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A system of two pointlike isocharges in a classical non-Abelian Yang-Mills theory is studied by
matched asymptotic expansions. It is assumed that the velocities are small compared with the speed
of light and that the dimensionless quantity k= | g | g2 is much smaller than unity (here g is the cou-
pling constant and | g | is the magnitude of either isocharge vector). The system is non-Abelian (and
thus the Yang-Mills field equations are fully nonlinear), because the two isocharges are permitted to
point in different directions in isospace. Radiation damping is shown to rotate the directions of the
isocharge vectors while preserving their magnitudes—modulo higher-order effects. The charge vec-
tors tend to rotate into commuting directions with respect to a basis that is parallel transported with
respect to a background Abelian connection. In particular, bound systems approach an Abelian con-
figuration after a time long compared with a characteristic time that depends on the magnitudes of
the isocharges. This behavior suggests a classical analog of a ‘“color-singlet” state in the quantized

version of the theory.

I. INTRODUCTION

There is of course practically no evidence that classical
Yang-Mills theories of the type to be treated below have
any direct application in physics. Nevertheless, the study
of classical gauge theories might at least give clues to
some of the phenomena to be expected in quantum gauge
theories, for which there exists incontrovertible evidence
of physical relevance. As discussed in Ref. 1, classical
solutions provide useful starting points for various semi-
classical approximation procedures which make use of the
path-integral approach to quantum fields.

General relativists have developed a collection of dis-
tinct techniques for calculating the effects of radiation re-
action in gravitating systems. Unfortunately, because of
the nonlinearities involved, there exist no exact methods
for studying the sources of gravitational radiation in sys-
tems of practical interest, and no one has yet succeeded in
obtaining rigorous estimates of the errors for the approxi-
mation methods. Controversies have thus arisen regarding
the mathematical rigor and logical consistency of various
“derivations” of radiation-reaction formulas.? Yang-Mills
theories provide proponents of various techniques with a
new arena to compare their methods.

The method of matched asymptotic expansions (see Ref.
3 for a geometrical description) has been applied to a num-
ber of radiation problems**> and gives a local description
of the effects of damping; such a description is advanta-
geous when one seeks to describe the evolution of kinemat-
ic parameters which are not functionals of quantities
whose rates of change can be calculated at “infinity.”
(For example, the period change due to gravitational radi-
ation damping of a binary system cannot be inferred sim-
ply from a knowledge of the “energy” radiated at future
null infinity.)

In non-Abelian gauge theories, one still has a conserva-
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tion law relating the energy radiated at infinity to the
kinematical energy of the system in question. However,
color radiational modes are not necessarily associated with
a change in the energy of the system.® Therefore, one
must work either with the Yang-Mills field equations or
with the covariant conservation law for color (or both).
Trautman’ introduces asymptotically null coordinates
(u,r,0,p) and expands the vector potential in powers of
1/r, (u,6,p) fixed. After using covariant current conser-
vation, he concludes, “radiation of color is a truly non-
linear and non-Abelian phenomenon requiring at least two
particles with noncommuting charges.”

A local approach related to the classic “fast-motion”
approximation in general relativity has been introduced by
Drechsler, Havas, and Rosenblum.®? Drechsler and Rosen-
blum® consider a single point charge in SU(2) Yang-Mills
theory and evaluate the leading two orders in a weak-field
(but not slow-motion) expansion. There seems to be no
conflict with Trautman’s conclusion if external forces van-
ish. However, it is not yet entirely clear from their com-
plicated final expressions what effects (if any) damping
causes when external fields are present or when the iso-
charge is accelerated by other means.

A generalization of the work of Drechsler and Rosen-
blum to the two-particle case has not yet been carried out.
However, we can calculate the contribution of the lowest-
order (linearized) fields to the equation of covariant
current conservation for the two-particle case. Using their
Egs. (36), (38), and (42), we obtain an isocharge evolution
equation for (say) particle 1 of the form
> = — u“vu . —
Qi+QiXQ 1~ (Q2XQy)

(z{ —z4 v,

+ (nonlinear terms of same order) , (1.1)

where u# and v* are the velocities of particles 1 and 2,
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respectively, corrected for the lowest-order Coulomb-type
accelerations. However, note that this expression does not
yet include the—not necessarily smaller—corrections due
to the first nonlinear order of the field equations.

In this paper, a simple, explicit, approximate expression
for the damping of a system of two pointlike isocharges in
SU(2) Yang-Mills theory will be obtained. The velocities
are assumed to scale with the parameter € <<1 (in units
such that ¢ =1), and the magnitudes of the charges are as-
sumed small compared with g ~2, where g is the coupling
constant. That is, the currents are taken proportional to a
dimensionless parameter k << 1. The leading effects of ra-
diation reaction on the charged mass points will be given
by the expression

5;(61>=%(61><62>(k' iRi)

-+ total time derivative ,
> (1.2)
Q1,Q,=0(ke), e, k<1,

where R and R} are the positions of particles 1 and 2,
respectively, (_j y and (_j » are their respective isocharge vec-
tors at time ¢, and an overdot means d/dt. The corre-
sponding expression for particle 2 is obtained by inter-
changing the subscripts.

In fact, one is really studying a two-parameter family of
systems,’> and the criterion of “validity” is not conver-
gence, but rather that the errors be smaller than some
function (in this case a power) of x and €. Assuming the
existence of asymptotic expansions with respect to these
two small parameters, one searches for the leading contri-
bution to the isocharge evolution equations whose sign
reverses according to whether the (approximate) radiation
field is taken as outgoing or incoming. In a nonlinear
theory, this ‘“outgoing-radiation” requirement does not
necessarily imply a condition for the absence of incoming
radiation at past null infinity. However, such a condition
will be satisfied at the leading order within our expansion
method, to be described below.

II. EXPANSION PROCEDURE

Let us begin by considering the SU(2) Yang-Mills field
equations in the form

-

B+ A#F et 7, 2.

F,=A,,—A, , +A,xA,. (2.2)

(Indices are raised and lowered with the Minkowski metric
diag[ —1,1,1,1].) The arrows and cross products indicate
isovectors and iso-cross-products. Exterior differentiation
yields as an identity the “covariant” conservation of
current

TV,V"‘KVX Tvzo . (2.3)
It will be convenient to impose the gauge condition
AF ,=0. (2.4)

The field equations (2.1) and (2.2) then take the simplified
form
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DKVEKV,,,”
=—4r] ,—2AFXA, ,+AlXA,,

+AFX (A, XA,) . (2.5)

Note that the coupling constant g has been taken to be
equal to unity. The isocharge thus is dimensionless.
(Solutions for other values of the coupling constant can be
recovered by a simple rescaling of the fields and currents.)

We will be interested in the interactions of isocharged
particles. For an isolated point charge at rest at the posi-
tion ri(1),

(2.6)

Eqgs. (2.4) and (2.5) have the elementary Abelian Coulomb
solution

Af=G|x'—r| ", Ai=0.

p=7'=gq8(x'—r), ji=o0,

2.7

Suppose now that two particles are present, but that
their isocharges point in different directions. Then the
field equations no longer reduce to the Abelian or elec-
tromagnetic case and the solution cannot be obtained by
superposition. Nevertheless, one can construct an approx-
imate solution in the limit k—0 as the dimensionless mag-
nitudes of the isocharges approach zero.

It is instructive to note a fundamental difference be-
tween the Yang-Mills equations and the Einstein field
equations: In general relativity, one can construct a
“weak-field” expansion in the vicinity of two black holes
of any mass, provided that their separation is much larger
than either mass in units where G=1 (the immediate
neighborhoods of the black holes need strong-field expan-
sions, of course, even if they are widely separated). This
procedure succeeds because the nonlinear terms in the Ein-
stein field equations involve squares of connection coeffi-
cients and therefore die off relatively fast. In the Yang-
Mills equations (2.5), the nonlinear terms involve undif-
ferentiated or only once-differentiated combinations such
as K“X(K#XKV), and thus if A* has 1/r behavior, the
nonlinearities have the same order of magnitude compared
to the linear terms at any distance. Thus, the expansions
used here, as in Refs. 9 and 10, apply only in the limit
lg |g*<<1.

Let us introduce the additional assumption that the par-
ticles move slowly compared to c¢=1. Suppose the
minimum distance between the particles during some in-
terval of interest is L. The unit of distance in Egs. (2.4)
and (2.5) is taken as L. Let € be the slow-motion parame-
ter. Then the fields change on a time scale A=L /€ or
slower in the near zone, which is a region surrounding the
sources whose size scales with L in the limit e—0. To
lowest order in the charge parameter k, the near-zone ex-
pansions of currents and fields can be given the following
form:

p~k[q,8%(eX'—eR})+G,8%(eX'—eR})]+0(K?) ,
(2.8a)

J i~ke[d R [6%(eX'—€eR})+ R 5% (€X' —€R})]+0(i?)
(2.8b)
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¢EK'~§(3+85+ S )40, (2.8¢)
Ki~§(eai+e313i+ S )+ 0K . (2.8d)

The currents and potentials &, E, éi,. .. are permitted to
depend functionally on the as-yet-unknown world lines
X‘=R) () and on the near-zone coordinates (z,X°), where ¢
is measured in units of A, and X’ is measured in units of
L. The slow-motion assumption is incorporated automati-
cally® by holding (z,X?) fixed under the limit e—O0.

Now, it is not the purpose of this paper to derive equa-
tions of motion, but rather to describe the evolution of the
isocharge degrees of freedom. However, an expression for
the approximate force between two slowly moving iso-
charges will be needed later; thus, a force law consistent
with the approximation method to be used here is
described below.

Suppose first that the motion of particle 1 in a given
external field F£Y satisfies the (generalized) Lorentz force
law

v

dR%
i d'rl

_a_
d'rl

—

=q,F* Ri a1 (2.92)
1 ext v dTl ’ ’ .

(2.9b)

The divergences that would have arisen in a derivation.of
this law from conservation of the stress energy

T1= proper time of particle 1 .

1 = = - o
le=t§gint masses‘f‘E(Fl‘a'Fva"“%'U“VFag‘Faﬁ)
(2.10)

are thus assumed, as in the work of Mathisson,!! to reside
in the physical mass km;. Now, the introduction of a
second particle causes the total field to differ by an
amount
FU=F#_F&, (2.11)
from the value F&Y,; associated with the potential (2.7)
[rewritten in (¢,X’) coordinates]. Our prescription for cal-
culating perturbations in the equations of motion associat-
ed with radiation reaction would then be to substitute at
each stage the current approximation for F into (2.9).

In the electromagnetic case, this splitting of the fields
gives rise to the usual radiation-reaction forces when the
analog of (2.9) and Maxwell’s equations are evaluated in
the slow-motion approximation.”? The only part of the
self-field that is assumed to reside in the mass km is the
static Coulomb field. In any case, the only consequence of
(2.9) to be used in what follows is the approximate
Coulomb attraction of two slowly moving particles. The
force law (2.9) has been derived in the context of a coupled
theory of Yang-Mills fields and fermions by Wong. !>

As we shall shortly see, the force between two particles
at distance L leads to corrections to R} (#) proportional to
k/€%, and therefore the potentials, beginning with &, will
implicitly contain corrections of relative order k/€? to the
expressions that would be obtained for straight-line
motion. [For example, @ is an O(k/€) term in A * and will
contain corrections at O (k?/€%.] These corrections will
lead to the leading radiation reaction via matching. Expli-
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cit corrections to expansion (2.8) proportional to «? will
arise from products of the linearized potentials in the field
equations (2.5). As we shall shortly see, the first such
corrections occur at O (k?) in $ A refined form of the
near-zone expansion for the potentials is thus

$~§(6+62§+ co )+kHE+ )+ 0K,
(2.12a)
Ki~§(eai+e3]3i+ s )4 ikXeH i )+ 0D .

(2.12b)

We will later be forced by the requirements of matching to
include time-odd terms at O(x? in ¢ and at O(k%/e) in
Ki, i.e., terms whose signs depend on the choice of outgo-
ing (rather than incoming) radiation. See Egs. (4.5) and
(4.6) below. (Nothing prevents one from revising asymp-
totic expansions later due to the requirements of match-
ing. For example, terms proportional to €"lne have been
shown!# to arise in an analogous gravitational problem.)

The near-zone equations are now to be generated by
substitution of these expansions into the field equations
(2.5), gauge condition (2.4), and the force law (2.9). The
near-zero field equations and gauge conditions resulting
from this substitution are

Vyld=—4mp;, (2.13)
~ da
V28 = , (2.14)
X B atz
VyCi=—4rj} (2.15)
~ . 3¢
V,2Di= , (2.16)
X ot?
- T 4
—_axe 2.17
VX a X ot ( )
O P (2.18)
x axi’ ‘
a& oaC!
£ o, 2.1
ot X’ @19
OH ), (2.20)
ax!
98 D’
14 =0, 2.
o T ax .21
where
pr=q 183 X' —R)4+G,8%(X'—R}) , (2.22a)
JI=qRISX—R)+G,RHX'—RE),  (2.22b)
3 d
Vyl=— | (2.23)
¥~ axi ax’

Let us choose the origin of coordinates as that unac-
celerated line satisfying, at =0,

Rim;+Rim,=0, (2.24a)
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Rim,+Rim,=0. (2.24b)

Initial data are assumed such that the particular solutions
of (2.13) and (2.15) take the Coulomb form

_ q, q2
a= X_R|| X'_RL| , (2.25)
i pi i__pi ° ( )

|X'—Ri|  |X'—=R;|

Using (2.25) in the force law (2.9), one finds that the de-
flection of, say, particle 1 is given by

e my

Thus, as mentioned above, R{,, is of O(k/€?), because m 4
and ¢ 4 remain finite in the limits k—0, €—0.

It will be convenient to postpone the solution of the
remaining equations until after the wave-zone expansion
has been introduced. (In fact, the detailed form of
@ and H' will not affect the radiation reaction to lowest
order.)

G2 |RE—RL| 3RI—=R%). (227)

III. MATCHING OUT TO WAVE-ZONE EXPANSION

At distances of about L /€ or greater from the sources,
spatial and time derivatives of the fields will be of the
same order of magnitude. A weak-field, but not slow-
motion, expansion is thus required. The wave-zone coor-
dinates are thus defined as

(3.1

and all potentials will depend functionally on x*. From
dimensional considerations and from the form of the
near-zone potentials @ and C’ in Egs. (2.25) and (2.26),
the part of the wave-zone expansion proportional to « is
taken as

x‘=eX!, xtF=(t,x’)

AP k[MHE(x")+€PHx)+ - 1+0(k?) . (3.2)

The Abelian potentials M¥, P# satisfy linear, vacuum
wave equations and gauge conditions

OM*=0, (3.3a)
M*,=0, (3.3b)
OP#=0, (3.42)
P#,=0. (3.4b)

In the present problem, a simple matching procedure gives
the same result as the more sophisticated method of com-
paring “intermediate limits”*: The leading term ke~ '@ in
the near-zone expansion of A ! rewritten in wave-zone

coordinates x*, has the expansion

q.1+4d d M ()Y 10(6,)
-1 Q1-1~Q2+,€ M r;M ¢+._.”

(3.5)
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where r= | x‘|, and where

- . . J
dM(t)YlM(G,q>)=['q'1R{(t)+'q2R£(t)]xT ) (3.6)

Similarly, the leading term «C' in the near-zone expansion
of A’, rewritten in wave-zone coordinates, has the expan-
sion

q 1R i+ q 2R 5
_._r—_ + .« e e

kCiexe (3.7)

The O (k) potential M that matches to (&,C) is the static

monopole

Kif:q—‘“:ﬂ, Mi=0. (3.8)

The most general Abelian electric dipole solutions of Egs.

(3.4) are linear combinations of the form*!*
- Fi(t¥r) FyutFr)
P'_._ M M 2 YIM(qu)) b
r r
- (3.9
- Fiyy(tFr)
Pi= [+V73 Mr (% 1om)i >
and
=, | GutFr) GpltFr)
Pt= M T M 2 YIM(0)¢) ’
r r
, 3 "2 Goytxr) 3G p(tFr)
Pi=F | = +
2 r r2
3G 4 VeFr)
— [(Tum),
r
% oM = vector spherical harmonic .  (3.10)

For these Abelian potentials, we impose the outgoing-wave
condition that only functions of the form Fy (¢ —r) and

(—§M(t —r) can occur. The condition that the outer expan-
sion

AFk(MF4ePHF4 -+ )

match to the inner expansion

—

Ai~%§+'-', AiekCit---
determines F'M(t) and GM(t):
?M(t)=3M(t) ’

Guy(6)=0.

(3.11)
(3.12)

Thus, the dipole O (ke) part of the wave-zone expansion is

- dJ dJ j k

Pi= d (211) + d’(u) X7 , (3.13a)
r r r

- dr

pi= 4@ (3.13b)

r
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(3.13¢)
(3.13d)

din=q,R{(D+TqRED)
u=st—r.

What has been obtained so far is essentially the mul-
tipole expansion of a Lienard-Wiechert potential due to
two slow-motion charges. Inserting (3.2) into Egs. (2.5),
one sees immediately that nonlinear terms require the ad-

dition of terms proportional to «2, etc., to the expansion
(3.2):

Al k(MP4ePF4 - ) k(e + - )+0K3) .
(3.14)
The equations satisfied by 7 ¥, are from (2.4) and (2.5),
O7 Y= —2M#*XP",+P#XM",)
+MH#XP, "+PFXM, ", (3.15a)
7#¥,=0. (3.15b)

In fact, the solution for 7* will not be needed in what fol-
lows.
IV. RESISTIVE POTENTIALS

In order to carry out matching to an order sufficient to
see radiation reaction, one expresses

Al k(MHELEPF4 -+ )

in near-zero coordinates and carries out the € expansion;
i.e., functions f (¢ —eR) are expanded in a Taylor series
about f(¢). The leading terms thus generated will come
from the Abelian dipole P*:

Pi=[e 2d ()R 2= 1 d/?(z)

o J
+ 7ed/VOR+ - - ]% : 4.1)
i”jze—laj(l)(t)R—’—Hf(z’(t)+ el (4.2)
where
R=|X|, 4.3)
- d? -,
d’(”(t):Ed’(t), etc. (4.4)

Note that the first influence of the outgoing-radiation con-
dition will be generated by the term proportional to €! in
P* and the term proportional to €® in P/. (These terms
would change sign under the replacement ¢t —r—t +-7).

The leading effects of radiation reaction will reside in
corrections to the near-zone expansion (2.12) that match
the time-odd terms of Eqgs. (4.1) and (4.2). Since, in ex-
pansion (3.2), Pris multiplied by «e, one is tempted to as-
sume that radiation arises in the near-zone expansion at
O(ke?) in ¢ and at O(ke) in AJ. However, by the
“Coulomb” force law (2.27) and the definition (4.3) of dJ,
both d/®)(z) and d/)(z) are of O (k /€)™

Therefore, the near-zone expansions (2.12) are augment-
ed to include time-odd term b at O (k) in $ and a time-
odd term 1 iat O(x?/e) in A *:
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—

b~2(@+B+ ) +KkAF+b+ - )+0(K),

o |x

4.5)
Ki~§(eai+e3]3i+ s )4kMe Hive TTig -0 )

+0(x%) . (4.6)
The terms b and T/ will be referred to below as “resistive
potentials,” for reasons that will become clear momentari-
ly. The equations satisfied by b and I/ are homogeneous:

V2b6=0, 4.7)

Vx?1'=0. 4.8)
The potentials b and 17 are required to be regular at the
origin and to match the leading time-odd terms in expan-
sions (4.1) and (4.2).

The solutions of (4.7) and (4.8) fulfilling these boundary
and matching conditions are

4.9
(4.10)

One might ask why time-odd terms were not introduced
in the near-zone expansions (4.5) and (4.6) at O (k). If
such terms had been included, matching would have led to
a zero solution. As for the “time-even” terms B: 13‘, etc.,
no further information is gained by matching their solu-
tions to the wave-zone expansion. Moreover, they gen-
erate terms in the equations of motion unrelated to radia-
tion reaction (although in order of magnitude much
larger).

We now use the method of multiple time scales'® to ex-
amine the effects of the resistive potentials b and Tin
the covariant charge conservation identity (2.3). Because
b is of O (k?) and because J # itself is of O (k), changes in
q 4 (f they occur at all) should be proportional to k* over
a time of order unity, or conversely, changes of O(1) in
G4 should be expected in a time of O(1/k?%. Now, the
charge vectors q; and {, have been tacitly assumed
throughout to be time independent. However, all ques-
tions encountered until now remain unaffected if in fact
q; and q, are permitted to depend on the damping time
parameter kz.

Consider the leading time-odd contributions to the co-
variant charge conservation identity (2.3a), which occur at
O(«*). Integrating this identity at some time ¢ over an ar-
bitrarily small volume surrounding g, one obtains, using
expansions (4.5) and (4.6),

2 :__ii_-» 2
ql_dtql(K 1)

=G (k%)

K2

= [, |[FExP) = (T T) %X+ . @1

Substitution of Egs. (2.8), (4.9), and (4.10) then yields
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Gi= 3 «e [, ($d7VXIX[T 485X’ —eR]+d /P X[G4R {8(eX'—€R)1+ - - - Jd°X
A=1,2 1

—ke2q X Ty [ LR IR +R4RY |+ -

. I
=x€’q1X Ty [ TRAR{——(R4R{) |+~ .

The expression for particle 2 is obtained by reversing the
indices 1 and 2 :

G=k@Dx Ty | FRARE L RIRY) |+ -+ . @13

Several properties of Eqs. (4.12) and (4.13) are worth
noting.

(1) If the particles have identical charge-to-mass ratios,
then the sum q;+ ¢, vanishes, just as the energy loss due
to ordinary electromagnetic dipole radiation vanishes
when the charge-to-mass ratios are equal. (Of course, one
expects analogously that higher-order terms beginning
with the quadrupole resistive potentials would still con-
tribute).

(2) The Abelian solution with ¢q; parallel (or anti-
parallel) to q , gives rise to no charge radiation reaction.

(3) The magnitude of each charge vector remains con-
stant, at least up to the order considered here; each charge
vector “rotates” with respect to the spatially independent
basis € ;. (Of course, such a choice of basis singles out a
particular gauge.) With respect to this basis, ; and ¢,
rotate in an oppositely directed sense.

The Coulomb force law (2.27) give an adequate approxi-
mation for R {4 (t),A=1,2:

L1 « R{—R}
Rjz——-’ e P - T +"' ) (4.14)
1 m, q1 ‘EI262 |R,1_R,2|3
1 « R{—R{
R =—"_’ '—’ -— 4 M 4.15
5 m2q1q262 |Rl— ,ZI3+ ( )

Thus, the time derivatives of q; and d, due to radiation
reaction are indeed of order k’=ke*ke 2%, as claimed
above. In particular, since the Coulomb force is zero

when q;-q,=0, no charge rotation occurs in this case.

V. SUMMARY AND DISCUSSION

The above calculation indicates that the leading effects
of radiation reaction in the slow-motion system of two iso-
charges discussed above are due to resistive potentials b
and 17 at orders «* and «*/e in A’ and A, respectively.
Their effects lead to “rotations” of the two isocharge vec-
tors given by Eqgs. (4.12) and (4.15).

An important technical question is whether terms other
than those considered above could make comparable or
larger contributions to the charge radiation reaction. Un-
less the charge-mass ratios of the two particles are equal,
one can easily show that the quadrupole and higher mul-
tipole terms proportional to « in the wave-zone expansion
(3.14) produce smaller contributions to the radiation reac-

(4.12)

'tion, as in ordinary electromagnetic radiation damping.
As for the nonlinear orders (i.e., those proportional to
«%,...), Egs. (3.15), (2.17), and (2.18) indicate that no
time-odd contributions arise from nonlinearities before
O (k%) in ¢ and O(k? in AJ. Their effects would thus
not arise until O(x%) in q; and G, at the earliest.
Nevertheless, one might expect complications if one were
to study “fast-motion” charge radiation damping,®° since
the nonlinear contributions arise at the same « order as the
linear ones.

Indeed, expressions (4.12)—(4.15) agree with the slow-
motion limit (1.1) of the truncated “fast-motion” expan-
sion. However, as emphasized above, nonlinear contribu-
tions to Eq. (1.1) not included in this “truncated limit”
enter at the same “k order” as the linear ones (those that
appear explicitly in the first term).

A related technical point is that the phenomenon of
»switchback™!® can always arise in nonlinear singular per-
turbation problems such as this one: a term proportional
to «" in the wave-zone expansion could generate additional
terms in the near-zone via matching. As long as one
maintains the assumption k <<€, this possibility appears
unlikely, given the known sources for the O (k%) wave-zone
equations (3.15)—(3.16), but if one wanted to study the
case k « €2, one could not rule out contributions from high
orders in x« multiplied by large negative powers of € (see
last paragraph below).

A second and more fundamental question—one that
arises both here and in Trautman’s’ approach— is the sig-
nificance of “charge rotation” in physical terms. The very
definition of “global charge” in pure gauge theories is still
a matter of some contention.!”~2!, What one would like
to have is a locally definable, gauge-invariant quantity
analogous to “the charge of a particle at time ¢.” As we
shall see below, a gauge-invariant statement can be made
asymptotically for late times in this problem.

Now, it has been assumed throughout that the field-
strength parameter k and the slow-motion parameter € are
independent. However, aside from worries about “switch-
back” as mentioned above, one can also apply this calcula-
tion to the case in which the two-particle system is bound
by the Coulomb force. The parameters k and € are then
related by

2
2= coefficient x X9 .
mL

If one waits for a time large compared to A/, the system
becomes in a practical sense asymptotically Abelian. That
is, the nonlinear product Ar Xﬁuv becomes arbitrarily
small in any gauge compatible with our expansions (4.5)
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and (4.6) after a sufficiently long time has passed. This
asymptotic attainment of an Abelian configuration sug-
gests a classical analog to stability of the “color-singlet”
state in the quantized version of the theory.
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