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An expression for the propagation amplitude between two gravitational field configura-
tions in asymptotically Aat space is given. It depends on two three-geometries and on an
element of the Poincare group which specifies the relative location of two hyperplanes in the
Minkowski space at infinity. The amplitude is obtained by path integrating over gravita-
tional fields in the proper-time gauge which was previously used by the author for compact
spaces. The causality condition, which is imposed by admitting in the path integral only
positive proper-time separations between the initial and final surfaces, implies that the am-
plitude is not annihilated by the generator of normal deformations. It is argued that, as a
consequence, it is not permissible to regard quantized gravitation theory in asymptotically
Aat space as an ' ordinary gauge theory" even if one is only interested in asymptotic pro-
cesses.

I. INTRODUCTION

The dynamics of the gravitational field present
additional aspects of interest when spacetime is open
instead of closed in the sense of cosmology. The ex-
tra features of the asymptotically flat case stem
from the need to fix in the classical action principle
not only the initial and final three-geometries as in
the closed situation, but also the relative asymptotic
location of the two three-dimensional spaces within
the Minkowski spacetime at infinity.

As a consequence, in the quantum theory, the
propagation amplitude between two field configura-
tions depends on two three-geometries and, in addi-
tion, on an element of the Poincare group specifying
the relative location of two spacelike hyperplanes at
infinity.

This paper is devoted to examining this further
dependence of the transition amplitude proposed in
Ref. 1 (hereafter referred to as I) for the compact
case. In order to keep the discussion as concise as
possible we shall rely heavily on the aspects dealt
with in I. This paper should therefore be read as a
sequel to I.

The presentation is organized as follows: Section
II reviews the classical action principle for the gravi-
tational field in asymptotically flat space. Ap-
propriate surface integrals related to the Poincare
group at infinity are included in the Hamiltonian ac-
cording to the discussion previously given in Ref. 2
(hereafter referred to as A). Next, the propagation
amplitude obtained by summing over histories in the

proper-time gauge the exponential of i times the ac-
tion of Sec. II is given in Sec. III and its dependence
on spatial translations and rotations is analyzed in
Sec. IV. Finally, the requirement of causality (in-
tegration over positive proper times only) is imple-
mented in Sec. V. As a consequence the amplitude
vanishes unless the hypersurfaces become parallel
and separated by a positive proper time at infinity.
It is then shown that the amplitude is not annihilat-
ed by the generator of normal surface deformations
approaching the identity at infinity and that, as a re-
sult (Sec. VI) it is not permissible to regard quan-
tized gravitation theory in asymptotically flat space
as an "ordinary gauge theory" even if one is only in-
terested in asymptotic processes.

Just as in I the work remains formal throughout
since no attempt is made to give a definite meaning
to the functional integrals considered.

II. CLASSICAL ACTION PRINCIPLE

The Hamiltonian for the gravitational field in
asymptotically flat space was studied in detail in A,
where references to earlier work may be found. It
takes the form

(2.1)

where A z and A; are the gravitational generators
given by (4.2) and (4.3) of I and where P& and M~„
are integrals over a remote two-dimensional surface.
These integrals are related to the generators of the
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Poincare group in the manner discussed in A (and in
Secs. IV and V below), and their explicit forms may
be found in Eqs. (5.8)—(5.14) of A. Note that the
generator A i and the function N in (2.1) are the ~
and N used in I, but differ by factors g

+—'~ from the
and N found in A. Expression (2.1) remains

nevertheless valid since g
'~ approaches unity

asymptotically.
The numbers a" and P'"= —P"" appearing in

(2.1), which may depend on the coordinate time r,
specify the asymptotic part of the lapse and shift
functions N, N':

N ~ a+pix (2.2a)

N' ~ a'+P'Jxj
I'~ 00

(2.2b)

Geometrically Eqs. (2.2) express the fact that the de-
formation connecting two surfaces separated by an
amount 5~ of coordinate time becomes asymptoti-
cally an infinitesimal Poincare transformation,
which consists of a translation by an amount a"&.
and of a Lorentz transformation of "angle" P(""6~.

The action principle associated with (2.1) is the
statement that the classical histories of the system
(spacetimes which obey Einstein's equations) are
those which make the action functional

r2S= dv dx (m'Jg;q H)— (2.3)

have an extremum with respect to variations of its
arguments, g;J,n'~, N, N', obeying the following con-
ditions.

(a) The three-dimensional metric g;J(x, 7.) is fixed
up to a change of spatial coordinates which becomes
the identity at infinity, both at w=ri and v=~2', or
what is the same, the three-geometry is fixed at r&

and ~z.
(b) The functions N and N' are varied keeping

fixed the net amount of Poincare transforiaation at
infinity [which is obtained by the composition of the
infinitesimal transformations with parameters a"(~),
P""(~) for the whole interval 7 i & ~ & ~q].

Conditions (a) and (b) amount to fixing only the
gauge-invariant boundaries of the competing his-
tories in the action principle. Indeed, the action
(2.1) is invariant under the gauge transformation
discussed in Sec. IVA of I provided the functions
e'(x) appearing in it vanish at infinity. Such a gauge
transformation leaves invariant both the three-
geometries at the end points and the net Poincare
transformation at infinity.

In order to obtain an expression for (3.1) in terms
of a path integral it is necessary to fix the gauge and
determine the correct measure. This may be done
along the same lines as for the compact case treated
in I provided one takes due care of "the behavior at
spacelike infinity.

Thus, if to begin with we impose the proper-time
gauge conditions

N'=0 (3.2a)

(3.2b)

then the analysis performed in Ref. 3 (hereafter re-
ferred to as II) leading to the effective action given
by (4.23) and (4.24) of I remains unchanged and one
arrives at the auxiliary amplitude (4.25) of I. That
amplitude may be written as

K[2, 1,T(x)]= (2
~
K[T]

~
I )

with the operator K given by

K=exp —i fT(x)A, '(x)d'x

and where we have denoted

(3.3)

(3.4)

T (x)=N (x)(~2—ri) (3.5)
/

Note that the amplitude K depends through T (x)
on the time translation and boost parameters a ',P;
[which are now time independent due to (3.2b)].
Indeed we have

T (x) & +B;x', (3.6)

with

A =a (r2 —~i) (3.7a)

histories which have in common the quantities held
fixed in the classical action principle. Those quanti-
ties become then the arguments of the amplitude.

Accordingly, in the compact case the amplitude
turns out to depend just on the initial and final
three-geometries Gi, Gz. However, as stated in the
previous section, there is an additional quantity held
fixed in the asymptotically flat case, namely, a Poin-
care transformation II, which determines the rela-
tive asymptotic location of the initial and final sur-
faces within the Minkowski space at infinity. The
amplitude with its arguments displayed will then
read

K[G,Gi', II ]

III. PATH INTEGRAL
B;=p;(r2 —wi) (3.7b)

The propagation amplitude is obtained by sum-
ming the exponential of i times the action over all

In the compact case the final amplitude
K[Gq, Gi] is obtained from K after two steps: One
integrates over all positive T(x) and one averages
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over all changes of spatial coordinates at one end
point. [This averaging procedure which renders the
amplitude coordinate invariant in both g J (2) and

g,J(1) was not explicitly mentioned in I but it is
equivalent to folding the amplitude with
coordinate-invariant wave functionals in the manner
indicated in Sec. IVG of that paper. ] These steps
must be modified as follows in the asymptotically
flat case:

(a) One integrates over all positive T (x) with
fixed asymptotic behavior [determined by A and 8„
in (3.6)].

(b) One averages over all changes of spatial coor-
dinates (diffeomorphisms) which tend asymptotical-
ly to a given combination of translation and rota-
tion.

Equivalently one may average over all diffeomor-
phisms which become the identity at infinity and
subsequently apply any diffeomorphism which tends
to the given combination of translation and rotation
at infinity. The answer will be independent of the
choice of this latter diffeomorphism since (i) any
two diffeomorphisms which have the same asymp-
totic behavior are related by a third one that tends to
the identity at infinity and (ii) the average is to be
perfoi-ined with an invariant measure.

It is through step (b) above that the dependence of
the amplitude on spatial translations and rotations
at infinity is introduced so that in the final answer a
full-fledged ten-parameter element of the Poincare
group appears.

Now, the generator of spatial diffeomorphisms
which tend to a given combination of translation
and rotation at infinity is obtained by setting N =0
in the Hamiltonian (2.1). Furthermore, one may re-
gard a finite diffeomorphism as achieved by a suc-
cession of identical infinitesimal steps characterized
by a vector field T'(x) ("canonical group coordi-
nate"). Then item (b) above is implemented by act-
ing on K given by (3.4) with the operator

exp —i T'~ x—

(3.8)

with

T'(x) ~ A'+8'Jx~
P~ oo

(39)

and subsequently averaging in a gauge-invariant way
over all T'(x) which share the same A', 8'J.

[If the infinitesimal steps leading to the final dif-
feomorphisms are labeled by a parameter, which we
might call A, rather than r to emphasize that the
operation is performed entirely within the final sur-
face, then —as discussed in II—using canonical
group coordinates amounts to choosing N =0,
BN'/M, =O in (2.1) and writing T'=N'(A, —

2 A, [),
A'=a'(A2 —A, i), 8' =P'~(A2 —A, i) in analogy with
(3.2), (3.5), and (3.7).]

Summarizing we obtain the following representa-
tion for the propagation amplitude:

X[gx,g, ;II„)=fDT'D[leT j(2 exp —1 f T'A;d x —d'P, + —,8'IMe
I

)&exp i T—8 i d x —A Pi+ —,8 Mi;ff 3 l li I

(3.10)

In (3.10) the symbol DT' represents the invariant
measure over the diffeomorphism —a formal object
which need not be discussed here any further (see II
for a representation in terms of ghost fields),
whereas D [lnT ] stands for the product of
dT (x)/T (x) over all points of three-dimensional
space. The integrations over T and T' are to be
perforiIied keeping fixed A" and 8" in (3.6) and
(3.9). In what regards the states

~
1),

~
2), they are

eigenstates of the metric tensor with eigenvalues
which may be taken to be any representative of the
three-geometries G2,Gi, respectively, and they are
also eigenstates of the ghost fields C, C, with eigen-
values zero (see I and II). Since C=C=0 are
reparametrization-invariant statements the tangen-
tial generator A; in (3.7) may be taken to be just the
usual gravitational one given by (4.3) of I, without a

part acting on C, C.
The Poincare transformation II appearing in

(3.10) may be described in terms of the generators of
the Poincare group as

II (A&,Bi'")=exp[ i ( —A 'P; + , 8—'~M& )]—
&(exp[ i ( AP—i+ , 8 'M—i;)]—

(3.1 1)

It should be emphasized here that this last equation
has been written just to display precisely how
A",8"" label an element of the Poincare group.
Thus (3.11) is self-contained without any mention of
gravitation theory and the quantities P&,M&„ap-
pearing in it may be taken to be the generators of
the Poincare group in any representation. They can
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xexp I f T'A—;d x (4.1)

and the integration is carried over all T'(x) which
I

not, however, be thought of as being the surface in-
tegrals appearing in the Hamiltonian (2.1) since, as
explained in A, those do not have well-defined com-
mutators by themselves, i.e., separated from A i and
P

g
~

EV. SPATIAL TRANSLATIONS AND ROTATIONS
AT INFINITY

The dependence of the amplitude (3.10) on the
translation and rotation parameters at infinity
deserves separate discussion both because it is of in-
terest in its own right and also because it is quite
different from the dependence of that same ampli-
tude on time translations and boosts, which will be
discussed in Sec. V below.

First we note that, as was already indicated, one
may average first over the diffeomorphisms which
tend to the identity at infinity and apply subsequent-
ly a fixed diffeomorphism which tends to a com-
bination of translation and rotation at infinity. In
that case the first exponential factor in (3.10) (the
one containing T') is replaced itself by the product

exp —
& 'P; x — 'P; + —,8'J

e

vanish at infinity, whereas g(x) is an arbitrary but
fixed vector field which behaves asymptotically as

P(x) ~ A'+8'Jxj
r —+oo

(4.2)

The decomposition of the Poincare transformation
corresponding to the splitting (4.1) is again (3.11).

Yet other representations also stemming from the
basic gauge conditions (3.2) may be found. For ex-
ample, one may rotate first and translate afterward.
In that case one substitutes the product

exp i ri—'A;d x A "P—;
~ ~

X exp i —p'P;d x —, 8"~M—,J.

A
r —+ oo

(4.4a)

p ~ 8 Jxj
r—+oo

(4.4b)

[Four factors altogether appear then in (3.11).] The
associated Lorentz transformation is then written as

(4.3)

for the exponential factor containing g' in (4.1).
Here ri' and p' are fixed but arbitrary vector fields
obeying

II (A'"",8'&")=exp[iA '~P; ] exp( —, iB"JM
—1) exp[ i ( A—' Pi+ , 8' '—Mi; )]— (4.5)

f 0

p (pg}A jd x +Mpg (4.6b)

Here A" and 8"1 are certain functions of the A ' and
8'1 appearing in (3.11) and vice versa whereas
A' =A and 8' '=8"

It follows from the preceding discussion that the
propagation amplitude with asymptotic translation
and rotation may be obtained from the one without
them by applying to this last amplitude the exponen-
tial factors in (4.3). In other words, the operators

'( )A; x+ (4.6a)

It should again be stressed here that, as discussed
in A, one must always keep together the surface and
volume integrals as in (4.6), since each piece
separately is not well defined as an operator when
the vector field does not vanish at infinity.

The effect of the operators (4.6) on the amplitude
(3.10) is independent of the choice of ri' and p'
within the class defined by (4.7). This is so because
on account of the invariant group average over the
diffeomorphisms which tend to the identity at infin-
ity in (3.10) one has

with ri and p behaving asymptotically as

1 R&9(r) ~ ~rr~ oo

p'( )
~ 5'„x'—5',x'

r~ oo

(4.7a)

(4.7b)

for

fg'A;d x K=A (4.8)

(4.9)

generate, respectively, the action of asymptotic
translations and rotations on the propagation ampli-
tude and are therefore the corresponding com-
ponents of the total momentum and angular
momentum.

V. TIME TRANSLATIONS AND BOOSTS:
CAUSALITY

The dependence of the propagation amplitude on
asymptotic time translations and boosts turns out to
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be simple but conceptually quite interesting and
strikingly different from its dependence on asymp-
totic translations and rotations.

The special features in question are a consequence
of the basic demand of causality, which is incor-
porated at a fundamental level in the formalism, by
only including in the path integral those histories for
which the initial hypersurface lies in the past of the
final surface. In the proper-time gauge (3.2) this re-
quirement means that one must integrate in (3.10)
only over positive proper-time separations T (x).

Now, if T (x) is to be positive for all x then the
asymptotic boost coefficient B; in (3.6) must vanish
since otherwise T(x) would be negative for some x.
Similarly the asymptotic time-translation coefficient
A must be positive. So we find that

K [Gz, G ],A",B&"]=0 if A &0 or B;&0
(5.1)

Equation (5.1) is invariant under Poincare
transforrnations at infinity (excluding time reversal,
of course) since it expresses the geometrical state-
ment that the amplitude is zero unless, when "inter-
polated in flat spacetime, " surface 2 lies entirely in
the future of, or coincides with, surface 1.

Now, for simplicity in what follows we shall
henceforth assume that A'=B'~=0. There is no real
loss of generality in this assumption since one can
always recover the amplitude with rotation and
translation by applying an appropriate operator to
the one with A'=B'J =0, as was explained in Sec. IV
above. Thus we shall be dealing with an amplitude

«[ge g& 7' ]=8(T ) fDT'D[leT](2 exp —) f T A i d x —T Px (5.2)

J g'(x)W"'"(x)d'x «e 0 (5.4a)

Here 8 denotes the Heaviside step function and the
integration is carried over all T vanishing at infini-
ty and over all positive T (x) which tend to, a fixed
proper-time separation T at infinity:

T (x) T„ (5.3)r~~
(We have denoted here A"=T to have a more
descriptive notation in this simplified case. )

The amplitude (5.2) is radically different from
that of, say, a Yang-Mills field. The reason is that
(5.2) is not annihilated by the generator of normal
deforixiations A z"",namely, one has

tion would effectively replace T in the integrand of
(5.2) by its composition with g, which we might
denote by T o g . The point now is that if T runs
over positive values only then T op does not have
that same range of variation; for example, if g is
positive then Too(' does not start from zero but it
spans rather only the "future of g ." Therefore, if
one would change the variable of integration from
T to Too/ the new variable would run over an in-
terval different from that of the original one and the
value of the integral would be changed. For tangen-
tial defoririations on the other hand, all values of T
are admitted so that the composition (T~o g~)' of T'
and g runs over the same set of functions as T'.
Consequently one may establish (4.8) by acting on
the amplitude with

g(x) ~0 (5.4b)
r

exp i T

[This statement is also valid for the compact spaces
treated in I provided one disregards (5.4b) which is
meaningless in that case.]

The drastic difference between the actions of ~]
and A; on the amplitude stems from the causality
requirement which admits only positive proper-time
separations T (x) in (5.2) whereas all the tangential
deformations (diffeomorphisms in three-space) are
included.

In fact, if the left-hand side of (5.4a) were zero, it
would amount to saying that the action of the ex-
ponential of

~ J. rav 3

would have no effect on K. However, such an ac-

and subsequently changing the variable of integra-
tion in (5.2) from T' to (Top)'.

Incidentally, another consequence of the preced-
ing discussion is that one cannot define generators
of asymptotic translations and boosts that can
meaningfully act on K, in the same way as one de-
fined the total momentum and angular momentum
operators through (4.6): on account of (5.4) the cor-
responding definitions would not be independent of
the choice of the auxiliary interpolating functions
analogous to g and p in (4.6).

[The above reference to the composition of nor-
mal deformations perinits one to capture the essence
of the issue but must not be taken too literally. In
fact, the metric g;~ appears explicitly in the commu-
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tator of two normal deformations, therefore defor-
mations do not form a group (tangential ones do,
however) and it is not possible to speak about their
composition abstractly, without reference to g;~.
Thus in order to implement the argument in detail
one should deal with the path integral leading to
(5.2) as a whole, including the integration over
g J.(x,r). It is, however, hardly necessary to go
through all this labor since one may readily con-
vince oneself, for example, of the validity of (5.4) in
the particular case of zero signature (sr=0 in I)
where deformations do forixI a group. Additional
confirmation of (5.4) is provided by the analogy
with the point particle given below. In any case the
key point is that only half of the normal deforma-
tions are included in the integral over T(x) in (5.2)
and this basic feature is not undone by any other
complications that the theory may have. ]

What goes on in the preceding discussion may be
recast in the following, perhaps more familiar, con-
text: restricting the integration to positive T (x)
converts the amplitude in the functional counterpart
of a Green's function ("Green's functional" ), instead
of making it a solution of the homogeneous equation
that would arise by setting the left-hand side of (5.4)
equal to zero.

The analogy with the point particle, so heavily re-
lied upon in I, may be used to illuminate this fact.
In that case

and also, of course,

f rA;""d x d =0 (5.10b)

for g', g' vanishing at infinity.
Equation (5.1) does not hold for the amplitude b,

and one may define operators acting on it for all ten
generators of the asymptotic Poincare group in a
manner analogous to that employed for spatial
translations and rotations in (4.6). Nevertheless, as
stressed in the next section, it appears that one
should build the theory on K rather than on b, .

The proof of (5.10) is achieved by using the tech-
niques of II and the fact that the amplitude is in-
dependent of the choice of the gauge condition pro-
vided the Lagrange multipliers run from —00 to
+ ao. The key point is to compare the amplitude
derived in II with the one obtained from a different
gauge condition. The new gauge condition is con-
structed by dividing the total time interval in three
subintervals 1,2,3. Then in the first two intervals
1,2, one imposes the gauge conditions of II, whereas
in interval 3 one requires f()f =g' and X'=0. Equa-
tion (5.10a) then follows in the form

tained by letting T (x) in (3.10) run over both posi-
tive and negative values. This is indeed so. One
may, in fact, show that such a b, obeys

f g
x~'"d' x 6=0 (5.10a)

K= f exp( iA TidT—
with

(5.5)
exp if/~

M=p +m (5.6)
VI. CAUSALITY AND GAUGE INVARIANCE

is a Cxreen's function (the Feynman propagator), i.e.,

(5.7)

However, if we consider instead

4= f exp( iA T)dT=S(dx )—
we have

=0,

(5.8)

(5.9)

a solution of the homogeneous equation.
In the present case the analog of the identity

operator on the right-hand side of (5.7) is not a sim-
ple object because of the coupling of the degrees of
freedom of the gravitational field at different space
points (see the discussion of perturbation theory in
Sec. IVF of I). However, the key point, namely,
that (5.4) is valid, has the same origin: the causality
condition in proper time.

To finish this section we observe that the parallel
just made poses an interesting question, namely,
whether an analog of b, obeying (5.9) would be ob-

The point of view is usually taken that, in asymp-
totically flat space, one may think of the quantized
gravitational field as an ordinary field provided one
is only interested in processes which are eventually
observed at spacelike infinity. The group of four-
dimensional diffeomorphisms which become the
identity at infinity is then treated as an ordinary
gauge group (noncompact, though) and its transfor-
mations are taken to have no effect on processes ob-
servable at infinity.

When translated into Hamiltonian language this
view is consistent only if the propagation amplitude
is annihilated by all the generators of the gauge
group, as indeed occurs in Yang-Mills theory.

However, in the present case this property does
not hold for the amplitude K. Indeed, on account of
(5.4), which itself stems from the causality condi-
tion, normal deformations generated by A z cannot
be considered as a gauge symmetry of the quantum
theory. On the other hand, tangential deformations
generated by A; do qualify as a gauge symmetry
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thanks to (4.6).
It is to be noted here that the causality condition,

which demands that only positive proper times
should be admitted in the amplitude, is a statement
that can only be foriaulated with the help of the
spacetime metric. It effectively splits off one half of
the four-dimensional diffeomorphism group in a
way that cannot even be conceived in terms of the
group by itself.

(The metric is automatically brought into the gen-
erators when passing to the Hamiltonian form of the
classical theory because the normal deformations
generated by A j are the projections of the infini-
tesimal spacetime diffeomorphisms along the unit
normal to a spacelike hypersurface —a metric con-
cept. )

Incidentally, it should be emphasized here that
the radically new feature [Eq. (5.4)] does not rely on
the asymptotic part of the deforraation. In fact (5.1)
also holds for the causal transition amplitude be-
tween two field configurations in flat spacetime. It
is, rather, the response of the amplitude to the ac-
tion of the generator of nolrllal deforrnations van-
ishing at infinity [Eq. (5.4b)] which is the key issue.

In a more descriptive language, (5.4) expresses the
fact that the amplitude "remembers" that the transi-
tion from the initial to the final surface can occur
only causally: in each history contributing to the
amplitude the final surface must lie wholly (and not
only asymptotically) in the future of the initial one.
It is in this sense that what happens "inside" is not a
physically irrelevant gauge freedom but leaves foot-

prints in the propagation amplitude.
Lastly, we should remark that using the ampli-

tude b, obeying (5.10) in place of K would corre-
spond to the usual treatment in which the four-
dimensional diffeomorphisms approaching the iden-
tity at infinity appear as an ordinary gauge group.
However, it is this author's belief that the proper
procedure, which correctly takes into account the
fundamental requirement of causality, is to build up
the theory using K rather than b, as the propagation
amplitude.

We plan to examine in the future the more de-
tailed implications of the causality condition.
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