
PHYSICAL REVIEW D VOLUME 28, NUMBER 12

Subsidiary condition for Yang-Mills theory

15 DECEMBER 1983

Kurt Hailer
Department of Physics, Uniuersity of Connecticut, Storrs, Connecticut 06268

(Received 31 May 1983)

A subsidiary condition for Yang-Mills theory is given. A prescription is proposed for using such
a subsidiary condition to eliminate unphysical degrees of freedom from gauge theories in covariant
gauges. It is pointed out that elimination of such unphysical modes can generate explicit nonlocal
interactions among particles in the physical subspace. The Coulomb interactions among charged
particles in QED is one such nonlocal interaction that can be generated in this way. It is argued
that confining forces among color-bearing combinations of quarks and transverse gluons in QCD
might be another.

I. INTRODUCTION

Even though it has not yet been possible to find a for-
mulation of non-Abelian gauge theory free of all unphysi-
cal degrees of freedom, a procedure is known that, in prin-
ciple, is available for eliminating such unphysical modes
from gauge theories. This procedure has been applied to
QED, ' and could also be effective in a non-Abelian gauge
theory provided its Feynman rules are unitary in its physi-
cal subspace, as, for example, in Yang-Mills theory and
in QCD. The method is based upon the use of a subsidi-
ary condition, which selects states to constitute a physical
subspace of the indefinite-metric space in which the mani-
festly covariant form of the theory must be embedded. A
subsidiary condition is a time-independent constraint, and
in order to impose such a time-independent constraint it is
necessary to use a spectrally pure operator. For example,
in the momentum representation, a spectrally pure opera-
tor Q(k) satisfies

Q(k) =Qp(k)+Qi(k),

where Qp(k) is independent of the charge parameter (e)
that defines the strength of the interaction. Qi(k), on the
other hand, vanishes as e~0. Since Qp(k) has to obey

[Kp, Qp( k )]+kQp( k ) =0, Eq. (1.1) implies that
[Ki,Qp( k )] must be canceled by [K,Q i( k )]+k

Q i( k ).
Q( k ) imposes a subsidiary condition

Q(k)
i
v) =0, (1.3)

which selects the set of states
i
v) to be physical states.

In order for Q(k) to be useful in imposing this subsidiary

[K,Q(k)]+kQ(k) =0,
so that Q(x), given by Q(x)= g-Q(k)e "" with

kp ——
~

k ~, is the correct Heisenberg operator. It is possi-
ble to use spectrally pure operators, that impose subsidiary
conditions, to eliminate unphysical degrees of freedom
from gauge theories.

Spectrally pure operators can generally be represented
as

condition, not only must it be spectrally pure, and obey

Eq. (1.1), but Qp(k) must serve as a projection operator
that selects pure gauge states. This it does by identifying
them as the set

~

n ) that obey

Qp(k)
~

n)=0 . (1.4)

The relation between Eqs. (1.3) and (1.4), and isomor-
phisms between the sets

~

v) and
i
n), are important ele-

ments in the strategy for eliminating unphysical degrees
of freedom from gauge theories in covariant gauges.

There are various ways of characterizing pure gauge
states, but for our purposes the following is very useful:
In any manifestly covariant form of a gauge theory there
are ghost-particle states, all of which can appear as final
states of S-matrix elements. Some of these states contain
a single ghost particle only, others consist of combinations
of ghost particles. Pure gauge ghost-particle states pro-
duce vanishing S-matrix elements when they appear in the
role of final states, provided the initial states are ghost-
free. In QED the pure gauge ghosts are the excitations of
the free gauge-fixing field. In non-Abelian theories the
single-ghost-particle states, that are pure gauge ghosts in
QED, are pure gauge ghosts still. In addition, in non-
Abelian theories combinations of different varieties of
ghost particles that express the basic nonlinearity of the
theory are also pure gauge ghost states. As we will see in
specific examples, not all ghost states that produce vanish-
ing S-matrix elements are pure gauge ghosts.

In QED it is very easy to find an operator Q( k ) that is
suitable for imposing a subsidiary condition. Q( k) is sim-
ply the positive-frequency part of the free gauge-fixing
field. The fact that Q(x), where Q(x)= g-„Q(k)e
is the positive-frequency part of a local free field, guaran-
tees that Q(k) obeys Eq. (1.1) and is spectrally pure. In
addition, since the pure gauge ghosts in QED are excita-
tions of the free gauge-fixing field, Qp(k) projects pure
gauge ghosts as required. Since the gauge-fixing field is
not free in non-Abelian theory, it has generally been as-
sumed that it is not possible to construct a spectrally pure
operator Q(k), suitable for imposing a subsidiary condi-
tion, in non-Abelian gauge theory.
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The main point of this paper is that it is possible to
construct an operator Q(k), appropriate for imposing a
subsidiary condition, even in non-Abelian gauge theory.
A free gauge-fixing field is not essential in the process,
though in Abelian gauge theories, in which a free gauge-
fixing field exists, it greatly reduces the technical prob-

lems of constructing and representing Q(k). In later sec-

tions of this paper we will show how to construct Q(k)
for Yang-Mills theory, and exhibit its form. We will also

discuss how Q(k) for Yang-Mills theory (and QCD)
inight be an important tool in clarifying the confinement
properties of the theory.

gauge ghost. When e„(k) is replaced by k„ the cor-
responding S-matrix element does not vanish, verifying
that the ghost state a~( k)

l
0) is not a pure gauge ghost.

In QED the positive-frequency part of the gauge-fixing
field is given by

g + (x)=i g l
k

l [ag(k)+ Jp(k)]e (2.2)

where Jp(k)=(2k )
' f jp(x)e '"'"dx. Except

perhaps for trivial c-number factors we can identify Qp(k)
and Qi(k) for QED as

II. QED—AN ILLUSTRATIVE EXAMPLE
Qp(k)=ag(k) (2.3a)

and

k„a„(k)P P

(2) k

k„a„(k)
ai'i(k) =

&&z(2) k

kpap(k)
(2)'"kag(k) =

(2.1a)

(2.1b)

(2.1c)

In QED, in the manifestly covariant Lorentz gauge,
there are two photon ghosts. In the Pock representation,
in which particle states are eigenstates of the interaction-
free Harniltonian Hp, the one-particle ghost states are

given by ag( k )
l
0) and az( k )

l
0), where the asterisk indi-

cates the adjoint in the indefinite metric space and where

l
0) is the "bare" vacuum given by Hp

l
0)=0. ag(k) and

az (k ) and their respective adjoints in the indefinite-metric
space are given by

and

Qi(k)=Jp(k) . (2.3b)

The spectrally pure operator Q(k) imposes the subsidiary
condition

[ag ( k )+Jp( k )] l
v) =0 (2.4)

and Eq. (2.3a) identifies ag(k) l
0) as the one-particle pure

gauge ghost state. It is worth noting that it is possible
for (f l

S
l
i) to vanish because of the pure gauge content

of
l f) even though the state vector

l f) is not a pure
gauge ghost state. For example, the state

If)=ag("i)a~(k2) lf ) does not obey ag(k) l»=0, but
(f lS l

i)=0 nevertheless. The existence of multiparticle

ghost states
l f), for which (f l

S
l
i) =0 but Qp(k)

l
f)&0

is characteristic of non-Abelian gauge theories as well as
of QED.

In QED it is possible to construct a unitary operator U
(so that U' = U '), which transforms Q( k ) as shown by

k„a„(k)P

(2) k

U 'Q(k)U=Qp(k) .
(2.1d}

If we apply this transformation to H, so that

(2.5)

k& differs from k& only in having k4 ———k4. The com-
mutation rules for these ghost excitations,

and

[ag(k), ag(k ')]=[a+(k),az(k ')]=0

[ag(k), a~(k ')]=[a+(k),ag(k ')]=5-„-, ,

are characteristic of ghost degrees of freedom. If
ag(k)

l
0) and az(k)

l
0) were positive-norm states instead

of zero-norm ghosts, these commutation rules could not
be maintained consistently. In previous work it has been

pointed out that ag( k )
l
0) is the pure gauge ghost in the

one-particle sector, and that any state
l f), given by

l
f)=ag(k)

l
f'), leads to the vanishing of the S-matrix

element (f lS li) for ghost-free initial states li) [We.
will use the symbols li) and

l
f') always to designate

ghost-free eigenstates of the interaction-free Hamiltonian
Hp. ] The fact that S-matrix elements vanish, in QED,
when the polarization factor ez(k) for an external photon
line is replaced by k„, is a signal that ag(k)

l
0} is a pure

U 'HU =H, (2.6)

then we transform to a new representation of QED in the
manifestly covariant Lorentz gauge. In this new represen-
tation ag(k) by itself is the form of the spectrally pure
Q( k ) that imposes the subsidiary condition, since

[H,ag(k)]+kag(k) =0 .

H has the form

(2.7)

H =Ho+H) T+Hc+Hg, (2.8)

where Hp is the interaction-free Hamiltonian, Hi T de-
scribes the interaction of the charged particles and the
transverse part of the electromagnetic vector potential,
and Hc is the nonlocal Coulomb interaction

(Sm.) f dxdyjp(x)jp(y)/l x —y l

H& is a part of H that contains a~ and a~ operators, but
never aR or aR operators. Indeed, aR or aR operators
must never appear in the interaction Hamiltonian in this
representation, since if they were to appear there, they



3056 KURT HALLER 28

would make it impossible for Eq. (2.7) to hold. Since a~
and a~ commute, H~ can never play any role in dynami-
cal processes, or in any way affect S-matrix elements to
observable states, though it is of coorse important for
maintaining the equation of motion characteristic of the
Lorentz gauge. The unitary transformation described by
Eqs. (2.5) and (2.6) eliminates all ghost degrees of freedom
from the dynamical processes among transverse photons
and charged particles, and a surrogate nonlocal interaction
between charges is developed in H.

We have reviewed this material here because we hope to
generalize it, and apply it to non-Abelian gauge theory. If
one can unitarily transform Q(k) to a representation, in
which it has the form of the original Qo(k), so that in the
new representation Ao( k ) becomes the spectrally pure
operator that imposes a time-independent constraint, then
in that new representation ghost degrees of freedom cease
to transmit interactions among the physical degrees of
freedom. Instead of ghost-transmitted forces, explicit
nonlocal interactions should appear in the transformed
Hamiltonian in non-Abelian theories just as in QED. In
QED we are very accustomed to a ghost-free version of
the theory, since we can achieve it directly in the Coulomb
gauge. But in non-Abelian theory the Coulomb gauge still
has Faddeev-Popov ghosts, and axial gauges have gluon
ghosts. Extending the 'procedure reviewed in this section
is quite likely our best hope for reducing a non-Abelian
gauge theory to a form that is both ghost-free, and uni-
tarily equivalent to a manifestly covariant form that is
known to imply the familiar Feynman rules in a
mathematically reliable fashion. It is very attractive to
speculate that long-range nonlocal interactions, that serve
as surrogates for ghost-transmitted forces, are a common
feature of all gauge theories. That QED is a limiting case,
in which the Coulomb interaction, though long range,
fails to confine; but that Yang-Mills theory and QCD
represent a further step in which the long-range interac-
tions are able to confine.

—2ieb„.(o, XB„(7b) . (3.1)

III. THE GHOST SPECTRUM OF YANCE-MILLS
THEORY

To fully exploit the resemblance between Abelian and
non-Abelian gauge theories, it is helpful to formulate
Yang-Mills theory as a canonical field theory, so that
Faddeev-Popov ghosts and gluon ghosts are treated in
equivalent fashion, and so that all ghost excitations are ex-
hibited very clearly. We have previously discussed such a
formulation of Yang-Mills theory, and demonstrated that
the Dyson-%'ard expansion of the scattering matrix, ap-
plied to that formulation, leads to the familiar Feynman
rules. It is therefore possible to now investigate nonper-
turbative implications of this formalism with the confi-
dence that we are dealing with a theory that has the in-
tended perturbative properties.

The Lagrangian for this theory is given by

W = ——,
' f„.f„„—4[m +y„(B„—ieb„r )]+

The Faddeev-Popov fields are treated as anticommuting
scalar operator-valued fields with fermion ghost excita-
tions; the Faddeev-Popov fields obey canonical anticom-
mutation rules. The theory is embedded in an indefinite
metric Hilbert space in which the spin-statistics theorem
does not apply. The formulation leads to a Hamiltonian
H, whose interaction-free part, Ho, has a normal,
positive-semidefinite energy spectrum. The Lagrangian
yields a canonically conjugate momentum for every field,
and has a conserved current, J&, given by

j ~+2eb X f~ +2eb~X~

2ie—[cr, X B„ob
—r)„rr, X oh ]

+4ie'[(b„X o, ) X o b], (3.2)

where the arrow designates isovectors, and jz is the
quark current j „=ie%'yzwM f„„. is given by f&,——B„b&—B„b —2ebz& b, and the gauge field b& is expressed in
terms of gluon excitations in the exact same way as A& is
expressed in terms of photon excitations in manifestly co-
variant formulations of QED, with the sole exception that
all fields and excitations in the Yang-Mills case carry an
isospin index. The Faddeev-Popov fields are expressed in
terms of fermion ghost excitations by

+

o,'(x) = g [gb(k)e' "'"+g/, '(k)e ' " "] (3.3a)
2k

and

ob(x)= i g —[g,'(k)e'"'" —g,'"(k)e '"'"],
k

where

[g,'(k),gj*(k ')J = [g'(k), g~'(k ')
J =0

and

(3.3b)

g/, '"*(k)) . gb'"'*(k„)
~

0)

similarly produce vanishing S-matrix elements. We
should therefore expect the same pure gauge structure in
this sector of Hilbert space as in QED, and construct
flo(k) for Yang-Mills theory so that Qo(k)

~

n) =0 for the
one- and n-ghost-particle states listed above. Moreover, in
Yang-Mills theory there is an additional two-particle
ghost state, that is a pure gauge ghost specifically because
of the nonlinearities implicit in non-Abelian gauge
theories. The existence of this state stems from the fact

jg,'(k), gbj*(k ') j = [gJ, (k),g,'*(k ')] =5;;6-„-,.

Earlier investigations have shown that (f
~

S
~

i) =0 for
states

~
f) given by a&*(k)

~

f'), g,'*(k)
~

f'), or gb*(k)
~

f')
where

~

f') is devoid of ghost particles. We therefore
classify the single-ghost-particle states a&'( k )

~
0),

g,"(k) ~0), and g/"(k) ~0) as pure gauge ghost states.
Moreover, just as in QED, the corresponding multiparticle
states that consist of a single variety of ghost particles,
1.e.)

ag "(k,) a('2'"'"(k„)
~

0),
i(1)e(k

) . ((n)4(k )
~

0)
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I
%(1,2))=4"""'(ki, k2)

I
0)

with

qi(i1), i(2)e( k k )1~ 2

=(2kik2) '
[ kiack'" (ki)aR' '*(k2)

+k2gb"'*(k))g,' '(k2)] .

(3.4)

(3.5)

We demonstrated that, ' for ghost-free states

I
f'), (f'

I

(Ii"" '(ki, k2)S
I
i)=0 where qi"" '(k„k2)

is given by

that, in Yang-Mills theory, the S-matrix element
(f'

I
(2('2'"(ki)aR' '(k2)S Ii) does not vanish; in QED, the

appearance of a&(k) in (f
I

suffices to guarantee that the
corresponding S-matrix element does vanish. The non-
linearity in Yang-Mills theory gives rise to vertices, that
couple a Q and R pair of gluon ghosts to transverse
gluons, so that probability measure can be transferred
from the physical to the unphysical subspace. This fact
was realized long ago by Feynman, who pointed out that
in Yang-Mills theory, without any Faddeev-Popov ghosts,
unitarity in the physical subspace is not preserved. It was
Feynman's prescription for a remedy that originally
motivated the inclusion of scalar fermion ghost loops in
the Feynman rules for Yang-Mills theory.

In previous work we have described the two-particle
pure gauge ghost state

@i(1),i(2)(k
1 k2) (2kik2) —1/2[ k (2i(2)(k )(ti(1)(k )

+k2g~' '( k2)gb '( k i )1 .

(3.6)

There is another two-particle ghost state in Yang-Mills
theory that we will use in our analysis. It is given by

I
$(1,2) )=P"" '*(k 1, k2)

I
0)

with

Q"" '(k), k2)=(2k)k2) ' [kiag'"*(k)) ' '(k2)

—k2gJ, "'(ki)g,' '*(k2)] .

(3.8)

I
p(1,2)) is not a pure gauge state and

(f'
I

p"" '(ki, k2)S
I
i) does not vanish, but since the

(f'Ip''"''"(k'„kz)p'"'"'"(k„k2)
I
f')=0 no

probability is lost through (f'
I

p"" '(ki, k2)S Ii) to a
ghost state.

It is instructive to analyze how the participation of pure
gauge states safeguards the unitarity of the S matrix
within the quotient space of positive-norm states that
describe transverse gluons, and quark excitations of the
spinor field. For example, in the one-ghost-particle sector
the unit operator has the form

]1[1—G] (2Q(1)
I
0)(0

I
(2R( I)+(2R(1)

I
o)(o

I
(2g(1)+g:(I)

I
o)(o

I g, (1)+g,*(1)
I
o)(o

I g.(1), (3.9)

where the numerical index (1) designates both the momentum and isospin, and is to be summed over its full range of
values. The component of the scattering wave function in this sector, in the limit t~ m (ignoring renormalization ef-
fects), has the form

[0'(tab oo )][1 G]= (2g(1)
I

f')(f'
I
aR(1)S ')+i2R(1)

I

f')(f'
I
(tg(l)S

I ')+g,*(1)
I
f')(f'

I
gb(l)S

I
')

+gb (1)
I f ')(f '

I g.(1)S
I
1)

Since (f'
I
aR (1)S

I
i) is the only matrix element in Eq. (3.10) that does not vanish, Eq. (3.10) reduces to

[4'(taboo)][1 G]=ag(1)
I

f')(f'
I
aRS Ii) .

As i2~(1)
I
f') is a zero-norm state, the norm of [%(t~ oo )][1 G] vanishes.

In the two-ghost-particle sector the unit operator has the form

][[2 G]= —,[a~(1)a&(2)
I
0)(0

I
aR(2)aR(1)+aR(1)aR(2)

I
0)(0

I
a~(2)ag(l)

+gb (1)gb (2)
I
0)(0

I g. (2)g ( I)+g,'(1)ga (2)
I
0)(0

I gb(2)gb(1)]

+'P'( I»)
I
0)«

I
0(»1)+y*(1,2)

I
o)(o

I
e(2, 1) .

(3.10)

(3.10a)

(3.11)

Since (f I ag( l)a&(2)S Ii ), (f I gb(1)gb(2)S
I
i), (f'

I ga(1)g, (2)S
I
i), and (f'

I
1Ii(1,2)S I i) all vanish for ghost-free (f

the component of %(t mao ) in this sec—tor reduces to

[+(t~~)][2 G]=—'~g(1)~g(» If' )(f'I &R(2)~R(1)S It)+'P'(I » If' )(f'Iy(»1)S Ii) . (3.12)

a(2(1)a~(2)
I
f') and qi'(1, 2)

I
f') both have zero norm, and the inner product of the two states,

(0
I
a&(2')a~(1')%'*(1,2)

I
0), vanishes for all possible values of the arguments of 1I( and ag. The probability measure con-

tained in [0'(t~ oo )][2 G] therefore also vanishes. In the three-ghost-particle sector the situation is similar except for
one additional feature that arises in the part of the three-ghost sector spanned by the unit operator, I~&~ given by
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I(z) ———,
' [a~(1)a~(2)aii(3)

~

0)(0
~

a~(3)aii(2)az(1)+aii(1)a~(2)ai((3)
~

0)(0
~

a&(3)az(2)a~(1)]

+ag(1)gb (2)g.*(3)
~

0)(o
I gb(3)g. (2)~, (1)+~,*(1)gb (2)g.*(3)

I
o)(o

I
gb(3)g. (2)~g(» .

In this part of the three-ghost sector there is a state
~
X(1,2, 3) ) given by

~
g(1,2, 3))=X"""'*( k), k2, k3)

~

0)

with

yi(1), i(2), i(3)s(k k k ) i(1)e(k ) i(2)e(k ) i(3)e(k )+(k /k ) i(1)e(k ) i(2)e(k )
i(3)e( k )

+ (k3/k) )gb"'*(k))ai(' '*(k2)g,' '*(k3)

(3.13)

(3.14)

(3.15)

for which (f'
~

X(1,2, 3)S
~

i) =0 even though
~

X(1,2, 3)) is not a pure gauge state. There is a close parallel between the
roles of (f'

~
X(1,2, 3)S

~

i) in Yang-Mills theory and that of (f'
~
a&(1)az(2)S

~

i) in QED. In both cases the S-matrix
elements vanish because of the pure gauge content of the final states, even though the final states themselves do not
satisfy Ao(k)

~

n)=0 and are not pure gauge ghost states. By using (f' P(1,2, 3)S
~

i)=0 it is possible to express the
component of %(t~ 00 ), in the ghost sector spanned by I(z), in the form

[ I'(t —+ oo )](&)= —,'X*(1,2, 3)
~

f')(f' a~(3)a~(2)aii(1)S
~

i)

+ —,'(2g(1)iig(2)i2i((3)
~

f')(f'
~
(2g(3)aii(2)aii(1)S

~

i)+i2g(1)gb (2)g.*(3)
~

f')(f'
~
gb(3)g. (2)i211(1)S

~

1) .

(3.16)

The inner products among the state vectors at2(l)at2(2)aii(3)
~

f'), X*(1,2, 3)
~

f'), and i2|2(1)gb (2)g*(3)
~

f') do not all
vanish, and it is not manifest, from Eq. (3.16), that the probability measure in the ghost sector spanned by I{zl vanishes.
When that probability measure is evaluated it turns out to be

~

[4'(t~ oo )](z) ~

= , (i
~

S—*X*(3,2, 1)
~

f')(f'
~

a(2(3)a~(2)aR(1)S ~i)+ —,(i
~

S*az(1)ag(2)az(3)
~

f')(f'
~

X(1,2, 3)S ~i),

(3.17)

and, in that form, inspection suffices to demonstrate that
[%'(t~ oo )](z) vanishes.

The fact that the probability measure in the ghost sec-
tor vanishes is of crucial importance. Were that not the
case, then the probability measure in the ghost-free sectors
might well exceed unity, while the probability measure in
the ghost sectors would then be negative. While the self-
adjointness of the Hamiltonian would still mandate a total
unit probability summed over the entire indefinite-metric
Hilbert space, such a formalism would be inherently unin-
terpretable as a physical theory.

We have constructed an operator I'(k) to perform the
role of Qo( k ) and to project the pure gauge states, in
Yang-Mills theory. " I '(k) is given by

operator suitable to serve as Ao( k ) in non-Abelian theory,
is whether it is possible to complete it by constructing
0'1(k) so that I'(k)+Q'1(k) is a spectrally pure operator.
In the next section we will show that I '(k) satisfies that
requirement too, and we will give an explicit representa-
tion of A'(k).

IV. REPRESENTATION OF SPECTRALLY PURE Q'( k )

We first define the operator A'(k ) by

A'(k) = [ag(k)+ J()(k)]

+ g q(/k[a)g' q(+)oJ—( q)]go(q)gb(k)

I'(k) =i2g(k)+ y (q/k) g*((2q)g,"(q)gb(k) . (3.1&)

q, n

q, n

(4.1)

I '(k)
~

n)=0 selects a set of states which includes all the
one-ghost-particle states that produce vanishing S-matrix
elements, and which we previously classified as pure
gauge states. These include a~ (k)

~
0), g,'*(k)

~
0),

gb (k)
~

0) but properly exclude ai(*(k)
~

0). The n-particle

g,'" (k„)
~
0), and gb"' (k1) gb'"'(k„)

~

0) are includ-
ed among the pure gauge states, as is

~

%'(1,2)), while the
states

~
P(1,2)) and

~
X(1,2, 3)) are properly excluded.

I'(k ) therefore satisfies the requirement that it project the
desired states. The remaining crucial test for I'(k), as an

[K,A'(k)]+kA'(k) =A"(k) . (4.2)

W'(k) can easily be obtained from the explicit expres-
sions for K and A, and from the commutation (and an-
ticommutation) rules for the gluon, quark, and Faddeev-

where Jo(k)=(2k )
' J dxe '" "Jo(x), and Jo(x)

is defined by Eq. (3.2). A (k) is obtained by substituting

[a~(k)+Jo(k)] for a&(k), and [a& (q)+Jo( —q)] for
a~*(q) in I'(k). In order to construct a spectrally pure
operator 0'(k), we also define a residue operator &'(k),
by
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Popov fields, each with its corresponding canonical
momentum. The result of that calculation is reported in
Sec. 5 of Ref. 7. For our purposes the most useful form
of &'(k) is one in which we have already made use of the
identities

Q'J(k, a ) is an important auxiliary quantity that appears
in Y'(k) and Z'(k) as well as in other expressions in this
work. It is given by

Q'J(k a)=iek sc' e" f dxe '" "'"k b" (x) .

gb(k)
~
a) = —(E —H —k) 'Y'(k)

~

a) (4.3a) (4.6)

and

g,'( k )
~

a ) = (E —H ——k) 'Z'( k )
~

a ), (4.3b)

where
~

a ) designates an eigenstate of H with
(H E~) —~a)=0. The Y'(k) and Z'(k) that appear in
these identities are given by

Y'(k) = —g (k/a)[Q' (k, x )g&~(a. )+giJ'(Pc)Q' (k, —a. )]
k,j

(4.4)
and

Z'(k) = g (a./k)[ QJ'( —a., —k)g,'(~)
k,j

(4.5)

We follow the convention that the signs of the momentum
arguments in Q (and later, in F, D, and S) only refer to the
signs of a and k in the exponential, but not in other parts
of the expression. ' We will write A"(k) in the form

A'(k)= g A"(k,a)
~
a)(a ~,

where the unit operator g ~

a)(a ~, is explicitly shown
as a series that represents closure over a complete set of
states. The overbar on (a

~

indicates that in the
indefinite-metric space, in which this theory is formulat-
ed, closure does not always involve direct products of
states with their own adjoints. We will write A'(k) in
this form but suppress the g ~

a) (a
~

in all subsequent

expressions. W'(k) then is given by

W'(k) = [Q'J(k, a. ),JJO(ii )]—Xs(k) —X,'(k)+X~( —x )(E~ —H —k —i~) 'Q'J(k, —~)

—Q'J( k, a )(E~ H ii) 'XJ—(x )—+ (~/k)X~( —ic )(E~ H —k x—)'Z~(i~ —)(E.~ H —k )
' Y'( k—)

—(a/k)X ( —~)(E~ H —k ii—) ' Y'(—k)(E~ H a. ) 'Z—i(~)—

—(a/k) [a~2*(a ) +JJO( x)][Z~—(Pc)(E~ H k) ' Y—'( k )——Y'( k )(E~ H —i~) 'Z—J( Pc)] . (4.7)

Repeated momenta and isospin indices in Eq. (4.7) are to be summed over their full ranges. X (k) originates from an ex-
pression that is similar to Eqs. (4.3a) and (4.3b), i.e.,

[i2Q'(k)+JQ(k)]
~

a)=(E H —k) X'(—k)
~
a) .

X'(k) has the form

X'(k) =Xb(k)+X~(k)+X,'(k),

the components of X'( k ), given in Eq. (4.8a) are given by the following:

Xt(k) = g [Q' (k, ii )ag~(~) —agj*(a. )Q' (k, —i~ )],
K,J

Xs(k) = g [FJ(k, x )gbj(a )+gbj*(a)F'J(k, —i~ )], .
K,J

with

F'J(k, ~)=e(2ii) ' k e" f dxe '" "'"k ~ cri", (x)

X,'(k) =D'(k)+ g [S'J(k, a)gbj(~) —gij (~)S'J(.k, —~)],
K,J

with

(4.3c)

(4.8a)

(4.8b)

(4.8c)

(4.8d)

(4.8e)

and

D'(k)= dxe '"'"k b'( )
(2~)3

~ p ~

S&J(k ) 2 ~ 2(2 )
—1/2k —3/2 f d 1( k —Pc) xk —

b (x) (x)

(4.8f)

(4.8g)
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The presence of &'(k) on the right-hand side of Eq.
(4.2) is a sign that A'(k) is not a spectrally pure operator,
and that it can therefore not be used to impose a con-
straint. It is possible to invert Eq. (4.2) and to define an

operator co'(k) by

co'(k)=A'(k)+(E —H —k) ~'(k)
~
~&&~

~

(4.9a}

Formally ~'(7k) obeys [H, co'( k)]+kco'(k ) =0 but that, by
itself, still does not entitle us to use co'( k) to impose a con-
straint. The energy denominator (E~ H ——k) ' in Eq.
(4.9) makes co'(k) potentially too singular to be part of a
useful subsidiary condition. A'(k} might well have non-

vanishing matrix elements &a'
~

A'~(k)
~
a& where

~

a'&
obeys (H E~ ) ~—a'&=0 with E~+k=E~. This would
leave us with a vanishing denominator in Eq. (4.9). It is
necessary to verify that this catastrophe cannot occur, be-

fore we can proceed to determine the form of Q~( k ).
It has been possible to formulate a series representation

of an operator Q'i( k) such that 9P'( k) can be expressed in
the form

[ag(k)+Jo(k)] replacing A'(k), and —X'(k) replacing
9F'(k) given in Eq. (4.7). One of the constituent elements
of X'(k) is the g . Q'J(k, a)a~J(a') that is part of Xi, (k),
as shown in Eqs. (4.8a) and (4.8b). From Eq. (4.3c) we
find that one of the contributions, that

, Q'J(k, a )ag(~) makes to &a'
~

X'(k)
~
a& is

We express Q'J(k, Pc)Pp(x ) as half of the sum of the com-
mutator and the anticommutator of Q'J(k, a ) and Po(a ).
The anticommutator t Q'J(k, x ),Pz(a ) I has terms trilinear
and quartic in operator valued fields; the commutator, for
which we define g= T[Q~(k, a. ),PO(Pc)], is linear in the
gluon field b„. The formally "spectrally pure" operator
p'( k ) is given by

p'(k)= (&g(k)+Jo(k))
9t'(k)= —I[H,Q'i(k)]+kQ'i(k) J . —g(E —H —k) 'X'(k)

~
a&&a

~

(4.11)

co'( k ) =A'( k ) +Q', ( k ) (4.9b)

and identify [A'( k ) +Q i ( k )] as the spectrally pure opera-
tor Q'(k).

The technical problems associated with implementing
Eq. (4.10) require us to express A'(~) in the form of Eq.
(4.7) and to represent Q'i(k) as a formal operator series.
The individual terms in this series contain integrals over
singular denominators typified by

This fact implies that &a
~

A"(k)
~

a & =0 when

E =E ~ +k, and that (E H k) 'A'(k——) ~a&&a
~

re-
tains meaning even when H has the eigenvalue
E~ =E~ —k. We can therefore rewrite Eq (4.9a. ) in the
orm

One of the components of

—g (E H —k) '—X'( k )
i
a & & u

i

is g (E H —k) 'g—
~

a & & a
~

. We express this com-
ponent as

g(E E—
a,a'

and study the case of

~

~ &
= I~ii*(p)+(E —H —p) '[Hl ~R (p }]I ~

~'& .

We note that if (H E)
~

a'& =0—then (H E)
~

a & =0-
with E =E ~ +p. We next extract, as one contribution to

g gJ'( a)(E —H —k .x)'F'J( k, a ) . —.

All the integrals of this type, appearing in Q'i(k), involve
integration over at least one momentum variable in addi-
tion to the summation over the complete set of states

~
a & &a

~

. Such improper integrals, when they are conver-
gent, define multivalued functions. The contours of the
integrations need to be specified to remove all ambiguities,
but the exact nature of the contours is not relevant for the
discussion here.

Later we wiH discuss the mathematica1 existence of
these integrals, but here w'e emphasize that their singular
integrands do not present the problem inherent in the
singular (E~ H —k) ' in Eq. —(4.9a), which is summed
over the states ~a&&a

~
but not integrated over any

momentum variables. To clarify what that hazard is, we
offer the following illustrative example: Suppose we had
attempted to use a~( k ) alone, instead of I'( k ), as the
Qo(k) component of a spectrally pure operator (as would
be appropriate for QED). We would then have found

g(E. E.. k) '~a—'&&a'—~g~~&&~~,
a, a'

the quantity o., given by

o =(p —k) ' g ~

a'&&a'
~

[g',ag'(p)]
~

a'&&a'
~
ag(p) .

(4.12a)

Explicit calculation leads to

1 e 1g= g 6 ag(p) .
(p —k k ~~~ k7 (4.12b)

Besides the divergent integral, which can be regularized, o.

contains the catastrophic infinity (p —k) 5- . When
k, p

an expression as singular as o. is not canceled by other
contributions, and when it remains part of a spectrally
pure operator, it is impossible to use the latter to impose a
subsidiary condition.
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Whether a residue develops the kind of catastrophic
singularity discussed in the preceding illustrative example
is sensitively dependent on the form of Qo(k). When
1"'(k) is chosen to be Qp(k) for Yang-Mills theory, this
catastrophe is avoided. The residue A'( k ) combines parts
from [at2(k)+Jp(k)] and from the trilinear combination

Qgg ——y (p/k)[ag"(p)+J~p( —p)]g,'(p)gj(k) .
p)J

The aiJ2'(~)Q'J(k, —Pc) that stems from [ag(k)+ Jo(k)] is
canceled by a contribution from Qzz', the Q'~(k, ~)J~q(~)
from [ag(k)+Jp(k)] combines with —Jjp(a)Q'J(k, x)
from Qzz to form the commutator [Q'i(k, )t),JJp()c)] and
the latter is canceled by a combination of contributions
from other parts of A"(a. ). Extensive and remarkable
cancellations between contributions to the residue from
[ai'2(k)+Jp(k)] and Qq~ exclude from A"(k) all those
components for which (a '

I
W'(k)

I

a } might not vanish
for E~=E~+k. The fact that these cancellations take
place lends support to I"(k) as an appropriate choice for
Qp( k ) for Yang-Mills theory, and to the use of
[A'( k ) +Q'i ( k )] I

v ) =0 as a time-independent constraint.
We will give Q'( k) for Yang-Mills theory in the form

8'J(k, q;xp)=ieej„ f dxe 'i" q '"kgb&(x)

and

(4.14c)

f'~(k, q;xp)=2 '~
eel„ f dx e '" q '"k&quot (x),

(4.14d}

respectively.
a'(k, t) is given by

a'(k;t) =k g p
' gbj*( p;t)e 't"q)'i(k, —p;t),

P.J

(4.15)

the cancellation mechanism that permits construction of
0')( k). Prominent among these quantities are 8'J(k, q;xo)
and f'~( k, q;xp), given by

8'~(k, q;xo) =k q
'~ exp[iKxp]Q'~(k, q)exp[ —iKxo]

(4.14a)

and by

f' (Jk, q; xo)=k ~ q'~ exp[iKxo]F'~(k, q)exp[ —iKxo),

(4.14b)

so that 8'J( k, q;xp) and f'~(k, q;xo) have the form

Q'(k) =A'(k)+e '"'A, '(k;t)

and A, '( k;t) will be represented as

(4.13a)

A.'(k;t) = a'(k;t)+P'(k;t)+y'(k;t)+5'(k;t), (4.13b)

where q)'J( k, —p; t) represents the series

+y + . . +y . p isgivenby
~ ~%'"=i dxof J(k —p'xo)e (4.16)

where a,P,y, 5 each represent an operator series. Each
series involves time-ordered products of Heisenberg fields.
Certain spatial integrals containing these operator-valued
fields, that are basic to the dynamics of the Yang-Mills
theory, appear in a, P, y, and 5 in different combinations.
The recurrence of these same operator-valued quantities in
definite patterns in different expressions is instrumental in

Time dependence always designates Heisenberg picture
operators in this work, and convergence factors in in-
tegrals at t~—Oo are understood. Temporal variables are
dummy indices in these expressions. The time variable
drops out of the final expression for e ' 'A, '(k, t), making
0'(k) a time-independent operator. The Nth-order term

' is given by

q'"'=«}"g I qi I

'
I q(N —i) I

Xo(N —1)
X f dxp(1) . f dxo(N)

&&f ( k g'q i'xp( 1 ) )exp[i(k +e(qi ))xp( 1 )]8""'"' '(gq ),gqz, xp(2))

&(exp[i(e(qi)+e(q2))xo(2)] . 8"' "J(gqi)v i), —p;xp(N))

Xexp[i(e(q)v, )+Z)xo(N)] . (4.17)

The summation g in Eq. (4.17) includes integration over
all momenta q;, summation over all isospin indices n (i},
and summation over the following permutations: (1) Ex-
changes of f and 8, in which the arguments of f and 8
(momenta and isospin indices) remain fixed in position,
but the functions f and 8 change places, so that in the
new position 8 has the arguments that f had before the
exchange, and f, in the new position, has the arguments

I

that 8 had before the exchange. (2) Exchanges in which f
and 8 exchange positions, but each of them is accom-
panied by all of its momentum and isospin indices (3)
Exchanges in which two 8 te~s change places, each of
them accompanied by all momentum and isospin indices,
except that we exclude those exchanges in which both B
terms have dummy momentum and isospin indices so that
the original and permuted expressions would be identical.
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The dummy time argument is always defined by position
in the time-ordered array of operators. e(q) is a position-
dependent quantity, and represents either

~ q ~

or —
~ q ~

depending upon its position in the integrand. For each q;,
e(q; ) appears exactly twice in each expression. It
represents

~ q ~

in the rightmost position, and —
~ q ~

in
the leftmost position. gq is also position dependent, and
represents either q or —q, depending upon its position.
For each q;, gq; appears exactly twice in the argument of
an f or a 8 term, once in the first argument position, and
once in the second [e.g., 8(gq;, p;xo) and 8( k, gq;; xo),
respectively]. If the function g or 8) in which gq is in

l

the first argument position is to the right of the function
in which gq; is in the second argument position, gq;
designates q;. If the order is reversed, gq; designates
—q;. Sgn(a) indicates the overall sign of each permuta-
tion. It is a multiplicative combination that includes ( —1)
for each integrated dummy momentum for which

gq; = —q;, except that if the dummy momentum is in the
second argument position of f, it is not counted. Sgn((x)
also includes ( —1) if —p appears as an argument in the
second argument position of f. To illustrate, we cite q)(2),

which is given by

t xo
q)( '= —g ~ q ~

' J dxo f dyoI f'"(k, q;xo)exp[i(k —q)xo]8"J(q, p;—yo)exp[i(p+q)yo]
q, n

+8"1(—q, —p;xo)exp[i(p —q)xo]f'"(k, —q;yo)exp[i(k +q)yo]

+f" ( —q, —p;xo }exp[i (p q)x—o]8'"(k —q'yo)exp[& (k +q)yo]

P is given by

8'"(k, q;—xo)exp[i (k —q)xo]f "1(q, —p;yo)exp[i (p +q)yo] I . (4.18)

P'(k t)= gk ' 'p[~g'*(p;t)+&J( —p;t)]e '~' f dx +"(k,—p;x )
(X)

P~J

with

(4.19)

Xo
ql' (k, —P;xo) = g q

'~ gs*(q,xo)e T'J"(k, P, q;xo)+iY"( —q;xo)e
' " f dyoT'J"(k, P, q;yo)

q, n
(4.20)

where T'J"(k, p, q;t) is a series given by T =T' '+ + T' '. T' ' is given by

T")= f dx, [8'"(k,—q;t)e""+"'ZJ(p;x, )e""'+ZJ(p;t)e'&'8'"(k, q;x )e ']— (4.21)

and the Xth-order term is given by

T'"'= —X(—i)
I
~( ' .

I ~(x —~) I
'sgn(P)

t xo(N —2)
X f dxo( 1) f dxo(N —1)8"'"(k,g~),'t)exp[i(k +e(I(())t]8"" )(gs &, gPc2, xo(1))

Xexp[i(e(v()+e(a2))xo(1)] . 8' '"(kv(x —2)
—q'xo(N —2))

Xexp[i(e(sz 2)+q)xo(N —2)]Z (p;xo(N —1))

X exp[ipxo(N —1)] .

(4.22)

In the case of T' ' the summation g includes all dummy momenta lr; and isospin indices s (i), and the following per-
mutations: (1) Exchanges in which Z and a 8 exchange positions, each accompanied by all its momentum and isospin
indices (Z always has the momentum argument p and isospin j). (2) Exchanges in which two 8 terms change places,
each of them accompanied by all momentum and isospin indices, except that we exclude those exchanges in which both
B terms have dummy momentum and isospin indices so that the original and permutated expressions would be identical.
Sgn(P) indicates the sign of each permutation. It is a multiplicative combination that counts ( —1) for each dummy
momentum for which g'a = —a. . To illustrate we cite T' ' which is given by
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it xoT'3'= i—g i
tc

i

' f dxp f dyp {8"(k, tc;t)exp[i(k —«)t]ZJ(p;xo)exp[exp]8'"(lc, —q;yp)exp[i(q +Ic)yp]

+8"(k,Pc;t)exp[i(k «)t]B—'"(«, —q;xp)exp[i(q+«)xp]Z (p;yp)exp[ipyp]

—8'"(—«, q;t)exp[i(q Ic)—t]ZJ(p;xp)exp[imp]8 (k —Ic'yp)exp[i(k+«)yo]

8&+( «q't)exp[i (q —«)t]8 (k —/7 xp)exp[i (k +«)xp]Z ( p yo) p[ Pyp]

—Z'(p;t)exp[inst]8' ( —« —q xo)exp[i(q —«)xp]8"(k, —q;yp)exp[& (q+~ yol

+ZJ(p t)exp[ipt]8 "(k,«;xo)exp[i (k —«)xp]8'"(lc —q'yo)exp[i(q+ic)yo]] .

(4.23)

5'J(k, t) is given by

5'J(k, t) =k i g gb'(p, t)e '&'ri'J(k, —p;t) . (4.24)

P~J

g'J(k, —p;t) differs from P'J(k, —p;t) in two respects only. One is the substitution of S'J(k, +t) which is O(e ), in the

case of ri, for f (k, «;t) which is O(e) in the case of p. The other is the substitution of sgn(5) for sgn(a). Sgn(5) is a
multiplicative combination, that counts ( —1) for each integrated momentum, Ic, in which g«signifies —«. , including
momenta appearing in both argument positions of S.

y'(k, t) is given by y =y'"+ +y' ' with

y"'= —e(2k) 'i g i q i

'
~

k —q i
'exp[i (k —q —

~

k —q ~
)t]e; „

Q,J,n

t
&C f dxpB"J(q, q —k;xp)exp[t (q+

l

k —q I )xo] (4.25)

q"'= —ie(2k)-'"
q, J, K,S, n

'exp[i (k —q —
I

k —&
I

)t]&tsar

XO

X f dxp f dyp 8" ( —q, (« —k);xo)exp[i( i
« —k

i
lc)xp]B'"(«, q—y—)ieppi[xi(q+ )yIc)o

—8 (K, q;xo)exp[i(q —«)xo]8"i(q, (Ic —k) yo)exp[& (
I

k —«
i +«)yol

ie(2k )—
q,J K,s, n

'l q+~ I
'exp[ t (q+~+

I
q+~ —

I )t]e-g

XO

X f dxo f dyoI 8"'(q (q +);Icx)eoxp[i( q+iq+ Ic
~

)xo]8"(k,—«",yo)exp[i(k+«')yp]

+8"(k Ic xo)exp[—i (k+ic)xo]8"'(q (q+Ic)'yo)exp[i(q+
l
q+«

I )yo]) .

(4.26)
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It is difficult to give an explicit expression for y' ', but
arbitrary orders can be generated straightforwardly from
recursion rules. The expressions for y, g, and T are for-
mal operator series, and provide a formulation for compu-

e

tation rather than an explicit expression for 0'&(k). fI&(k)
contains series, in particular y, g, and T, whose forms are
suggestive of expressions in formal scattering theory such
as, for example, the Manlier wave matrix. ' The obvious
differences are that the operator constituents of y, g, and
T are Heisenberg fields, so that the Green's functions that
stem from the time-ordered integrations in y, g, and T
contain the total Hamiltonian H. In contrast the Green's
functions in the series representations of the scattering
wave matrix contain the interaction-free Hamiltonian Ho.
In the case of g, g, and T, f, S, or B appear between adja-
cent Green's functions (E H) '—, in lieu of the vertices
that appear between adjacent Green's functions
(E —Hp) ' in formal scattering theory. ' A natural way
to exploit this resemblance is to try to sum the series for
p, g, and T formally, and represent it, as far as may be
possible, in a more compact form. It is known that opera-
tor series often admit of such formal summation. One ex-
ample from scattering theory is the sum

G=Go+GoHiGo+ +(GoHiGo ' ' GoHiGo)

where G =(E H) ' and—Go (E —Hp)——'. G contains
information about the discrete spectrum of H even though
the Born series given above may lack the necessary con-
vergence properties to account for that fact in a
mathematically rigorous way. '

The question arises whether the improper integrals im-
plicit in 0'&( k) are convergent. It is known that QCD and
Yang-Mills theory are ultraviolet renormalizable. '

Demonstrations have also been given that, in perturbation
theory, on the leading twist level, they are infrared finite
very much like QED; that, in these cases, radiative correc-
tions to elastic cross sections combine with radiative in-
elastic soft-gluon processes to give infrared-finite results.
This has been verified for low orders in perturbation
theory'; for soft gluons radiated by massive quarks, in
cases in which a single quark in the initial state is scat-
tered in a colorless external potential, a proof has been
given to all orders. ' Whether soft-gluon contributions in
QCD and Yang-Mills theory are finite when all orders of
perturbation theory are summed, or whether a nonpertur-
bative infrared divergence reflects a confinement mecha-
nism, is still an open question. ' It is not clear, at this
point, what implications renormalizability, and order-by-
order cancellation of divergences in virtual and real soft-
gluon processes have for the integrals that are implicit in
Q&(k). Nor is it clear to what extent the implicit presence
of divergent integrals in the series, contained in Q&(k), in-
terfere with the program to impose
[&'(k )+0'~(k )]

~

v) =0 as a constraint. Reference 7
demonstrates that the algebraic identities responsible for
unitarity in the physical subspace operate through the
cancellation of identical divergent integrals that require
trivial regularization only. The essential characteristic in
Q&(k) is the pattern in which f, B, and s appear in the

series a, P, y, and 6; the values of the individual integrals
involved in the cancellation seem to be less important.

V. DISCUSSION

A'( k ) imposes the subsidiary condition

0'(k)
~

v) =0 (5.1)

which selects a subset of states to constitute a physical
subspace. Since 0'(k) is a spectrally pure operator, time
evolution will not violate this constraint. The states

~

v)
therefore take on a particular importance in Yang-Mills
theory. They will in general be coherent superpositions of
the Fock states that obey (Ho E„)

~

—n) =0 and physical
states, because they obey Eq. (5.1), constitute stable ad-
mixtures of quarks, gluons, and Faddeev-Popov ghosts
that remain undisturbed by time evolution. The vacuum
state for Yang-Mills theory will be one of these states.
Equation (5.1) allows us to define a nonlocal field operator
W (x) and its time derivative, for which

and

(v
i

W'(x)
i
v) =0 (5.2)

(5.3)

where

W'(x)=i g ~

k
~

' [0'(k)e " "—Q'*(k)e " "] (5.4)

and

BoW'(x)= g (

k
)

~ [0'(k)e " "+0'*(k)e " "] .

(5.5)

Ampere's law and Gauss's law, when implemented as
subsidiary conditions in QED in a covariant gauge, are the
Abelian analogs of Eqs. (5.4) and (5.5), respectively. On
the basis of that analogy it is reasonable to surmise that
these equations, particularly Eq. (5.5), contain information
about the long-range properties of Yang-Mills theory.

The Fock space that underlies the perturbative rules for
non-Abelian gauge theories is almost certainly inappropri-
ate for the description of the observed particle spectrum,
since the basic states of that space, i.e., single quarks and
gluons, are never observed to appear as asymptotic states.
To some extent, Yang-Mills theory and QCD share this
problem with QED. In QED, the covariant Feynman
rules represent electrons as spin- —,

' fermions that emerge
from the scattering region and exist asymptotically de-
tached from all other fields. In fact we know that elec-
trons never are separable from their Coulomb field nor,
when moving, from the transverse photons required to
flatten the Coulomb field and to constitute a magnetic
field, as mandated by Lorentz covariance. Quite likely in
all gauge theories, QED, Yang-Mills theory, and QCD,
the "true" states determined by the constraints that define
a physical subspace, are coherent superpositions of the
Fock states implicit in the perturbative rules. There is a
crucial difference, however, between non-Abelian theories,
and the Abelian QED. In non-Abelian theories, the
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failure to correctly identify the "true" states, among them
the vacuum, leads to serious errors in predicting long-
range behavior. In QED the coupling of the charged par-
ticle and photon fields is such that scattering cross sec-
tions are immune to the failure of the perturbative theory
to use "true" states, or to implement the subsidiary condi-
tion.

Our plan for Yang-Mills theory is to employ a pro-
cedure we have used extensively in Abelian theories. It
consists of implementing a constraint, in the form of a
subsidiary condition, consistent with the time evolution
dictated by a Hamiltonian; and requiring that Hamiltoni-
an to imply the covariant perturbative rules that charac-
terize the short-distance properties of the theory. We fol-
low a pattern established for QED and reviewed in Sec. II
of this paper: To construct a unitary operator U such that
UQ'(k)U '=I'(tc), and to transform the Hamiltonian
for Yang-Mills theory by the same transformation, so that
UHU ' =H. If that program is implementable, then
I'(k) will itself be a spectrally pure operator in this repre-
sentation, so that [H, I'(k)]+kI'(k)=0. Since

[Hc, l '(k)]+kl '(k)=0 also holds, the interaction Ham-
iltonian in the new representation, H& ——H —Ho, would

then commute with I'(k). If Yang-Mills theory follows
the pattern that obtains in QED, H& could contain the
operators a&(k) and a&"(k) as well as %(1,2) and 4'(1,2),
but not az(k) and az'(k) or p(1,2) and p" (1,2) [given in

Eq. (3.9)], which fail to commute with I '(k) or I "(k).
These restrictions inhibit, in this representation, ghost-
mediated processes embodied in the Feynman rules, and
require that explicit nonlocal interaction among quarks
and transverse gluons be generated to take their place.

It is uncertain how far the program outlined above can
be developed, but the construction of the operator 0'( k )
can be a significant step toward clarifying long-range
properties of Yang-Mills theory. It is easy to lose sight of
the importance of this kind of subsidiary condition, and of
how well it lends itself to specifying long-range behavior,
because in QED, although it is possible to apply this pro-
cedure, it is never necessary to carry out the determination
of long-range forces with the help of the subsidiary condi-
tion. In QED the long-range forces are known indepen-
dently of the subsidiary condition, and the latter can be,
and generally is, ignored in calculating S-matrix elements.
But in non-Abelian theories we seem not to have this free-
dom, and this program may be of significant benefit in
studying long-range behavior, and well worth pursuing.
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