wjdz 2J +1
[(

~ + l )2 2]l/2
—2X3 2j+1 (6.5b)

In evaluating Eq. (6.1) we have worked entirely on the x3
axis. Hereafter, we shall relabel x3 as r Th. e solutions for
general x are obtainable from these by performing a spa-
tial rotation. Notice that the equations do not mix differ-
ing values of m and, further, solutions for m negative can
be obtained from those with positive m since

w,
+ m(z, r)=( —) jw,+(z, —r),

m(z, r)=( —)'+'w, m(z, r) . —
PJm = —~Jm

(j+—,
' —m )

(j+—,+m)

I

where

p, =(I ~)-'/2(b, )-'(b, ,)-' "(b, )-',
Psii=(I'2J) '"

1/2

(6.7)

(6.8)

We need only concentrate on m )0.
Each value of m will occur a number of times in the

various tensor products. Thus m= J+—, can occur just
once, J——,

' three times, J——', five times, and so on, so
that for m =J+ —,

' —s we should generally find 2s + 1

solutions to the equations. The only exception to this
occurs when m happens to be zero. In that case there will
be just 2J+1(=2s) solutions. The case m=0 can only
occur when X is odd and then we also have to take into
account the delta-function terms in Eqs. (2.22) and (2.33).
For this reason we defer a discussion of the case m =0 ur. -
til later.

As before, in Sec. IV, we shall write the solutions and
verify that they satisfy Eqs. (6.5a) and (6.5b). Unfor-
tunately, the solutions are quite complicated and we shall
again have to rely heavily on the properties of persym-
metric matrices outlined in Appendix B. One of the
2(J+1—m) solutions for a given m is relatively straight-
forward; the others fall conveniently into two sets which
we shall refer to as L'"l and R'"', 1 & co & s=J—m + —,'.
Thus, for the odd one out we can write

(2j+1)
Pj+ lm =~jm (2. 3)

Equation (6.8) defines a recurrence relation for A /m for a
given m, and we notice that pj /+i/2 —=O=Aj j+3/2 as it
should. Using the identities

and

E E =E 'F —E 'F2J 2J —1 2J 2J —1 2J —1 2J

EJ J 'EJ J =EJ ~ 1FJ g —EJ JF2J 2J —1 2J —1 2J 2J 2J —1

(6.9)

de =pMp
z

(6.10)

The expressions (6.6) can be shown to satisfy Eqs. (6.5a)
and (6.5b) without difficulty.

The construction of the other solutions is more intricate
and some preliminary definitions are necessary. Let IM& j
be another set of polynomials satisfying

W,
+ =X,me pj+,E2J', '(E2J'-')

Wjm =jjjme pj+lE2J l (&ZJ—
(6.6)

but unrelated to the I' 's introduced before (4.1). In terms
of these we define other sets of polynomials, one for each
of co as follows:

(co)
Dq

Mo M

M2 —3 Pq+m —1

a)=2, . . . , s(=J+ —,
' —m), m &J——',

(&)
Dq —Pq, m —J——,

(6.11)

For each co, Dq is of degree q and again satisfies dDq /dz=qDq l properties easily checked using (4.1) and (6.10).
We also need to define the quantities A; (m,j,co,z):

Z 1 j—(1/2) —m +i
A;(m,j,co,z) = dtl dt2 . dtJ+1i2 —m+ia a a

i —1 (2j+ + )'
(2 )"D'"' '+1 2 +'

(2j +&+2)l j+m+1/2+» ~
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If a=z~ then the 3; will be used to construct solutions in
the set L'"': for cc =z& they will give solutions in the other
set, R'"'. In formula (6.12) the integrals actually span
more than one interval. It is to be understood that the po-
lynomials Mz are defined to satisfy Eq. (6.10) and for all
zi &z &z&, but that for each subinterval we use the ap-
propriate set of polynomials P„[Eqs. (4.19) and (4.20)], for
that interval to define the quantities D„. These match on
the boundaries of adjacent intervals and vanish at zi and
zN

Using these ingredients, the solutions are

t 2J+1

2J+1
Jm

K+ 2+m
K+ —,—m

1/2
K+ —, +m

1K+ —, —m

(6.14)

wjm(co) =~& e P~+ iO~m'(2r) '( Ezj J ) ', (6.13b)

where

wjm(co) =crjme P)+ i' J~m (2r) (6.13a)
l

and 0, 8 are given in terms of A;, i= l. . .J—j+2, by
the expressions

A i(m, j,co)

P2)+ i

PJ+1

A2(m, J,co) Az J.+i(m,J,co)

PJ+J+~

~ ~ ~

(6.15)

„(co)
Ojm =

A2(m, j—1,co) A3(m,j—i, co)

PJ+J

AJ 1+2(m,j—i, co)

PJ+j+&

P2J

(6.16)

for each choice of co, and a =zi or z&.
Note, that when j happens to be m ——, we can compute

the A; exactly. They are

2ps
Ag ——e D2m —2+i .

Substituting these expressions into Eq. (6.16) yields0'"
/2

——0. This is not strictly necessary, but desirable
in view of the way we have chosen to write Eqs. (6.5a)
with an extra term when j=m ——,'. A sketch of the way
in which Eqs. (6.5a) and (6.5b) can be verified is given in
Appendix C.

So far, in the preceding paragraphs, we have construct-
ed a set of solutions valid for the central intervals in z, for
which the maximum number of spins contribute to T. Gn
the other intervals there are fewer spins contributing. We
can say that each value of m turns up at least twice be-
cause every interval contains spin J but as we move to-
ward the center, from zi or z~, one extra spin occurs at
each interval. This means that as we move from left to
right, for example, m=J+ —,

'
always occurs just once,

m =J——, occurs twice on the first interval, three times
on the next one, and three times thereafter. m=J ——,

'
occurs twice on the first interval, four times on the next,
five times on the third interval, which is then its multi-

I

l

plicity thereafter, and so on. In other words, as we move
from the central interval(s) towards zi and zz the number
of solutions drops and we might expect that the solutions
we have already found will still work, except that some of
them will fail to be independent (just as was the case for
the a's and b's of Sec. IV). That this happens is
guaranteed by the form of the polynomials I'„, Eqs. (4.19)
or (4.20), and the way in which they are used to construct
the polynomials D . It is easy to see that when Pq is
truncated then fewer of the polynomials D~"' are linearly
independent on each interval. In fact, on the outside in-
tervals I& or I~ ~, there is just one D polynomial of de-
gree q and, moving in toward the center the number of in-
dependent polynomials increases by one at each jumping
point. It is rather complicated to see how everything
works in detail but we can look into some examples.

For a given m value, I.' ' and R'"' are clearly solutions
on those intervals for which j;„&m——,. This is because
these are the intervals for which this value of m (or larger)
achieves its maximum multiplicity. For the other inter-
vals where j;„&m ——,

' this is not so and we must do fur-
ther calculations to establish the I.'"' as solutions on the
left-hand intervals and the R' as solutions on the inter-
vals right of center.

Thus, on the intervals left of center we can show

00 (I + I)(&+2) . (l. +j + , m)——
A;(mj, co)=e g ( 2r) D2J+L+;+, —

I =0 (j+m+ —, ) . (2j+2+L)(j+—, m)!— (6.17)

so that the determinants in the definition of w~
—

m via Eqs. (6.13)—(6.16) vanish on those intervals for which

j;„&m——,
' for a given m. To show Eq (6.17) we f. irst note that
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Kk(z)= I dt's I dt„Dk(t„)e "=e g D„+„+I(z)( —2 )
L, =O

in which case /I;(m,j,co)=KJJ+ +~/2 agrees with Eq. (6.17) without further ado. For the others, the argument is more
complicated. For example, the terms contributing to A3,

A3(m,j,co)=(2j+ )(2j+4)KJ+ +~'/2 +4r(2j+4)KJ+ +3/2+(4 ) KJ+ +5/2,

collect together on noting the identity

(2j+3)(2j+4)(L+j ——', —m)(L+j + —', —m) —2L( 2j +4)(j +m+ —,
' )(L+j + —', m)—

+L( L —1)(j+m+ —', )(j+ nt+ ', ) =(2—j +L+3)(2j +L+4)(j+—,
' —m)(j+ —,

' —nt) .

For i & 3 there are other useful identities, for example,
i —1

g ( —)"
k (ni —k)(n2 —k) (n; 2 —k)=0,

IF =0

v+(z)wo(z) =Ci,.+(.)L'"'(.)=C,",
v+(z)R '"'(z) =Cg"'

(6.18)

for each of the allowable values of w on each interval. In
Eq. (6.18) the quantities C~, CL, ', C~"' are constants.
Since v(z) is supposed to be normalizable and its com-
ponents that survive through a jumping point are continu-
ous at the jumping point, the C's must be universal hav-
ing the same value on each interval. On the other. hand,
1.( ' and R' ' clearly vanish at z =z1 or z&, respectively
[because of the definitions of the /I~, Eq. (6.12)] and so
Cl"' ——O=C~ '. C1 does not vanish and we may take
C~ ——1. If we decompose v(z) in the same way as w(z),
Eq. (6.4), then Eqs. (6.18) are a set of linear equations for
the components vjm(z). Since the original equations for
wJ

— [6.5a) and (6.5b)] did not mix different values of I
and neither do the differential equations for the com-
ponents of v, we can arrange a basis of solutions labeled byI, w, where

J
Wm = X Wjm I j~ T~~ j+T~~m ~

1J=m ——

J
+ g Wjmll~2~ j

J =m+
(6.19)

for any of the solution sets coo, I. ', R (

~= 1 J—I+ —,. Consequently, we can concentrate on
1

the set of equations (6.18) for a fixed m, using this basis,
and compute the UJm contributing to the analogous expres-
sion [to (6.19)] for v in the decomposition of v. We
know of no general way of writing the solution to these
equations other than straightforwardly as ratios of deter-
minants.

We should also bear in mind that the number of com-

i —1

g ( —)"
k (n~+k+1 —i)(n2 —k) . (n; 2

—k)=0.
k=0

The next step of the construction, given the set of w's, is
to construct the quantity v(z). Referring to the isolated
solution, Eq. (6.6), as wo we must have

( VJJ —1/2 ) WOJJ —I/2 1+ g + (6.20)

If m=J ——,
' then on all but the first or last interval we

have

(VJJ—1/2) WOJJ —1/2+(VJ —1,J—1/2) WOJ —1,J—1/2
+ )g + ( + +

+(VJJ 1/2) WOJJ 1/2 = 1

(VJJ—1/2) JJ—1/2+(VJ —1,J—1/2) LJ—1J—1/2
+ ~L +(1) + g +(1)

—(1)+ ( VJJ—1/2 ) LJJ—1/2

( VJJ —1/2 ) +JJ—1/2 + ( VJ —1,J—1/2 ) ~J—1J—1/2
+ g +(1) + g +(1)

+(1)+ ( VJJ—1/2 ) +JJ—1/2

(6.21a)

(6.21b)

(6.21c)

On the first and last intervals the middle terms in each
equation will be missing. Hence both R"' and I.'" cannot
be solutions to the m equation on these intervals. We ar-
gued above that I "' was a solution on the first interval,
R"' on the last. The other solution on these two intervals
is a mixture of wo and L'" or R '", respectively. In other
words, although Eq. (6.21b) survives into the first or last
interval, a combination of (6.21a) and (6.21c) replaces that
pair of equations. Alternatively, as mentioned above,
solving (6.2la) —(6.21c) on all the intervals formally, and
using the same expression on the first and last intervals,
actually works since in the expressions for UJJ 1/2 a can-
cellation occurs, and in the expression for UJ+ 1J 1~2 the
denominator becomes infinite providing a zero. For other
values of m and on intervals with less than maximum
multiplicity we can always arrange, by adjusting the poly-
nomials M, Eq. (6.10), that R ' ' is a solution left of center
for co=2, . . . , s (though not necessarily all independent)

ponents of v(z) varies on each interval according to the
number of participating spins on that interval. On the
central interval(s) where the number of participating spins
is a maximum we can write all the components of v as ra-
tios of determinants. Formally, this solution set works on
all the other intervals also, for the following reason.
Wherever a particular component of v should have gone to
zero, because the relevant spin has disappeared from the
interval in question, a convenient zero will appear in the
ratio of determinants. If a component of v survives then
cancellations take place, effectively reducing the sizes of
the determinants appearing in the ratio to that appropriate
for the current interval, and its set of equations (6.18).

For example, if m =J+ —,
' then on any interval the only

equation to be solved is
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and, similarly, L'"', co=2, . . . , s, right of center. The
remaining solution is a mixture of mo and E'" or I."',
respectively. A convenient choice of the polynomials M
which is appropriate to the calculation of u v is given
below [Eq. (7.3)]. Indeed, changing the constants in the
polynomials M induces a linear transformation on the sets
L'"' and R' ' but does not affect u at all. The result of
calculating U U, etc., will always involve just the special
quantities M described below.

When N is odd the central pair of intervals must be
treated carefully, in view of the discontinuity at zJ+3/2,
and we have put off a discussion of the m =0 components
of v until now. For the case m=O we can find v(z) in
much the same way as when m&0 and the lowest spin
disappears. That is, it can be considered as a formal ratio
of (2J + 1)-dimensional determinants. v (z) must be
discontinuous at zJ+3/2 and, in general, C1 need not be 1

on both sides of zJ+3/2 We have been unable to prove,
but conjecture, that taking C1 ——1 everywhere does in fact
give the correct discontinuity in u (z) (it is true for
J= —,', —,, see below). To be able to construct the Higgs
field we need to know s. To find s we must first calculate
a for the discontinuity in a 1/2 [Eq. (4.12a)]. Now

have so far been unable to overcome (a recent paper of
Panagopoulos" may be helpful in this respect). In a
gauge for which the Higgs field is diagonal on the x3 axis
each value of m corresponds to a specific diagonal com-
ponent. We can compute these straightforwardly for
m =J+—,

' to obtain the result of Bais and Wilkinson. For
other values of m &0 we are unable to complete the calcu-
lation without making a reasonable conjecture at an inter-
mediate stage. The case m=0 we have been unable to
deal with at all.

When m =J+ —,
' we have, using Eqs. (6.20), (6.6), (6.7),

and (6.8),

e 2rzP ( )2J —1

Hence

f dz~'v
=—' "

ln f "u'u dz,
N t 2 dr 1

dZU U
g]

which we can evaluate using the expressions (4.19) and
(4.20) for the polynomials P2J on each of the intervals in z.
We find

z. J—3/2 ~J—1/2

7, J—3/2 7. J—1/2
L" 2J

(6.22)
1 d In+A, ;e
2 c&

2J+1 1

2 p'
(7.1)

and the discontinuity comes from the second term since it
is the only one containing a I'0. a; will only be nonzero in
its j= —, part, that is the intersection of its first two rows
and columns. From Eq. (6.22) this is

J—3/2
J+3/2 E2J (ZJ+3/2)

J—1/2 CJi( =eCTi )
2 E2J (zJ+3/2)

leading to the following expression for a:

a =(O, v 2e, —v 2e, O, . . . , 0) .

and, asymptotically,

1
AN-zN (J+ 2 )— (7.2)

as it should.
When m =J——, we will have

(
)2J-i„t„2J+1 d' („t )2

4r' dz' "" '"
4J —1 A A

2p'
e I Mo P2J 2M 1MoP2J 1— —

Matching at zJ+3/2 in Eq. (2.32) then gives the following.
Only u, /2 o is discontinuous there and the components of s
are computed from its discontinuity and the expression
for a. We obtain where

+Mi P2J

J+3/2 —1/2
g+

Sli 2 [Vi/2, 0]g — (e) 51,J+3/2J+3/2
(6.23) 2'.

Mk ——g iL;e '(z —z;) (7.3)

The row vector s has only one nonzero component, using
orthonormality. Since we do not know of any simple ex-
pression for u, /2 o we cannot proceed further in evaluating
s other than the implicit formula in terms of ui/2 o ob-
tained above.

. A, . eli l~
Ep ~ ~ ~ p 1 1~ a

are the particularly convenient choice of the polynomials
Mk [Eq. (6.10)] alluded to previously. Defining

2r(z + ~ +Z )

gN (r)=

VII. EVALUATION OF THE HIGGS FIELD

In this section we should like to use the machinery we
have evolved in the preceding chapters to make contact
with the previously known solutions of Bais and Wilkin-
son for maximally embedded spherically symmetric
monopoles. Specifically, we can compute the Higgs field
using the expression for u developed in Sec. VI and the
formulas (2.28) and (2.29). Unfortunately, there are
technical difficulties involved in this calculation which we

X g(z, ,—z, )',
P&y

we find the next entry in the Higgs field to be

(7.4)

1 d 2J —1 1
0N —1,N —I 2 d

(lnQN —2 In' —1) ~ (7.5)
2 c& 2 7'

It has the asymptotic behavior
1

PN-1, N —1 zN 1(J 2 )»—
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d 2X 2Ez

, +y g e' Y;P~;(—)'.
dZ i 0

(7.6)

For m =J+ —,
' —a ( & 0) we are unable to perform the

computation completely. However, suppose we conjecture
a form for the quantity U~U, agreeing with the above two
cases, as follows:

i /2
e ~2 2PZ2—Mi(z2)e

1 Mi(zi )
(e ' —e ') 52,

2r (z2 —zi)

Y;= g MM„. ,
j,k)0,
j+k=i

where MJ is the cofactor of P2J J in the determinant

0 P2J-a

M2~

Then,

In Eq. (7.6) X is a quantity vanishing quadratically at zi
and z~ so, as far as computing the Higgs field is con-
cerned it is irrelevant. y is a function of J alone (indepen-
dent of r,z) vanishing at J=a ——,'. Y; is defined in terms

of the M and P polynomials:

1 d
U U= (V 1/2, 0)

2r dz

Using these expressions, we find

2'.
dz v v+s s = — g A.;e '[M, (z, )]

Z] 2r i=I
1 2fz. —2IZ ~

- gA, ;e 'gA, el J
J

where a subtle cancellation of terms of order 1/r and
1/r has occurred. This is the same normalization factor
as obtained for m =J——,, J& —,. Finally,

Z3

ZZU U+Z2$ S
Z]

Z3

ZU U+S S

g A,;z;e '[Mi(z;)]

14x-,x- =
2 d

(»Qx-i- —»Qx- )
2 dr g A,;e 'Mi(z;)

2J+ 1 —2a 1

2 r
(7.7) 1 d

in+ A,;e
2 dr

which, using the definition of the Q's, has the correct
asymptotic behavior for large r. That Eq. (7.6) implies
(7.7) is indicated in Appendix D.

For negative values of rn the corresponding component
of the Higgs field is found by replacing r by r in the ex-—
pressions for positive m. They have the correct asymptot-
ic behavior also, remembering that zi &z2 ( . . &Zz and

g,". z, =0.
All of the expressions derived above agree with the cor-

responding expressions obtained by Sais and Wilkinson
but, as mentioned before, we have not been able to treat
fully the case m =0. However, one can work through the
case for N=3 explicitly, and, for completeness, we include
the results of this calculation.

We have

+ -n -i/2 ' M0Po 2n
Ui/20 ——e Pi dt M P e

Z] 1 1

That this is the correct result can be checked by taking the
expressions for f33 [Eq. (7.1)] and p» and insisting that p
be traceless.

VIII. CONCLUSION

We have seen (contrary to our own expectations) that it
is not a simple exercise to carry through Nahm's construc-
tion even in the case of spherically symmetric monopoles.
In fact, this task has taken us through a number of in-
teresting mathematical problems whose elegant solutions
would have come as a complete surprise had they been
posed out of the present context. Among these, perhaps
the most interesting is the solution to the equations for T
described in Secs. III and IV, where we were able to obtain
a complete solution in terms of ratios of polynomials.

Thus we conclude that Nahm's construction does not
facilitate the description of spherically symmetric mono-
poles, but it may well still provide a way of understanding
their parameter spaces and quantum numbers.

U 1/2, 0
M0Pp

Pi e
r MiPi

P J' dr ' 'e'"
MiPi
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APPENDIX A

In this appendix we collect together various properties
of the quantities C 1, +—C J which we have used in Secs.
III—VI. C 1 is a spin-j representation of SU(2) so

+Cj.o
I j,—,'; j+—,',m)

=[(2j+1)(2j+3)]' 'IJ+1,—,; J+—,,m&,

C 0
I J& 2& J z&m)

C~AC~=iCJ . (A 1) = [(2j—1)(2j+1)1'"
I j—1 2

' j—
2 m &

-cj+'c'+' —c'-c'+'= -cj+'
1 l k =l Ekbn m

(Al) and (A2) together imply that

(A2)

The quantities +—CJ have to satisfy Eq. (3.10) which im-
plies, considering an infinitesimal rotation, that

and

o3
I J& T& J+ 2 &m ) =+ . I J& 2 & J+Tm &J+

[(J+ )2 m 2]1/2
2J+1

C J -C~+'=-O=-C J+'CJ+' .

Clearly

Cjh -C~+'=~~ -C~+'.

(A3) x
I j,—,'; j+—,',m) .

APPENDIX B

So, taking the cross product of (A4) with CJ on the left
and the cross product of (Al) with C~+' on the right we
obtain

C'CJ-CJ+' J(J+1)—-CJ+'=iaCJ p, -CJ+'
l

= —cz' C1+',

c~cJ -cJ+' —cJ(cJ -cJ+')= c1 w -cJ+'
1

= —a C'+' .

Subtracting, and using (A3), we find a=j+1 or —j.
Also

-c'+'r c'+'=i'p-c J+' (A5)

and a similar argument leads to p=j+2 or —j—1.
However, using (A2) twice to reorder the left-hand side of
(A5) and comparing with (A4) we have a=2 —p. Hence
a= —j, p=j+2.

Similar manipulation leads to

+C~h C~=i(2j —1)CJ,

-CJ+'r +CJ+'= —i(2J+3)CJ

(A6)

on assuming a specific normalization for +CJ. C 1, viz. ,

+CJ. CJ=j(2j —1) . (A8)

Other identities are obtained by conjugation.
In order to obtain the equations satisfied by components

of io [Eqs. (6.5a) and (6.5b)] we made use of the following
properties:

Cj.o
I j,—,'; j+—,',m) =j I j,—,'; j+—,',m ),

CJ cr
I j,—,'; j——,',m) = —(j+1)

I j,—,; j——,,m),
+ ~

+-C J.o
I
m, —,';j + ,',m ) =0, —

The basic tool used in deriving relations between deter-
minants, such as (4.17) and (4.18), is a result p(
Jacobi which we may state as follows. Suppose that M
is an r)&r submatrix of the adjugate matrix M of the
N)&N matrix M, and M' "' denotes the (N r) &&(N r)— —
submatrix of M obtained from M by striking out the rows
and columns similarly placed to the rows and columns of-(r)
M used to define the elements of M, then

detM = (detM )' 'detM' (B 1 )

To prove Eq. (4.17) we note that each of E„' ', E„", G„",
and E„' may be regarded as submatrices of E„"+'. Thus
E„' is obtained on striking out the first row and column,
E„" '

by striking out the first two rows and columns, F„"
the first row and second column, and G„" by removing the
second row and second column. Thus, a straightforward
application of (B1) yields (4.17).

For Eq. (4.18) we have to be more subtle. We could re-
gard H„' ', E„', K„', E„' ', F„' ', and F„" as submatrices of
E„'+' but it is not so helpful. It is more useful to consider
E "„+' obtained from E„"+'

by deleting t e first row and~f +
repeating the last row. Clearly detE„=O. Then the
listed matrices are submatrices formed by striking out the
following listed rows and columns:

E„" ': first and last row, first and third column.
F„': next to last row, second column.
E„" ': first and last row, first and second column.
E„': next to last row, third column.

': first and last row, second and third column.
E„': next to last row, first column.

Applying (Bl) to the 3X3 matrix found by the intersec-
tions of the first three columns of E "„+' with the first row
and the last two rows yields (4.18).

The pair of equations listed in Eqs. (6.9) are proved in a
similar way

APPENDIX C

In order to show that Eqs. (6.5a) and (6.5b) are actually solved by the expressions (6.13a) and (6.13b) we shall need to
check that
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dQJm F~. 'Ojm —E2J 0) +(m
dz j—(2j+1) EJ—j—1

r(2j +1—2m) &™~ 2Q. Q~.
2j+1 ' 2j+1 (Cl)

and

d8jm . +2J ~8jm +E2J Qj+ 1m—(2j+1) .
dz E'-J

1

r(2j +1+2m) j m+ 2

each arising froln a direct substitution of the ansatz into the equations. It is convenient to organize the calculations as
follows. Firstly, compute each of the expressions in curly brackets to be Qjm, 8jm, respectively, where in (Cl)

Al(m, j,co) A2(m, j,ol) AJ j+ &(m,j,co)

jm = P2j+2

Pzj+i
P2j+J

PJ+j

PJ+j+1 (C3)

PJ+j PJ+j+1

alld, ill (C2)

Al(m, j—l,ol)

P2J

PJ+j 1

A (m,j—l, co)

Pzj+i

PJ+j+&

Ag j+2(m,j—l, co)

PJ+j+&

That these expressions are correct can be verified for the
coefficient of each A„ in turn using the techniques of
Appendix B applied to 6;k ——P2j+~;+k~ 2, i,k=1 . J—j
+ 1. For (C3) all we need is a straightforward application

of Jacobi's theorem to b, . For (C4) we apply it to b„a
modification of b. in which the first column and last row
are repeated. Clearly, detb, =O, and we make use of the
second trick outlined in Appendix B.

Next, we can collect together the first two terms of each
equation:

—(2j+1)Qj ——Qj
dz

t

for i =2, . . . , J—j+1, k=1, . . . ,J—j+1. These are
again proved for each coefficient of Ak or its derivative in
turn, using the tricks of Appendix B. Finally, all the
remaining determinants entering Eqs. (Cl) and (C2) differ
only in their first rows. Hence, we collect them together
using the identities

dA; 2r
(m,j,co)= . (j—m+ —, )A;(m, j,co)

dz 2j +1

+ . (j+m+ —, )A;+l(m,j l,co)—1 ~ 1

2j+1

where

O. —(2j+1)8j =Sj
dz and

+(i —1)A; l(m, j,co) (C7)

and

dAk
(Q& )lk = (m,j,co) —(k —1)Ak l(m, j,co),

dz

(Qjm )ik ~2J+(i+@)—2

(C5)

3;+) 1(m,j—l, co)= . (j +m+ —,)A;+l(m, j—l, co)
dz 2j +1

+ (j—m+T)A;(m, j,co)
(2r)'
2j+1

(CS)+ (2j + i)A;(m, j 1,co) . —

These follow from straightforward manipulations of the
integrals occurring in the definition of A; [Eq. (6.12)].

dAk
(m,j—l, co) —(2j+k)Ak(m, j 1,co), —

(C6)(Oj)k(Qj)k

APPENDIX D

To show Eq. (7.7) we first note that

;( —)'= g &;I'~ „; l( —)'(2J —2a —~) .
l
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Then
N

dZ ZU V

NI dz U'v
Q A,;e '[M (z;)] ——,

' g A,te ' [Ma(z;)] g A,;e '[Ma(z;)]
—1 2J+ 1 —2a

2l'

(Dl)

and we must evaluate

gA,;e '[M (z;)] and gA,;e ' [Ma(z;)]
1

For convenience we put
2r(z, + ~ ~ +z )

i ~ ~ ~ j i je

so that from the definition of M preceding Eq. (7.7)

M = y A; . . . ;(z —z;). (z —z; ) /(z; —z;).
1 a y&5

(D2)

The expression for M can be split into sums of terms each containing a distinct subscripts chosen from 1, . . . , N.
Thus summing over all permutations of the a elements we have typically

M' = ye(tr)(z —z ( })(z—z (2}) (z —z ( }) A ($}. ( }g(z;—zj) .

Obviously, A (}}.. . ~(a} is completely symmetric from its definition so we only need to consider

ye(o)(z —z (]})(z—z (2}) (z —z ( })

It is a polynomial of degree a and one way to see this is to compute (d +'/dz +')M verifying that it vanishes. It also
vanishes, not only when z =z; for some i but also if any pair of the z's happen to be equal. Hence

M A, . . . Q(z; —z ) g(z —z (,})(z—z ( }) (z —z ( })

and (D3)

M y A;, . . . ;(z —z ) (z —z;)g(z; —z )
ia y&5

Armed with (D3) we can compute the first of the quantities we need:

N
A [M (z. )] cc A" . . . . . . . . (z —z. ) . (z —z. )(z —z, ) . (z —z ) (z —z ) (z. —z )

2 2 2
CX Jy Jgi=1 i 1 ia y~5

'Ja

(D4)

Analyzing terms corresponding to a fixed set j&
. j~ we

see from arguments along the same lines as above that the
term is actually independent of zj zj, in which case a

J& Ja'
factor Q}v a [Eq. (7.4)] appears naturally in (D4). The
other factor is proportional to Q}v

The second quantity is similarly computed to be pro-
portional to 2Q}v t (djdr)Q&, with the same con-
stant of proportionality. Substituting these results into
(Dl) yields the quoted result, Eq. (7.7).
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