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Relativistic rotator. II. The simplest representation spaces
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As a continuation of the preceding paper in which the quantum relativistic rotator was described
within the framework of quantum constrained Hamiltonian mechanics, here its simplest representa-
tion spaces are derived. They are shown to be discrete direct sums of irreducible representations of
the Poincare group, which shows that hadrons can be interpreted as different mass-spin levels of a
quantum relativistic rotator.

I. INTRODUCTION

in which the spin 8'= —,X& X" is diagonal and has the
eigenvalue s (s+1), and the spinor basis system

I p, m, 'J, I, (1.2)

In the preceding paper' the quantum relativistic rotator
(QRR) was defined as a constrained quantum system with
a relativistic Hamiltonian that corresponded to those of
well-known physical systems in the nonrelativistic, the
classical, and the elementary limits. In this paper we will
derive the simplest representation spaces of the QRR. Al-
though the method we use is not specific to the rotator
constraint and can be generalized to a large class of con-
straint relations and particle spectra, here we restrict our
discussion to the particular model of Secs. I—III of paper
I. In the Appendix we give a brief derivation of the repre-
sentations of SO(3,2) which are used in this model.

In Sec. II of paper I we found that a rotating and
translating quantum physical object has two different but
intimately related internal angular momenta associated
with it. The "intrinsic" angular momentum S&, corre-
sponds classically to the angular momentum in the refer-
ence frame in which the particle position Qz is at rest, and
the spin angular momentum X& corresponds classically to
the angular momentum in the reference frame in which
the center-of-mass position Y& is at rest, which is the usu-

al rest frame as for it p =0. The intrinsic angular
momentum operators S& form the "intrinsic" homogene-
ous Lorentz group SO(3,1)$ of (I.2.2). The spin tensor

X&„does not quite form a group but obeys (I.2.16). [In the
rest frame X,'z" St" sgnPpez &"——" (ij,——m —=1,2, 3)
where wz is the Pauli-Lubanski vector. ]

Corresponding to these two angular momenta there are
two basis systems of the representations of the Poincare
group: the canonical basis system

Ip~m~$~$3 }

in which the intrinsic angular momentum, i.e., —, S& S
(p, v=0, 1,2, 3) and —,SJS J (i,j= 1,2, 3), is diagonal and in

which —,SJS ~ (i j= 1,2, 3) has the eigenvaluej (j +1).
The spinor basis has been in extensive use for the Dirac

representation —the space of solutions of the Dirac
equation —in which SO(3,1)s has the representation

(kp ———,',c= —,
' )e(kp ———,,c= ——, ), and also for a special

type of finite-dimensional representations of SO(3,1)$
PV

which remain irreducible under SO(3)s,' these are the rep-
lJ

resentations {kp,c =+(kp+1)} where kp is an integer or
half-integer and the only value that j can take in these rep-
resentations is j=kp. In the cases (kp, c=+(kp+1)), the
value of s is the same as the value of j and is equal to ko.
The transformation between the canonical basis system (1)
and the spinor basis system (2) is rather simple in the rep-
resentations (kp, c =+(kp+1)}, but it is a little bit more
complicated in the Dirac case, which involves two
SO(3, 1)s irreducible representations (irreps) with the

}ttV

same j= —,'. In order to go into the canonical basis in the
Dirac case, one must first make a transformation from the
eigenvectors of —,'Sz S""into eigenvectors of I p, followed

by the same transformation that transforms (2) into (1) in
the cases (kp, c=+(kp+1)}. In the Dirac case (where one
more quantum number n, with the two eigenvalues of I o,
is needed) this transformation, i.e., the product of the two
transformations described above, is known as the Foldy-
Wouthuysen transformation.

In the unitary (Hermitian S„„)and therefore infinite-
dimensional representations of SO(3,1)s, the spectrum of

j is infinite j=ko, kq+1, ko+2, . . . , and one value of j
(of the intrinsic angular momentum) no longer belongs to
a single value of s (of the spin). Nevertheless, a transfor-
mation between the canonical and spinor bases can be
found in complete analogy to the familiar cases, but now
the transformation matrix is infinite dimensional and a
canonical basis vector with a particular value of s (spin) is
given as an infinite superposition of spinor basis vectors
with different values of j (intrinsic angular momentum).
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As discussed in the Appendix, the Majorana representa-
tions contain only one unitary irreducible representation of
SO(3,1)s for which (kp ——0, c = —,) or (kp ———,, c =0), and

PV

in them the transformation between (1) and (2) is similar
to the cases (kp c=+(kp+1)).

In the Majorana cases, as in the four-dimensional Dirac
case, we also have an SQ(3,1)z vector operator I p which

PV

together with Sp, forms an SO(3,2)s
V P

II. SPINOR BASIS

[Jp Pp ]= i (gppP—„g„pPp—)
[Pp,P ]=0,

(I.2.1a)

(I.2.1b)

(I.2.1c)

[Spv~sprr ]= —i (gppsvo +gvrrspp gpa—svp gvp—sp~ )

and

[s„., r, ]= —i(g„,r„—g.,r„),
[r„,r.]= —is„„,
[Jpv~spcr] = '

(gyp vcr+gvn pp

gprrsvp Svps—pn) r

[Jp„,I p] = i (gppl—, g„pI p—),

(I.2.2)

(I.2.39)

(I.2.40)

(2.1)

(2.2)

[Pp, SO(3,2)g i ]=0, (2.3)

For the purpose of finding the representations, we need
not require that Jp, have the particular form (I.2.3a) in
terms of Qp and P„, but we need only require that

Jpv=Mpv+Spv

where Mp„ fulfills

[Mpv, sp~]:0, 2 epvp~P M:0

(I.2.3a)

(I.2.3b)

After the constraint relation (I.2.37) has been imposed,
(1.5) may no longer be fulfilled, whereas (2.1) and (2.2) will
always be fulfilled in our case where Jp is given by (I.2.3).
We will, however, postulate that instead of (2.3) we have
in addition to the above relations (I.2.1), . . . , (2.2), the fol-
lowing relations (Werle relation):

A seinidirect product H ~ S of the Poincare group H
with a semisimple group S which contains SO(3,1) as a
subgroup [in our case S=SO(3,2)] has been called a rela-
tivistic symmetry. The relativistic symmetry that we
consider has the defining relations

[Jpv~ perl (gyp vrr+gvrrJpp gp&r vp gvpJpa) ~

~ SO(3,2)s rP,J „ PV P,
(2.5)

where H - is the Poincare group with the center-of-
O' P

mass velocity operator Pz as a generator. The mathemati-
cal problem of finding the representations does not, of
course, depend on the interpretation of the Poincare
groups so that the choice of 9'- or Pp J is ir-P,J „ I PV

relevant to the representation theoretical problems of (2.5).
To find the irreducible representations of the QRR

which fulfill relation (2.4), we will first derive the repre-
sentations of H- ~ SO(3,2)z r, and then we will

P ' P

define the physical momentum by Pp PpM——, where M is
an operator obtained from the constraint relation.

Since

+ SO(3,2)s

I3SO(3 2)s „,rP,M „ PV' P
(2.6)

Pp (p=0, 1,2, 3), PpP"=1 .

These vectors have the properties

Pp I P & =Pp I P & ~

(2.9)

(2.10a)

U"(A) IP&=
I
AP&, (2.10b)

i W"M
where U"(A(co))=e "", and APSO(3, 1). We decide
to "normalize" them in the following Lorentz-invariant
way:

we find the representations by taking the direct product of
the representation spaces A " of the "external" Poincare
group H - and A of the "intrinsic" SO(3,2)s i .P,M „ P,V P

For A we restrict ourselves to one of the four irreducible
Majorana representations of SO(3,2)~ r derived in the

Appendix. Then a basis system in A is given by the vec-
tors

I
Ji I which have the property

U(A)Ii ]= g Ijj, IDJ, J (A) (2.7)
—j &j3 &j

J —ko, ko+1, .. .

for APSO(3, 1).
In the irreducible representation space ~" of H-

O' PV

we have P&P&=1 and —
2e&„z P "M =0, thus A" is

equivalent to the mass= 1 and spin=0 irrep space of the
Poincare group and we can use as a basis system in A "
the generalized eigenvectors

IP& (2.8)

of the complete system of commuting operators

[Pp, SO(3,2)g r ]=0, &P' Is"& =2 IPp I

&'(P—P') . (2.11)

P —PM y
(2 4)

Although the constraint relation breaks the relativistic
symmetry involving the momentum operator P&, the
group structure that remains if (2.4) is fulfilled is the rela-
tivistic symmetry

I
I"J,] =

I
I"& I'j, l . (2.12)

There are two possibilities for A " corresponding to the
two possible signs of pp

——+(1+p )'
We obtain a basis system in the direct-product space

A "@A by defining the direct-product basis vectors
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and the generators are given by

J~„——Mp„(3 1+1Sp (2.14)

Thus the basis (2.12) is adapted to the splitting (I.2.3a).
Using the properties (2.7) and (2.10b), we have

U(A) IP,J ]=
—J &J3&J

j'=ko, ko+1, ...

I Ap, J, IDJ, JJ(A) . (2.15)

The basis vectors (2.12) are also (generalized) eigenvectors
of Pz due to (2.10a):

Pp IP J, I =p„ I p,J, I (2.16)

The "normalization" of (2.12) follows from (2.11) and
(A28) and is given by

[', p'
I p, ',-, I =2

I pp I
~'(P—P'+"~„, (2.17)

The space A "A =A (Maj) is thus an irreducible rep-

In this basis, the physical Lorentz group is represented in
the direct-product form

(2.13)

resentation space of H - w SO(3,2)s r and, there-P,J I V I

with, is a reducible representation space of the c.m. -
velocity Poincare group H- . It is characterized by

P PV
the irreducible representation of SG(3,2)s r (because A "
is totally specified by P&Pi'=1 and 2 e»q P "M~ =0, ex-
cePt for sgn Pp ——+ 1 or —1) which is indicated by Maj.

The basis which has the property that the representative
U(A) of the Lorentz transformation A acts on it as a

i'd/ Mdirect product (2.13) of one factor U"(A) =e ""acting
only on the momenta as in (2.10b) and another factor

iMVS „U (A)=e "" acting only on the discrete indices as
in (2.7) is well known for the representation
(kp c = + ( k p + 1 ) ) and is called the spinor basis. Thus

I p, JJI is the spinor basis for the infinite-dimensional case
(kp ——O, c = —,

'
) (integer-angular-momentum Majorana rep-

resentation) or (kp ———,',c =0) (half-integer —angular—
momentum Majorana representation).

In addition to the Poincare group transformations (2.15)
and (2.16), we also have in the space A (Maj) a representa-
tion of the vector operator I &, its action on the spinor
basis lp, JJ I follows from (A32) and is, e.g., given for I 3

by

13
I p,', I =i sgn~[(V —j3)V+j3))'"C, IPj~, ]+(V 6+1)V+J3+—I ))'"CJ+i IP„'+'I ], (2.18)

where CJ is given by (A31). From (Al 1) and (A17) it also
follows that the spinor basis vectors are eigenvectors of
S,S]2, and —,'S„S":

s' lP„', I =j V+1)
I p ~j, I,

~»
I p J, I =j3

I p J, I

—,'s»s»
I
p, jjI = ——,

'
IPj I

(2.19a)

(2.19b)

(2.19c)

III. TRANSFORMATION TO THE CANONICAL BASIS

As a representation space of the c.m. -velocity Poincare
group H- J,A (Maj) is reducible. In order to obtain the

P' PlV

reduction of A (Maj) into irreducible representations of
we make a basis transformation from the spinor

basis into the canonical basis which consists of spin eigen-
vectors. [This will in general not yet guarantee that M is
diagonal, but we wiH see below that for our particular case
of the Majorana representation and the constraint relation

Since S&„ is the intrinsic angular momentum and not the
spin (which is given by X&„or w&), j is not identical to the
spin quantum number [except in the special case
(kp, c=+(kp+1)), discussed in the literature]. The spin
operator W= —,X»X" [cf. (I.2.49)] is in general not diag-
onal in the spinor basis and, as we shaH discuss below, nei-
ther is the mass operator M if it is determined from W by
the constraint relation (I.2.37).

(I.2.37) this will indeed be the case.]
In exact analogy to the case (kp ——j,c =+(j+1))," we

define the canonical basis

—J &J3&J
j=ko, ko+1, ...

I p, j, ]D ',"...(L '(P))P(s),

(3 1)

where L '(p) is the boost, i.e., the rotation-free Lorentz
transformation with the property

L(p)p =(e,0,0,0)=p (3.2)

(ko, c)
e=sgnpo, and D '

is its matrix representation as in
(2.7). P(s) is a phase factor which can be chosen arbitrari-
ly and which we fix as P(s) =( i )' (Th—en th. e Naimark
phase is chosen for the matrices of I; in the

I p„„,s,s3 )
basis as well as for the matrices of Sp; in the

I ~i, I basis. )

In the finite-dimensional cases considered in the past,
where (kp ——j,c =+(j+1)), the phase factor is trivial and
is therefore omitted. Also, (3.1) is usually used for the
generalized momentum eigenvectors and not for the eigen-
vectors of P&. But as the boost L '(p) is a function of
p =p /m only, ' the transformation matrices for the
momentum eigenvectors and for our p eigenvectors are

(ko, c) i (ko, c)
equal D ' (L '(p))=D ' (L '(p)). It is this cir-
cumstance that aHows us to determine the representations
for the case in which (2.4), instead of (2.3), is fulfilled in
such close analogy to the conventional case in which (2.3)
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is fulfilled. This also means that, in addition to the
theoretical and phenomenological' reasons, there is a very
practical reason for using the Werle relation (2 4): without
the Werle relation, while (2.3) does not hold, the whole

I

structure would become virtually unmanageable with the
presently available representation theoretical tools.

To show that (3.1) is indeed the canonical basis we cal-
culate

U(A)
I p, s,s3 &

=
—J &J3 &J
ko, ko+1

U(A)
I p, i~, IDJJ,',, (L '(p))P(s)

I
Ap, ',., JDJJ,. (A)DJ",,, (L '(p))P( ) (3.3)

—J &J3 &J —j'&j3 &j
J =kp)kp+ 1,... j' —k k + 1

Using the signer rotation

%(A,p)=L(Ap)AL '(p),
(kp, C)

and the fact that the D '
are representation matrices, one obtains

(3.4)

U(A)
I p, s,s3 &

=
—J &J3&J

j=ko, kp+1, ...
—J &J3&J

j'=ko, k( +1,. . ~

I
Ap, j., IDJ,' (L .'(Ap)) &,",,, (~)P(s) (3.5)

For the term in brackets we use (3.1) with p replaced by Ap and obtain

U(A)
I p, s,s3 &

= g I
Apj,j 3 &D ' j~', (A)p '(j)p(s) . (3.6)

ko, ko

(kp)c )j$
J'...(%(A,p)) is the matrix representation of the ro-

tation A in the representation (ko, c) of SO(3, 1)s . But
PV

the representation (ko, c ) reduces with respect to the rota-
tion subgroup into the direct sum

A (Maj)
P J $ kQ)kQ+ 1) ~ ~ ~

P PV

eA (l,s) . (3.12)

where MJ~', ,(A') are the representation inatrices of the ir-

reducible representation (j) of the rotation group. Thus
the SO(3,1)s representation matrix of the rotation A is

PV

given by

D ' J' (A)=P'&'J' (A) (3.8)

for every value of s that occurs in the representation
(ko, c), otherwise it is zero. Thus for every value

s =kp kp+ 1 kp+2

(3.6) takes the form

U(A)
I p, s,si & =

—$&J3&$
I
Ap, sj i &&~",', ,(A'(A(p)) .

(3.9)

(3.10)
This is exactly the transformation property of the canoni-
cal basis vectors of the (p =1,s) irreps of the Poincare
group. Thus s is the value of the spin

8'
I P,s,s 3 & = —,

' X„,X"'
I p, s,s 3 &

The canonical basis vectors defined by (3.1) are clearly
generalized eigenvectors of the operators P„since the
Ip, JJJ are so according to (2.16). The normalization of

%J3

the canonical basis vectors follows from the normalization
(2.17) of the spinor basis vectors and a straightforward
calculation gives

(s3 s,p lp, s,s, &=2 lpo I

|) (p —p )()

Also, as L '(p„„)=1 [by the definition (3.2) of the boost]
it follows from (3.1) that in the rest frame

I p„„,s,s3 & =
I p„„,j, ',

) I4(s) . (3.14)

Thus j =s for the rest states. This is the quantum number
form of the statement made in Sec. II of paper I that in
the rest frame the intrinsic angular momentum (which has
the quantum number j) is equal to the spin (which has the
quantum number s).

The canonical basis vectors are eigenvectors of P„I"
with the eigenvalue + (s + —, ) or —(s + —, ). To show this
we use the fact that since P& and I z are vector operators
under SO(3,1)J,P&I i'= I &P" is a Lorentz invariant:

PV

=s(s+1) Ip, s,s, &, (3.11)
rp~U(A) = U(A)rp~ . (3.15)

and we have shown that the representation space A (Maj)
reduces' into the following direct sum of irreps of

Then with (3.10), (3.14), (A30), and A=L '(p) for the
particular Lorentz transformation in (3.15), we calculate
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p„l ~
i p, s,s, & = I „p&

i p, s,s, }=I „PI'U(L '(p))
i p„„,s,s, }

= U(L '(p))I „P"i p„„, ,s }= U(L '(p ))I oe i j„„,, }
=U(L '(P))I el j„„„',jP( )

= U(L '(p))sgnn(s+ ,' )—e
~
p„„„',jp(s)

=sgnn(s+ —, )eU(L (P)) lP«st, s,s3 } . (3.16)

Thus

(3.17)P&I"
i p, s,s3 }=esg nn(s+ —, ) i p, s,s3 }

e=sgnpo ——+1 depends on whether we choose the representation of H- with IP;g,",;"„;j energy, and sgnn =+1 depends
P~spectrumI 0)0

on whether we choose a Majorana representation with [,~„r'(Oj. Thus

sgn(spectrum P&I ")=sgn(spectrum Po)sgn(spectrum I 0) =+1 .

From this we see that even if we restrict ourselves to @=+1,as is usually done following Wigner, we can still obtain rep-
resentations with sgn(spectrum P&I ")= + 1 or —1, and the same statement holds for e= —1.

In contrast to the spinor basis vectors, the canonical basis vectors are not eigenvectors of I 0 and the matrix elements of
I;, which are simple for the spinor basis, e.g., (2.18), are complicated for the canonical basis except for those at rest, for
which —in the Majorana case one has (3.14). From Eqs. (2.18) and (3.14) with p(s) =( i )', o—ne obtains for the action
of I 3, and similarly for the other I;,

r, iP, ,s,s3}=sgnn{[(s—s3)(s+s3)] C fp. . .s —1 s3}—[(s+s3+1)(s s3+1)]'i C+, [p, s+1 s3}j
(3.18)

IV. THE MASS AND SPIN SPECTRUM

In order to obtain a representation of the physical Poin-
care group HP J we have to define the momentumO' P~
operators P&, which have the dimension GeV or cm ', be-
cause physical translations are measured in cm. We can
therefore define for any positive real number m with di-
mension cm an operator

Pp ——P~m (4.1)

where C, is given by (A31). Thus the spinor basis is much
easier to use for practical calculations, which is the reason
it has found wider use in the four-dimensional Dirac
case' in spite of the fact that the canonical basis is better
suited for hadron states; hadron states are (wave packets
formed with) the canonical basis vectors.

%'e have obtained above a representation of the c.m. -
velocity Poincare group H - which contains the spinsP,J „
s=k0, k0+1, k0+2, . . . , etc., and of the vector operator
I &, which transforms between different values s of the
spin ( and between different values j of the intrinsic angu-
lar momentum). Whereas the group H- was notP,J
block diagonal in the spinor basis, it is block diagonal in
the canonical basis [due to (3.12)J. Further, the canonical
basis vectors are also eigenvectors of the other constant of
motion for the quantum relativistic rotator, P„I". For
the Majorana representations this is obvious because then
(I.2.50) holds, but the proof (3.16) also carries through in
the more general case whenever one chooses the canonical
basis vectors at rest to be eigenvectors of I p.

in the space A (Maj). In this way A (Maj) becomes a rep-
resentation space of the Poincare group HP J, which is

O' P~
then characterized by Maj (specifying the spin spectrum)
and in addition by the parameter m. The translation by a
vector a", the length of which is measured in cm, is
described by

iaI'mP
U(a) =e (4.2)

Pp ——PpM, (4.3)

and the operator U(a), representing displacement by a dis-
tance a& in cm, can be written as

iaI'P
U(a) =e

U(a) acts on the basis vectors
i p, JJ j according to

(4.4)

(4.5)

As the spinor basis vector
i j,i j is in general not an

eigenvector of M, its transformation property under

With this we obtain in U(a) and U(A) a representation of
the physical Poincare group for each value of the parame-
ter m. The spectrum of s is given for these representations
by (3.9). The most general Majorana representation would
then be obtained by taking the continuous direct sum over
all m with 0(m ( oo. Instead of choosing one number
m to get a representation of the physical translation group,
we can also choose an operator M with dimension cm ' to
fix the scale for the displacement. The momentum opera-
tor is then defined by
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4=P P"+ —'A, —1, (P IP) —A, a =0 (4.6)

[cf. (I.2.56)] is imposed with a =const [ & —,
' as required

by the principal series representation of SO(4, 1)- ],
then Pp defined by (4.3) is diagonal in the basis in which
PpI" is diagonal because the constraint (4.6) relates the
operator P„P"=M to the operator P&I ~. This basis is
the canonical basis (3.1) and not the spinor basis (2.12).
PpI has the following nontrivial spectrum in Pi (Maj) [cf.
(3.17)]:

translation is very complicated and depends upon the con-
straint relation which defines M in terms of other opera-
tors. For the elementary particle constraint (I.2.36), i.e., if
M is a multiple m of the unit operator,

~ p 1, ] is a general-

ized eigenvcctor of P„.
If our constraint relation

sentation space of H p J, the space A (Maj) should also
P, PV

be labeled by the value of the parameter a: Pi~(Maj). This
value of a will characterize the physical system that is
described by A' (Maj) in the same way as the value of m
characterizes the elementary particle. (In fact, see paper
III, in the elementary limit A, a goes into m .) As a rep-
resentation sPace of Hp q, the sPace A (Maj) reduces

P P,V

into a discrete direct sum of irreducible representations

~ *(Maj) ~ g @P , (m(s), s),
p„,J„„s=koko+1

(4.13)

which follows immediately from (3.12).
The above representation of H p z can be extended to

P PV

include parity P. Due to the hypothesis that I & is a prop-
er vector operator,

sp~t(PPI P)2=(s+ 2i )2 PI pP= —I p, (4.14)

0, 1,2, 3, . . . for integer Maj reps
s= .or

—,', —', , —', , . . . for half-integer Maj reps .
(4.7)

Thus the spectrum of the operator M for the representa-
tion space of the physical Poincare group, obtained in the
space A (Maj) from the constraint relation, is by (4.6)

spect M =m (s)=A. a —I, —', +)i, s(s+1) . (4 g)

and

ia&P m(s)
I 7& & s3s) (4.9)

Pp ~ p, s,s3 ) =P~m (s)
~ p, s,s3 ) (4.10)

Thus for every value of s in A (Maj), which means on
every subspace A ( l,s ) contained in (3.12), we can define a
momentum operator P&' by

P~' ——Ppm(s), (4.11)

and with this operator we can define an irreducible repre-
sentation of the physical Poincare group by

sa&Z(')U"(a) =e " and by U"(A), which is the restriction of
(3.10) to A (l,s). Therewith, we obtain in A (l,s) the ir-
reducible representation (m(s), s) of the physical Poincare
group H p q, and in A (Maj) we obtain the representa-

PV

tion

e(m(s), s)
s=kc, k0+1, . . .

(4.12)

ofHp g

The above construction can be done for any given value
of a (a & ~ ) in the constraint relation, so that, as a repre-

The representative of the physical translation group and
its generator, the momentum operator, act on the canoni-
cal basis vectors in the following way:

ia&MP
U(a) ip, s,si)=e "iP,s,sq)

and the property (3.18), it follows that in each A (m(s), s )
the parity is represented by

(4.15)
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APPENDIX: IRREDUCIBLE MAJORANA
REPRESENTATIONS OF SO(3,2~s, F

PV P

In this appendix we will find all of the irreducible repre-
sentations of SO(3,2)s r which satisfy, in addition to the

PV g

P =g( —1)',
where either il = + 1 (norinal) for the whole space
A (Maj) or il = —1 (abnormal) for the whole space

(Maj).
The most general Majorana representation, previously

obtained as the continuous direct sum over all
m (0&m & ao) of (4.2), is now obtained as a continuous
direct sum of the A (Maj) with a extending over the
values —', & a & oo of the principal series representations of
SO(4, 1)- . The irreducible representation (4.13) canB,J „
then be understood as the subspace in which the constraint
relation (4.6) is fulfilled for a given fixed value of a . We
have called this subspace the physical subspace in paper I;
it describes the QRR characterized by the value a .

We have, therewith, constructed a representation space
for a physical system for which the hadrons with spin-
parity s and mass m(s) are just different substates. We
have used the particular de Sitter constraint relation (4.6)
with the Majorana condition (I.2.50) for the QRR, but it is
clear that the construction'is not restricted to this particu-
lar case. For a different constraint relation one can in an
analogous way construct a representation space which is a
discrete direct sum of irreducible representations of the
Poincare group Hp J, but the mass spectrum will then

P PV

be different depending upon the particular constraint rela-
tion.
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commutation relations, the relation

[I„,I ~I+ [S„,SI' ] = —5„~ . (A 1)

These representations we will call the Majorana represen-
tations, or, following Dirac, the remarkable representa-
tions. They are isomorphic to the representations of
SO(3,2) for which the generators are realized by a degen-
erate pair of boson operators. ' They can be derived
without making use of this realization in terms of creation
and annihilation operators if one makes use of Eq. (A 1)
and reduces them into representations of SO(3, 1)~ . We

PV

will present this derivation here assuming knowledge of
the properties of the representations of SO(3, 1).

Our analysis will rely on the following subgroup reduc-
tion sequence of SO(3,2)z

PV P

SO(3,2)g r &SO(3, l)g D SO(3)~ (A2)

and

C2 =—8
d"I' Sq,Sp ikpc .—— (A4)

The commutation relations (I.2.2), (I.2.39), and (I.2.40)
of SO(3,2)s r may be written in the alternate form

PV P

[SAB SCD ]= —l (gACSBD+gBDSAC gADSBC gBCSAD ) ~

(A5)

where SO(3,1)B is one of the two mathematically

equivalent but physically different Lorentz subgroups of
SO(3,2)B r [the other one is SO(3, 1)z r (ij =1,2, 3)],
and SO(3)s is the rotation group. The linear irreducible

lJ

representations of SO(3, 1)~ are characterized by (kp, c),
where ko is an integer or half-integer and c is a complex
number. [Note that the representations (kp, c ), ( —kp, —c)
are equivalent. ] The values of the Casimir operators of
SO(3, 1)B in an irreducible representation (kp, c) are given

PV

by

(A3)

(Al 1)

for the first Casimir operator of SO(3,1)s, and the value

r r~= ——'
p 2 (A12)

for the Lorentz scalar I &r". It also follows from Eq.
(Al) that the second Casimir operator of SO(3, 1)~ is

zero:

(A13)

Because of Eqs. (A 1 1) and (A13) the only two irreduci-
ble representations of SO(3,1)s that may occur in the ir-

p
reducible representation space A of SO(3,2)B r are

PV' P
(kp=o, c= —,

'
) and (kp= —,',c =0). This can easily be seen

by comparing the values of the Casimir operators given in
Eqs. (Al 1) and (A13) for the special Majorana representa-
tions with their values given in Eqs. (A3) and (A4) for the
general irreducible representations (kp, c). The properties
of the irreducible representation spaces A (kp, c) are well
known; both ~(kp ——O, c= —, ) and A (kp ———,,c=o) are
unitary, infinite-dimensional irreducible representation
spaces and they reduce with respect to SO(3)s into direct

Ej

sums of the irreducible representation spaces W' ' accord-
ing to

~(kp, c)
So(3)s.. =k k +1jfJ 0' 0

(A14)

Since there is no operator among the generators S&,rz
that transforms like a half-integer representation of the ro-
tation group, the value of j cannot be changed by a half-
integer. This means that ~(kp =O, c = —, ) and
A (kp ———,', c =0) cannot both be contained in the same ir-
reducible representation space of SO(3,2)z r (Ref. 17);

Ihowever, A may still contain either A (kp ——O, c= —, ) or
A (kp ———,', c =0) with a multiplicity.

Therewith we have shown that as a consequence of Eq.
(Al) the irreducible representation space A is given ei-
ther by

where A,B, etc. =0, 1,2, 3,5,g55 ——1, and I =S„5 (p =0, 1,
2, 3). An equivalent form of Eq. (Al) is then g ~~,(k, =O,c = —,

'
)

SO(3, 1)s
PV

(A15a)

[SAB,S' ] = —4
Setting C=A in Eq. (A6) gives

[S SAB" I
= —5,

which yields the value

D, =——,S„S' =r„r&+—2S„.S& = —
4

1

(A6)
or by

(A7)
y em~(kp= —,', c =O),

SO(3, 1)s
PV

(A15b)

(AS)

where g labels the multiplicity. Thus the basis system in
A 1S

for the second-order Casimir operator D~ of SO(3,2)~
PV P

At the same time, setting p=p in Eq. (Al) gives

I

j h J 0~ 0+ ~ 0+
with J3= —J —J+1. J . (A16)

[I ~, I "]+IS„„,S"
I
= —4, (A9)

These basis vectors are eigenvectors of S = —,
' S;jS' and

S3——S)2.

I „I"+Sp S" = —2.
Equations (AS) and (Alo) together yield the value

(A 10)
S '

I J, 4] =J(J+»
I J, ,CI,

S3
I 'j, 4] =j 3 I'...4]

(A17a)

(A17b)
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Another consequence of Eq. (Al) is that the matrix ele-
ments of I 0 are determined up to a sign by the matrix ele-
ments of S . To see this we set p=p=0 in Eq. (Al) and
obtain

I'J, O' I-=
~q (

I J, ,k] +
I J, ,k'I )

wi&h the property

2I +2S,S '= —1

Then Eqs. (A18) and (Al 1) together yield

r,'=s '+ -,'

(A18)

(A 19)

r. I,'„a'-] =+n I,', .a-I

Thus in either case we obtain eigenvectors of I p with the
eigenvalues (j+ —, ) or —(j+—,). We label these vectors

by
I
JJ, +,

I

g'
I I with the property

=V+ 2
)'

I JJ, kI .

Th™atrixelements of I o may then be written as

r, I, ,gI =n I,, g'I

(A20)

This equation relates the operator I p to the Casimir
operator S of SO(3)s.. and operating with it on the basis

lJ

vectors
I
JJ,gJ gives

ro' I', 0l =[jv+ 1)+ ,' ] I
', , k—]

r, l', , +, l4 I
]=+V+—,') IJj, , + ill ], (A23)

where
I g I

now labels the (possible) multiplicity, in addi-
tion to the multiplicity expressed by, with which
Pi (ko ——O, c = —, ) or A (ko ———,,c =0) may occur in the
direct sums of Eq. (A15). S„,cannot transform out of a
given A (ko, c ) and, therefore, cannot change the multipli-
city label (+,

I

g'
I ); I 0 also does not change (+,

I g I
) as

can be seen from Eq. (A23). Further, since I; is given in
terms of Sp and &p by

and (A2 1)
r; =&[~0 ro], (A24)

r. l, , g I=n I',, g),
where

n =+(j+—,
'

) or n = —(j+—, ) . (A22)

ro
I J, kl =sgn ~V+ —,

'
)

I
Jj,kj

and (2) if g'&g, then we define vectors

We now have to distinguish two cases: (1) if g'=g, then

there is no operator among S&,I & which changes the
multiplicity label (+,

I g I
). Thus, for the irreducible Ma-

jorana representations the multiplicity label is redundant
and, therefore, ~ contains either A (ko ——O, c = —, ) or
A (ko ———,', c =0) exactly once. But as representations of
SO(3,2)s r we also have to distinguish the two cases:

lMv P

sgn(spectrumI 0) = + 1 and sgn(spectrumI"0) = —1 ~

(A25)
Therewith we conclude that there are four inequivalent

irreducible Majorana representations of SO(3,2)s z
..

PV P

(kp ——0,

(kp ——0,

(kp ——2,
1

(kp ——2,
1

c=O,

c=0,

sgnn = + )

sgnn = —)

sgnn= + )

sgnn = —)

1 3
2 7 2 ~

1 3
2 ~ 2 ~

5
9 ~ ~ ~

5
2 7 ~ ~ ~

values of j
0, 1,2,. . .

0,1,2, . . .

spectrum I p

1 3 5
2 7 2 7 2 ~

1 3 5
2 ~ 2 ~ 2 P '

1,2,3, . . .
—1, —2, —3, . . . ~ (A26)

The basis of A is given by the basis of A (ko ——O, c = —,
'

)

or by the basis of A (ko ———,,c =0):
(A28)

ko ko+ 1 ko+
with

3 J3 Jy J+ 1p ~ ~ ~ p J

and we normalize the basis vectors according to

(A27) Choosing Naimark's phase convention for the matrices of
the operators S&, in this basis, we have the following ma-
trix elements:

s» I JJ, I =J, I', I, (A29a)

(~ +&~»)
I J, I =[(j+j3+1)(J+J3)]'"I,', +~I,

~03 I j3 I [(J J3)(J+J3)1 CJ I J3 I [(J+J3+1)(J—J3+ 1)] C +~ I

(~0& —~~02)
I J, ] =+[V+j3)(J+J3—1)]'"c,I,', +'&] +[(j+j3+ 1)(J+J3+2)]'~ C

(A29b)

(A29c)

(A29d)
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(A30)

~here

0, for j=0, —,
'

Cj —.
l 3 5for J=1, 2,2, ». . . .

2J

(A31)

Using Eqs. (A24), (A29c), and (A30) we obtain, for example,

13 I'j, j =isgnn[((j —j3)(j+j3))' 'C,
I 'j, 'j+((j j3+—1)(j+j3+1)) Cj+i I jj, (A32)

The vectors
I

jj j have the following transformation prop-

erty under an element A of the Lorentz group SO(3,1)s

~ko &)j'j
)

J3—j &J3&J
j'=ko, kp+1, .

iWVS „U(A(co) ) =e (A34)

D ' jj (A)=Ij. ,
I
U(A)

I

j jJ3J3 J3 J3

is the operator which represents A in the space A (ko, c),
and

where

(A33) is the matrix representation of the operator U(A) in the
basis

I jjj.
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