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The model of the quantum relativistic rotator is defined by three correspondences: (1) the
correspondence to a classical relativistic rotator when the quantum description goes over into the
classical description (classical limit), (2) the correspondence to an elementary particle when the struc-
ture is ignored (elementary limit), and (3) the correspondence to a nonrelativistic quantum rotator (a
rigid rotating string) in the nonrelativistic limit. The dynamics is given by a Hamiltonian which is
obtained from a constraint relation that leads to a phenomenologically acceptable mass-spin trajecto-
ry relation. From the equation of motion it follows that the expectation value of the particle posi-
tion spirals with approximately the velocity of light about the direction of the momentum, which is
also the direction in which the center of mass propagates. The radius of this helical motion (i.e., the
"size" of the rotator), as obtained from the phenomenological mass spectrum, is of the order of
10 '3cm.

I. INTRODUCTION

The nonrelativistic rotator is realized in nature by
numerous quantum. physical systems, particularly in the
realms of molecular' and nuclear physics. Because of
this fact, it would also be desirable to see if hadrons can be
described as rotators. It appears, therefore, to be an at-
tractive endeavor to construct a model for a quantum rela-
tivistic rotator.

A. Definition of the
quantum relativistic rotator

The quantum relativistic rotator (QRR) is an entity
which can only be defined by correspondence with already
well-established models. A new theory describing a new
domain of physical reality is formulated in conjunction
with an old familiar theory in such a way that the new
theory, in a certain sense, "corresponds" to the old theory
when the new domain of applicability is restricted to that
of the old description. In this manner, the QRR will be
specified by the use of three distinct correspondences:

(a) elementary limit —+elementary particle,

(b) classical limit~classical relativistic rotator,

(c) nonrelativistic limit

~nonrelativistic quantum rotator .

B. The elementary limit

In the elementary limit, the dynamics of the QRR
should go over into the well-known dynamics of a point-

like elementary particle (described in terms of the irreduci-
ble representations of the Poincare group). The con-
straint P„P" m=O definin—g the mass provides the rela-
tivistic Hamiltonian while further constraints may be im-
posed in order to fix the value of the spin. Since the
QRR possesses various mass and spin states, it is not con-
sidered as representing an elementary physical system and
is best thought of as an extended object.

One can easily visualize the elementary limit by consid-
ering the relativistic rotator as an extended object (in the
same way as the nonrelativistic rotator is regarded as an
extended object) characterized by an elementary length pa-
rameter R of the order of a fermi. Therefore, in the ele-
mentary limit this length parameter, being related to the
radius of a micro-de Sitter space associated with the inter-
nal dynamics, is taken to infinity. Thereby, the observ-
ables that in this limit go into the momenta behave in such
a manner that the representations of the de Sitter group go
over into those of the Poincare group. The Hamiltonian
A for the QRR will, therefore, be given in terms of the
generators of the de Sitter group yielding for A an expres-
sion which is a de Sitter constraint relation. In the limit
R~op, this Pi goes over into the Hamiltonian for the
motion of a relativistic mass point characterized in terms
of the Poincare group.

C. The classical limit

Concerning the classical relativistic rotator, there exist
numerous models and various formalisrns. ' The con-
strained Hamiltonian formalism is probably the most
direct for entering the quantum domain for at least two
reasons.
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(1) A discrete, nontrivial mass spectrum (as it is experi-
mentally observed) cannot be obtained from group-
theoretical structures" alone and must, therefore, be im-
posed as a constraint relation which automatically pro-
vides the relativistic Hamiltonian.

(2) The constrained Hamiltonian formalism' ' clearly
exhibits the correspondence between the classical and the
quantum theories by juxtaposing the Poisson or Dirac
brackets and the cornmutators.

The Hanson-Regge model was probably the first
description to explore these possibilities in a systematic
way. Unfortunately, their classical model used second-
class constraints which led to several difficulties and,
moreover, excluded the Zitterbewegung (i.e., in their model
the velocity of the position of charge is proportional to the
inomentum). However, the Zitterbewegung appears to be
a characteristic feature of a relativistic rotating object
since for the electron its assumption immediately leads to
the proper value for the g factor. '

A class of relativistic rotator models which uses only a
single first-class (primary) constraint (the one needed for
the mass formulas) is given by the "spinorial inodels" of
Refs. 10 and 13. These models also have the appealing
feature of using a Lorentz vector I „which together with
the intrinsic part of the Lorentz generators S&„ form an
SO(3,2) algebra reminiscent of the SO(3,2) of the Dirac y
and o matrices, which can serve as the starting point for
the construction of current and transition operators. Most
importantly, the equations of motion for this class of
models do lead to the Zitterbemegung.

Therefore, we shall construct our quantum-mechanical
relativistic rotator model using the classical spinorial
models as a correspondence. This still leaves a large
choice of possible Hamiltonians. The particular Hamilton
operator that we shall choose (which will be determined by
the correspondences given by the elementary and nonrela-
tivistic limits) leads to equations of motion for the
quantum-mechanical observables which result in a Zitter-
bemegung for their expectation values. Moreover, the con-
straint relation for this particular Hamiltonian leads to an
experimentally acceptable mass spectrum.

Quantum-mechanical versions of constrained Hamil-
tonian mechanics for relativistic rotating objects have been
discussed before ' and those papers ' that are mainly
concerned with the classical models are also motivated by
the desire to set up a quantum theory. Staunton's calcula-
tions are probably closest to a quantum theory; however,
the Hamiltonian he uses originated from the Majorana
equation (with all its problems). Furthermore, he did not
use the interrelationship between the mass formula and
the Hamiltonian. To obtain our quantum-mechanical
equations of motion, we follow the prescription given by
Dirac for the transition from the classical to the quantum
level. ' However, we shall use a different Hamilton
operator which is consistent with the experimental rnass-
spin spectrum for hadrons and also leads to the Zitter
bemegung.

three-dimensional space. It can be described by the posi-
tion of the center of mass (a point x ER&) and a rotating
frame attached to this point (the body-fixed coordinate
system describing the orientation of the extended object).
Since the center of mass (c.m. ) is described by a vector x'
and the rotating frame by a triad [a rotation matrix
R'J($, 8,$) which describes the orientation of the body-
fixed frame with respect to a standard coordinate frame],
the configuration of the top is described by the affine Eu-
clidean frame E = (x',R 'J ) in R i. The characteristic
mechanical paraineters of the system are the mass and the
three moments of inertia. The fact that the description of
the nonrelativistic rotator is given in terms of the parame-
ters of the affine group in Euclidean three-space suggests
the use of an affine frame bundle over R3 as the underly-
ing geometric structure for the nonrelativistic description
of a rotator formulated in terms of certain matter fields.
Such a picture can, moreover, be carried over to a quan-
tized description. From these remarks it is tempting to
define a relativistic rotator as an object characterized in
terms of the parameters of the Poincare group. ' In a
quantized version this would lead to a gauge description
for a rotator dynamics based on the geometry of an under-
lying affine frame bundle (Poincare bundle) over Min-
kowski space-time M4. ' ' However, in this case the clas-
sical description already leads to the difficulties of the
Hanson-Regge model. Since there are some indications
that hadrons are described by the de Sitter rather than the
affine (i.e., Poincare) bundle, ' we will not follow this
route of relativistic generalization. Instead, we shall at-
tempt an extension to relativity using the algebra of ob-
servables for a much more specific type of top.

First, we shall assume that the top possesses a syrnrne-
try axis. Then rotations about this axis are irrelevant and
the position of the top is described by only two angular
variables: (p, e,p=p). In this case it is more convenient
to use the unit vector a (which points in the direction of
the symmetry axis) instead of the matrix R'J.

The quantum-mechanical nonrelativistic symmetric top
then possesses the following observables:

P; (i = 1,2, 3), the momentum generating the

translational motion of the

center of mass:

JJ L,&+S,J, the angular m——omentum, where (1.2a)

L,z Q;PJ. Q&P; is t——he orbital angu—lar momentum

(1.2b)

and

S,J, are the generators of "intrinsic"

rotations of the extended object

about the center of mass .

D. The nonrelativistic limit

The nonrelativistic top is an extended object that can
perform rotational as well as translational motions in

fhe S; obey the commutation relations of SO (3) and we
call the group they generate SO(3)s„. In general, we will

lJ

label a group by the observables that generate it.
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Q;, the nonrelativistic position

operator (representing x') which

is related to the generator of the

proper Galilei transformation 6; by

G; =Q;M, where M is the nonrelativistic mass; (1.3)

P;,JJ-,G;, the central element M and the energy operator
H are the generators of the extended (quantum mechani-
cal) Galilei group whose defining commutation relations
will be given in paper III.

D;, representing the body axis a,
is assumed to be a vector operator

with respect to SO(3)s
SJ

The commutation relation of D; with DJ is not determined
a priori but, since a points toward the center of charge, D;
is something like a dipole operator. Therefore, it is as-
sumed that the D; commute among themselves. ' So the
S;=E,jkSJk and the D; together satisfy the commutation
relations of the three-dimensional Euclidean group
E(3)D, s,

[Sr' rSJ ] i +/jkSk r [Sg &DJ' ]= i EijkDk

[D;»J ]=o ~

This E(3)D s is not related to the Euclidean subgroup of
the physical Galilei group E(3)p z which describes rota-
tions and translations. Instead, E(3)ii z is the spectrum-
generating group for the nonrelativistic rotator and the
symmetric top. ' The energy operator for this rotating
and translating object with mass M and moments of iner-
tiaI& and I~ is given by

I~ —IaS'— (D; D;) '(D;.S;)'

It is seen that the D; do not commute with H and there-
fore describe transitions between different energy levels.
This nonrelativistic symmetrical top is still not the model
that we want to extend into a relativistic quantum theory.
&e further simplify the model to the rotator, which may
be visualized as a dumbbell or as a one-dimensional rigid
rod with Iz ——0 and Iz ——I~ ——pR, where p is the reduced
mass and R is the interparticle extension.

For a rotator, the angular momentum is always perpen-
dicular to the figure axis so that

This restriction to the dumbbell or rigid-rod model
avoids the multiplicity of the eigenvalues of S which is
present for the symmetric top ' [where one is not restrict-
ed to representations of E(3) that fulfill (1.6)]. For our re-
lativistic model, we also want to restrict ourselves to a
simple spin spectrum in order to facilitate the calculations.
Therefore we impose a relation [the Majorana representa-
tion relation, Eq. (2.41) below] which, when the nonrela-
tivistic limit is taken, results in Eq. (1.6). (The relaxation
of this property probably does not lead to any principle
difficulties. )

If one finds it helpful, one can—in analogy to the dia-
tomic molecule —picture the nonrelativistic classical limit
of the dumbbell as a diquark (or as a rigid array of three
of more quarks since Iz ——0 and Iz ——Ic are the relevant
assumptions and not the dumbbell nature). But, such a
picture is really unimportant and certainly gets blurred
when one goes to the relativistic and to the quantum
domains, where the concepts of rigidity and trajectory,
respectively, lose their usual meaning.

Thus, we will construct the model of the quantum rela-
tivistic rotator. %'e do not expect this model to provide a
completely accurate description for a large number of had-
ron data because of its simplicity (i.e., no fine structure, no
multiplicity of spin, no elasticity, etc.). But, the model
will be consistent with the experimentally observed hadron
spectrum and completely solvable theoretically. It pro-
vides us with a simple example of a relativistic quantum
mechanics besides the trivial example given by the irredu-
cible representations of the Poincare group.

II. THE ALGEBRA OF OBSERVABLES OF THE QRR

A. The basic observables

In this section, we shall establish the quanturn-
mechanical observables for the QRR and their defining re-
lations. They will be conjectured along the lines described
in Sec. I. The result of such an inference is not, of course,
uniquely determined. However, the reverse process, which
is the limit from the new to the old model is uniquely
determined. These limiting processes will be considered in
paper III and it will be shown there that our conjectured
model does obey the correspondences given in (1.1).

The Galilei group of the nonrelativistic model will have
to be replaced by the Poincare group in the relativistic
case. Thus, there will be the observables P& and J& with
p, v=0, 1,2, 3 which obey the commutation relations of the
Poincare group, Hp z [gz„——diag(1, —1, —1,—1)]:

[ pvr pa] (gyp va+g vaja gpaJvp gvp pa)

(2.1a)

(2.1b)
D;.S;=0,

and the energy operator becomes

(1.6) [Pp,P„]=0 . (2.1c)

p2 $2
In the relativistic case the three generators Sr~ of intrinsic
rotations, satisfying the SO(3) commutation relations, are
generalized to the generators S&„satisfying the commuta-
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The generators of the physical Lorentz transformations,
J»„, are now written in analogy to Eq. (1.2):

J„„=Q»P„Q„P»—+S»„=M»„+S»„, (2.3a)

where

tion relations of SO(3, 1)s
pv

[S»vrSpo] = —t(g»Pvcr+gvoS»p g—»crSvp gvpS»n)

(2.2)

[M, Q» ]=iP»,
[M ', Q»] = iP—»M

[Qp Q„]=iQpP„

[Qp, P„]= ig—p~,
[Qp P ]= i(gp —PpP—»
[Q»,Q„]=i (Q»P„Q—„P»),

[P~,Q»]=i (g~» P»P—)M

(2.8)

[M»vrS~ ]:Or 2 e»vprrP M:0 (2.3b)

This splitting of the operators in the representation space
of the Poincare group will be qualified in paper II. The
properties of the Q» operators are defined, in correspon-
dence to the nonrelativistic limit, by the following com-
mutation relations:

Not as obvious as the preceding assumptions is the
choice of what to use as the spectrum-generating group in
place of the nonrelativistic E(3)ii s. In particular, it is

not clear what the relativistic generalization of the D;
should be. We now define the following operators as the
relativistic replacement for the D;:

Qp] =i (g pQ» g»pQ

[Q», Pp] = ig„p 1, —

[Q„,Q„]=0 .

(2.4)

(2.5)

(2.6)

These relations also correspond to the Poisson and Dirac
bracket relations for the classical position coordinates in
the classical model which we have chosen as our classical
limit. ' They are, however, in disagreement with the
Dirac bracket relations of the "position" for most other
classical models. Although (2.5) and (2.6) define the Q» as
straightforward generalizations of the nonrelativistic posi-
tion operators, their equations of motion will show that
they have quite unexpected properties.

At this stage (before the constraint relations are im-

posed) the Qp and P» are assumed to commute with S»„.
S»v is not the spin (it is often called intrinsic angular
momentum or the spin part of angular momentum).

We now define the following operator:

p V

8P —SPv (2.9a)

d~ ——I'M =Sp P (2.9b)

By a straightforward calculation using [J»„,S~]
= [S»„,S~] given by Eq. (2.2), one can verify that d» is a
Lorentz vector operator:

[d»,J~]=i(g»pd —g» dp) . (2.10)

However, it is not a vector operator with respect to
SO(3, 1)s

In the nonrelativistic limit, these operators go over into
the D; and, in the classical case, correspond to the vector
from the position of the particle (position of charge) x» to
the c.m. y». In the c.m. frame, the classical analog of d'
(i =1,2, 3) is, therefore, proportional to the vector along
the dumbbell axis ( —a').

Again, as in Eq. (2.7), we will define the dimensionless
quantity

P» P»M ', M =——(P»P")' (2.7a)
[d»,S~]=i (g»pd~ g»~dp) i (S—PP»~ S»—&PP)

This requires that P&P"&0. Below, we shall see that
(2.7a) is a consequence of our constraint relation which
serves as the Hamiltonian.

P& is often called the four-velocity, although it is not
identical to the velocity of the position for the QRR as
will be shown in Sec. III below [see Eq. (3.19)]. It is pro-
portional to the c.m. velocity and, for our particular
model, it will turn out [see Eq. (3.21) below] to be identical
to the c.m. velocity.

In addition to the P&, other dimensionless quantities are
also very convenient to work with. Therefore, we also
define

(2.11)

The commutator of two d's is found to be

[d„,dp] = i (S„p+dpP„— d„Pp) . —
This result suggests the definition of a new operator2:

(2.12)

X»p S»p d»Pp+dpP——»
——S—

»p d„Pp+dpP» . (2.13—)

ol

[d„,dp] = i X~, — (2.14a)

Therefore, the commutation relation (2.12) can be written
as

Q»
——Q„M (+MQ») . (2.7b)

[» P]= ' ~»p= ' 2»P+ P»» P).1 . 1

Immediate consequences of (2.5) are the following rela-
tions, which will be needed below: (2.14b)
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Using the above results and definitions, the following
commutation relations are established:

Y~ is the operator corresponding to the c.m. position of
the classical relativistic rotator.

[d„,X~]=i (g„pd g„—dp) i (—Xp Sp—)P„, (2.15)

[X&~X~]= i—(g&p Pp—Pp)X„~ i (g—„PP—)X„p

+i (gp~ PpP—~)X„p+i (g„p P„Pp—)Xp

B. The SO(4, 1) Hamiltonian

In analogy to Eqs. (2.7) and (2.9b), we define

Yp
——Q„+dp ——Qp+SpvP" . (2.21)

(2.16)

The commutation relation (2.16) was already given in Ref.
15 for the intrinsic spin tensor, which X„will turn out to
represent.

From the definition (2.9) for d& and (2.13) for X&, one
finds

and

d P&=0, d„P~=O,

P"Xp„——0 .

(2.17)

(2.18)

Jpv = YAP@—YvPp +~pv ~

~h~re Y„ is defined as

Yp=Qp+dp .

(2.19)

(2.20)

We note at this point that (2.17) and (2.18) are conse-
quences of the definitions and resulting commutation rela-
tions. They are not constraint relations like those of
Pryce, i.e., additionally imposed conditions to eliminate
certain components of his spin tensor. We shall not, for
instance, impose conditions such as P"S„„=O.Our S„„is
not the spin, but is the "spin part of the angular momen-
tum" best understood in analogy to the o.

& matrices in the
theory of the Dirac equation (the op„are representation
matrices of the S&, in a very particular representation not
used here). X& is the spin tensor and is not identical with
S& . In contrast, Ref. 9 demanded the existence of a pri-
mary constraint which resulted in Xz and S&„becoming
(classically) equal, and which led, therefore, to some
unwelcome consequences.

The correct value for the gyromagnetic ratio of struc-
tureless particles, g, =2, follows from the assumption that
velocity and momentum are not parallel. Therefore, one
has to distinguish between two types of "rest frames": the
ordinary rest frame in which the c.m. is at rest, i.e.,
Pp ——(1,0,0,0), and another in which the particle position
is at rest, i.e., x& ——(1,0,0,0) for the velocity. The latter
will not correspond to inertial frames. As will be seen in
Sec. I of paper III, in particular (5.27), Eq. (2.13) can be
interpreted in two distinct ways: (i) It implies that the an-
gular momentum with respect to the center of mass, i.e.,
the spin X&, is the intrinsic angular momentum S& plus
the orbital angular momentum of the particle position
with respect to the c.m. ( —d is the vector from the c.m.
to the particle position); or (ii) resolved for S„„Eq.(2.13)
implies that the angular momentum with respect to the
particle position, i.e., intrinsic angular momentum, is the
spin plus the orbital angular momentum of the c.m. with
respect to the particle position.

Inserting the definition (2.13) of X„ into Eq. (2.3), one
can write the angular momentum operator as

Qz is obviously a J&„-vector operator, i.e., with J&„ it
obeys the same commutation relations (2.4) as the Qz do.
Furthermore, since Q& and M commute with S&„(M at
least before the constraint relation has been imposed), one
irnrnediately obtains

[Qp, Spv] =0,
[Qp. S„.]=o

(2.23)

A direct calculation, using the commutation relations
(2.8), also shows that the Qp are M„„vector operators.
Therefore, (2.23) must be satisfied even in the more gen-
eral situation where M does not commute with S&„. Also,
since Qp is an M&„vector operator, (2.24) must also be
fulfilled in this more general case.

One can now compute the commutation relation of Y&
with Y . Using (2.5), (2.14), and

[Qp, d„]=i (S„„+2d,P„)M (2.25)

[which follows from the definition (2.9) and the commuta-
tion relations (2.8)], one obtains

[Yp, Y„]=i Xp~
Furthermore, one finds

(2.26)

[X„Y]='(X„g„—X„g„),
and (at least before the constraint is imposed)

(2.27a)

[Xp p]=i ( „p p
—pp, ) . (2.27b)

The commutation relation for two Y„'s can now be de-
duced from (2.26) and (2.8); the result is

[Y„,Y,]=i', . (2.28)

The commutation relation of Y& and Jz„ is obtained by
use of Eqs. (2.10) and (2.4) and is given by

(2.29)

Therefore, Yz is seen to be a Lorentz vector operator. To-
gether with Eqs. (2.28) and (2.1a), this means that the
operators Y&, together with J&, generate a non-Hermitian
representation of the Lie algebra of SO(4, 1)J,Y'„

As mentioned above, Y& ——Y&M ' is the operator for
the center of mass of the relativistic rotator. As will be
shown in Sec. III, the expectation values of these noncom-
muting operators follow a straight line in the direction of

Using (2.7b) and (2.21), the operators Jp can be written as

J„„=Q„P„Q„P—„+S„„=Y„P Y„P—„+X„„.
(2.22)
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the momentum. The operators Y&, which are not Hermi-

tian, derive their meaning from this property. Y& is not
the center operator of Finkelstein, which is
(M 'b„)=b&M ' where b„ is defined by

bp ———, I J~~,P "j—:—, [Q„P, Q„—Pq, P "j+d„. (2.30)

J& and b& also generate a representation of the Lie alge-
bra of SO(4, 1) -, i.e.,J,b

characterized by the eigenvalue A, a of the SO(4, 1)iiP'
Casimir operator

A,
2

A, C=B„B" —J„Q"P (2.35)

PP"—m =0P (2.36)

Our principle postulate is that the constraint relation for
the relativistic mass point (elementary particle)

[b„,b, ]=iJ„„. (2.31)
is replaced, for the relativistic rotator, by the constraint re-
lation

The difference between the representation of SO(4, 1)

and the representation of SO(4, 1) - is that the b& areJ „,Y
Hermitian and, more importantly, are defined in terms of
the generators of a unitary representation of the Poincare
group 30

P,V P

If one adds to the b& any multiple of P„, i.e., (1/k)P„,
where A, is a constant of dimension MeV (or a Poincare-
invariant operator), one will obtain another representation
of SO(4, 1) in terms of the Poincare generators. Therefore,
we define the more general operator

4=B„B"— J„Q" —A, a =0,
2

(2.37)

A,
2

M=/ B„B" J„Q—" k'a—
P 2 P

=P(A, C —A, a ), (2.38)

and that the relativistic Hamiltonian for the quantum re-
lativistic rotator must be [according to the rules suggested
by constrained Hamiltonian mechanics (see Refs. 12 and
13), and in the spirit of Ref. 4]

v+2 I (2.32)

Bq iXB„=Pq+—
I J„„,P——"j,P P Z

V'P '

with the commutation relation

[B„,B„]=i k Jp„.

(2.33)

(2.34)

The difference between B& and B& is that the Bz are the
generators of an SO(4, 1) rotation by an angle, say e,
whereas the B„are the generators of motion along a (4,1)
de Sitter sphere of radius R =1/A, by a distance eR mea-
sured in cm (the inverse of units of A, or of P& ). In the ele-
mentary limit, A, ~O, the de Sitter group contracts to the
Poin care group (the group of Lorentz rotations and
translations by a distance measured in cm) and the B& go
over into the momenta P„. Therefore, the B& play a dual
role: in the nonrelativistic limit they (in dimensionalized
form) go over into the c.m. position and in the elementary
limit they go over into the momenta.

This SO(4, 1)ii J, first introduced in Ref. 31, will playO' PV

the central role for the quantum relativistic rotator. In the
same way as the relativistic mass point is characterized by
the eigenvalue m of the Casimir operator PzP" of the
Poincare group Hp J, the relativistic rotator will be

P PV

The minus sign in b& is insignificant and originates from
conventions which are, perhaps, awkward. (Note that
—d& is the operator from the c.m. to the particle position
and b& was defined accordingly. ) As will be discussed in

paper III in the nonrelativistic limit B will go over into
( —1) times the nonrelativistic mass multiplied by the c.m.
position operator, i.e., only in the nonrelativistic limit is
Bm= Ym

The SO(4, 1) generators, Bz, have another significance
(also discussed in detail in paper III) which is best seen if
one uses the dimensional form

where P is an "unknown velocity" or Lagrange multi-
plier. P will be determined by the choice of the parame-
ter r (proper c.m. time), with respect to which one has
equations of motion, but for the moment we will leave it
arbitrary.

When we introduced the definition (2.7), we remarked
that P„was timelike. Here we see that, indeed, this can be
achieved. Equation (2.33) gives a relation between a repre-
sentation of the SO(4, 1)J ii Lie algebra and a unitary

P,V P
representation of the Poincare group. If the eigenvalue
of the SO(4, 1) Casimir operator is chosen to be one of the
values for the principal series representation, then the
Poincare group representation, related to it by Eq. (2.33),
has P„P"&0. The form of the Hamiltonian [see Eq.
(2.55) below] will make this more obvious.

A justification for the choice of Eq. (2.38) as the Hamil-
tonian for a quantum relativistic rotator is possible only
by correspondence. In paper III we shall show in detail
that in the elementary limit (A,~O, a~ oo ), when the ex-
tended relativistic rotator goes over into the structureless
relativistic mass point, the Hamilton operator (2.38)
reduces to the Hamilton operator for the relativistic mass
point and that in the nonrelativistic limit
(1/c~0, mc~ oo ) (note that when c is not set equal to 1

the eigenvalue of the Casimir operator P&P" of H is
c m —see also paper III) when the relativistic rotator goes
over into the nonrelativistic rotator, the Hamilton opera-
tor (2.38) reduces to the Hamilton operator for the nonre-
lativistic rotator. In the correspondence to classical phys-
ics, the Hamilton operator (2.38) corresponds to a classical
Hamiltonian which is a special case of the general classi-
cal model of Ref. 13.

C. The infinite I 's

%'e have already mentioned that the spin is not to be
constrained to a fixed value. This means that we will need
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an operator which transforms between different irreduci-
ble representations of the Poincare group thus describing
an observable that performs the transitions between dif-
ferent rotator levels. Such a transition operator (the rem-
nant of the current operator for our simple model) must in
the nonrelativistic correspondence be related to the time
derivative of the dipole operator dz. But, since it is sup-
posed to transform between different irreducible represen-
tations of the Poincare group, H, it cannot be constructed
in terms of the algebra of H. In analogy to the Dirac y
matrices, which fulfill an analogous purpose for the
theory of the electron, we choose for this operator a Her-
mitian vector operator I &, which together with the Sz
(which are generalizations of the o.p, ) form the simplest
unitary (infinite-dimensional) representation of SO(3,2).
These I

& and S&„are defined by the commutation rela-
tions (2.2),

1 v per v perm„= —,e„„PS = —,e„P X

and it obeys the supplementary relation

P w"=0.P

Therefore,

(2.47)

= —,Sp S" —dpd",
(2.48)

or

(2.49)

With the Majorana representation relation (2.41), Eqs.
(2.49), and (2.47) can be written in the forms

This four-vector can be rewritten, using ep p
PVMp =0

and e„„p P "(dPP d—PP) =0, as

along with the additional representation relation

(2.40)
and

W=ppp r r.——,
'

p cr 4 (2.50)

(2.51)
p n]+{ pp ~ ]= gpo (2.41)

respectively. So, in the Majorana representation one finds
The relation (2.41) specifies, of the many irreducible repre-
sentations of the commutation relations (2.2), (2.39), and
(2.40) integrating to SO(3,2)i- z, the four Majorana rep-

P PV

resentations whose main feature is that they contain only
one irreducible representation of the SO(3, 1)s subgroup.

PV

[Equation (2.41) is the analog of the relation

{I p,
I'

I
= —,gp for the four-dimensional Dirac case.)

Some of the many consequences of the representation-
fixing relation (2.41) are

co"—:—'WP S I =02 VP CT (2.42)

or, equivalently,

(2.43)

The supplementary condition

(2.44)

which in the classical analog ensures that the electric mo-
ment in the velocity rest frame is zero, is also a conse-
quence of the representation relation (2.41). Equation
(2.44) follows immediately from

—'S S~"=——'
2 PV 4 (2.45)

which in turn follows from (2.41).
The Pauli-Lubanski vector and the second Casimir

operator of H can be recast in terms of the Sz or X&„
and, for the special case of the Majorana representation,
also in terms of the I &. First, for the general case one can
use instead of the spin tensor X@„obeying the three sup-
plementary conditions (2.18) the vector operator

dpd"= ——,
' —W= ——, (PPI p)— (2.52)

Using the definitions (2.9a) and (2.9b) of d&, and Eq.
(2.43), one can show by a straightforward calculation that

(2.53)

This relation will be important for the interpretation of
the motion of the relativistic rotator.

As a consequence of the commutation relation (2.39),
one immediately obtains the commutation relation of d„
with I

[d„,I ]=i(I„P —g„(P I )) . (2.54)

A =P(P„P~+ —,'A, —I, 8'—A, a ) . (2.55)

The form of A in the Majorana case is then obtained by
inserting (2.50) into (2.55) yielding

By definition, I z as well as S&„commute with the opera-
tors Pp, M&„, and Q& (at least before the constraint rela-
tion has been imposed). Therefore, as we shall discuss in
paper II, the representation space will be the direct prod-
uct of the representation space of H p M and of
SO(3,2}s

To conclude this section, we shall establish a simpler
form of the Hamiltonian (2.38) which is valid for the case
of the Majorana representation. This will be carried out in
two steps. First, we insert (2.33} into (2.38) and use (2.46)
and (2.48). Since this does not make use of the I ~'s and
the Majorana representation, the resulting expression is
generally valid. A straightforward, but lengthy, calcula-
tion gives

1 v per++ ——
2 5+vp~P J (2.46) A =P(P„P~+ —,A, —A, (PpI P) —A, a ) . (2.56)
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It is this form of the Hamiltonian which we shall use in
Sec. III in deriving the equations of motion.

The constraint relation @=0taken between the Wigner
(canonical) basis vectors

~
pss3 ) (which, as we shall see in

paper II, will form a basis of the space of physical states
with s having either the spectrum s = —,, —,', —,', . . . or
s =0, 1,2, . . . ) leads to the mass formula

m =A, (a ——, )+A, s(s+1) . (2.57)

III. RELATIVISTIC QUANTUM DYNAMICS
OF THE QRR

A =/@=/(P„P4+ —,A, —A, (Ppr~) —A, a ) . (3.1)

A simpler and more obvious Hamiltonian for the con-
straint relation would be '

In this section, we derive the equations of motion for
the observables of the QRR which have been introduced in
Sec. II. The expectation values of the quantum observ-
ables will turn out to be in a well-defined correspondence
with the classical observables of the classical relativistic
rotator described in Ref. 6. Particularly, the expectation
value of the particle position operator Q& will be found to
perform a Zitterbewegung about the expectation value of
the center-of-mass position operator Y„.

In order to determine the time development [here time
refers to proper time or any other Lorentz-invariant pa-
rameter ~ labeling events along a world line for the rota-
tor; its physical meaning will be fixed later on by using the
freedom in choosing the unknown velocity, P, in the Ham-
iltonian (2.56)] we will use the exact analog of classical
constrained Hamiltonian mechanics ' ' ' with the Pois-
son brackets replaced by i [, ]. —However, for the Ham-
iltonian in our specific model, we shall use the SO(4, 1)
Hamiltonian, i.e., Eqs. (2.38) or (2.56).

Therefore, in the spirit of Ref. 4 we calculate the time
derivatives of the observables 0 by using the defining re-
lations of Sec. II for the observables prior to imposing the
constraint @=0[Eq. (2.37)]:

d@ . 1=W= —.[6',A ] .
d'T l

The equalities of the defining relations and those of the
time derivatives correspond, therefore, to the "weak"
equalities of classical constrained Hamiltonian mechanics.
Only after the derivatives have been computed is the con-
straint imposed by demanding that @=0 be fulfilled.
This constraint relation constitutes an additional defining
relation for the elements of the algebra of observables
which changes their properties. The new properties can
no longer be satisfied in the whole space but only in the
"physical subspace" which is selected out by the relation
+=0. In this subspace, the original relations are retained
but in addition the operators have now acquired new prop-
erties imposed upon them by the application of the con-
straint relation.

The canonical Hamiltonian is zero for the relativistic
rotator so that the full Dirac Hamiltonian is given by the
constraint relation:

(3.2)

Here, the commutation relation (2.39) has been used.
Furthermore, one finds

(3.3)

where the first equality in (3.3) follows since

Pp ——0.
Further, we have

(3 4)

(3.5)

Using the commutation relation (2.40) and the definition
(2.9) we obtain

(3.6)

From the definition (2.13), and from (3.2), (3.3), and (3.4)
above, it can immediately be seen that

Xp„——0, (3.7)

i.e., the spin tensor is a constant of the motion.
The second derivative of d& is now calculated using

Eqs. (3.5) and (3.6):

dp ———(PA, ) IP~rp, IP I ~,dpj] .

This can also be written, using (2.52), as

(3.8)

0 ~

d~ ———($X ) 2(( ——, dpdt')d~+(Ppl t'—)d„(P I )) .

(3.9)

These equations can now be compared with the equa-
tions for the corresponding classical observables appearing
in Ref. 13. The quantum dynamical equations (2.2), (2.3),
and (2.6) are brought into agreement with the classical
equations of motion (8.3.1), (8.3.3), and (7.3.3) of Ref. 13,
respectively, applying the following correspondence:

@'=v(P&I t' a—) .

However, this constraint is unattainable from a Lagrang-
ian formalism for the corresponding classical relativistic
rotator models of Ref. 10. More importantly, this simpler
expression does not lead to an experimentally correct
mass-spin relationship and can, at best, be used for a sin-
gle mass-spin level to which, in fact, Ref. 15 is restricted.
Moreover, the justification for (3.1) which follows from
the correspondence of the elementary and nonrelativistic
limits, cannot be given for the simpler constraint @'.

First, we shall compute the time derivatives of the "in-
trinsic observables": Sz„, I „, and d„. For these observ-
ables, only the third term, pA, (P—&rt'), in the Hamil-
tonian is relevant since the first term and, obviously, the
second and fourth terms commute with them. The calcu-
lation is straightforward and the result is

1S: [Sp~yPc ]
l
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classical model ~ quantum model .
—y~2—' I~&r, .)M

(3.10)

Here u and a' are quantities defined in Ref. 13 and the
center dot on the left-hand side represents an expression in
terms of the classical observables whereas the center dot
on the right-hand side represents the corresponding ex-
pression in terms of the quantum observables. In order to
make this comparison, note the change in notation be-
tween Ref. 13 and the present conventions:

P =Pa

~~ CM
2 2—gpp~+gpp, Vp~I p, —P ~M

—d„~:-e„, P.V —P-r.
(3.11)

Equation (3.8) is the operator equation for a simple har-
monic motion. To see this explicitly and to calculate the
frequency of rotation for the dipole operator d&, we take
the expectation value of (3.8) between physical states. For
the simple case of the Majorana representation we will
show, in paper II, that the canonical basis vectors

~ pss3)
are the basis vectors for the space of physical states, the
only difference being that now, the spin s is not a fixed
number. For the (two) half-integer Majorana representa-
tions, the values of s are s = —,', —,', —,, . . . , and for the
(two) integer Majorana representations, the values of s are
s =0, 1,2, . . .. Furthermore, for the integer as well as the
half-integer Majorana representations one has

P„I "
~
pss, ) = +e(s + —,

'
)

~

pss 3 ), (3.12)

(
~ d„~ ) = —(PA, ) 4(s+ —,

' )'(
~ d„~ ) . (3.13)

One thus sees that the expectation value of the dipole
operator performs rotations with an angular frequency
given by

co=+PA. 2(s + —,
'

) . (3.14)

This can be completely specified only after we have fixed
the meaning of P (or of the world-line parameter r).

To reproduce the Zitterbewegurtg for Q&, we must show

that Y-Pp. That this is indeed the case can easily be seen
from Eq. (2.19). The time derivative of this equation gives

A A
Jpv = YpPv —YvPp +Xpv

where the Poincare-invariant quantity e=sgnpo is usually
chosen to be + 1. For the expectation values of (3.8) using
these basis vectors, one obtains the result

FIG. 1. Classical description of the motion for states at rest.
In the Majorana representation, both d and I ' are constants
of the motion for states at rest (do ——0 and I"0——constant). Re-
stricting Eq. (2.53) to spatial indices, we have
d && I =S(PoI ) = X (POI ) (where we have used the fact that
for states at rest, S=X). From Eqs. (3.5) and (3.7) it follows
that d )& I is a constant of the motion and therefore,

~

d X I'
~

=
~

d
~ ~

I
(
sin8=constant. Choosing the spatial com-

ponents such that d3 ——0 and using Eq. (3.13) we find that d„
and, therefore, I rotate around the world line in the 1 —2 plane
with an angular frequency co keeping the angle 0 between them a
constant. Also depicted in the figure is the spin angular momen-
turn three-vector X where, for convenience, we have chosen its
third spatial component to point in the 0th direction.

YpPv —YvPp+ Xpv . (3.15)

From the form (2.38) of A it immediately follows that

Jpv ——0,
and also that

(3.16)

Bp ——0, (3.17)

because A, C is the SO(4, 1)s q Casimir operator. Equa-
pv

tions (3.16) and (3.7) then show that Y„must be parallel to

P„(and that Y„ is parallel to P„). This, then, establishes

the Zitterbeuegung: As ~ proceeds, the expectation value
(

~ Y&
~

) of the center-of-mass operator follows a straight
world line in a direction parallel to (

~
Pz ~

), and the posi-
(

~ Q„~ ) = (
~ Y„~ ) —(

~ d„~ ) performs, according
to Eq. (3.13), a helical motion about this world line with a
rotational frequency given by Eq. (3.14). See Fig. 1 for a
complete classical description of the motion.

In the elementary limit, A, ~O (see paper III) d and d go
to zero. That is, a relativistic mass point does not perform
Zi tterbemegung.
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Now, we will explicitly compute the velocity of the
center of mass. First we calculate Qz —— i—[Q&,A ]. Us-
ing (2.5), (2.8), and the fact that at this stage

and

meson

-
&/2

(3.27)

[r.,Q„]=0,
we obtain the result

(3.18) 4(s+-,' )

Q„= 2$P„—+PA, IP.r, r„—(P.r)P„IM-' . (3.19)

From Eq. (3.3)

d„=d„m '=y-X'I P r, r„+—(p r)p„ Im

(3.20)

Adding Eqs. (3.19) and (3.20) yields

Therewith, we see from Eqs. (3.19), (3.23a), and (3.13)
that the particle position performs a helical motion with a
frequency co given by (3.24) around the center of mass,
which in turn moves on a straight world line parallel to
Pp.

We can also obtain an idea of the "size"' of the QRR,
i.e., the radius of the spiral given by +d . From (2.52),
taken between rest states i@ =Oss3 ), it follows that

Yq —— 2$Pq—. (3.21)

Yp Y"=1 .

This is the desired result: the velocity of the center of
mass is parallel and proportional to the momentum P&,
i.e., although the Y& do not commute with each other, the
operators Y„do.

% c can now fix thc parameter '7 by demanding that

d—:(sisp =0
i

—d&d"
~

Oss3 )

= (s,s 0
i

d '
i Ossa )

has the spectrum

d =[—,'+s(s+1)]

With the mass formula (2.57), one obtains

(3.28)

(3.29)

We can regard this condition as a way of defining proper
time in the quantum theory even though, strictly speaking,
there is no well-defined world line for the center of mass
in quantum theory [cf. also (2.26)]. From this relation, we
obtain

1

a —32

1 2 1(s+ —, ) + —,

1/2

(3.30)

(3.23)

for which, according to (3.21), the ( —) sign is the correct
choice:

Y~ Pp/I =P~ . —— (3.23a)

Thus, the unknown velocity is (up to the factor ——,
'

)

given by the mass operator, which is a constant of the
motion. That it also does not depend upon other con-
stants of the motion such as s is not an obvious result.

Inserting (3.23) into (3.14) gives the expression for the
angular frequency of the spiral motion

1/2

co= (s+ —, ) =A, (3.24)
1

CX
10

1+
(s+ —,

'
)

baryon

2
2(s+ —, )

(3.26)

where for the second quality, we have used the mass for-
mula (2.57). For large values of spin s, Eq. (3.24) implies
that

(3.25)

As will be discussed briefly in paper II, the empirical
value of a for mesons is a „,„=—,', and for baryons (pro-
ton) ab,~,„=—,. Therefore,

1/2

which is seen to be of the order of I/A, and approaches
1/A, for large values of s. I/A, =R was the radius of the de
Sitter space in which SO(4, 1)~ z acts as the group of

p7 pQ

motion. Empirically, the value of A, can be obtained by
comparing the mass formula with the experimental data
and is found to be (see paper III)

A, =0.53 GCV;

therefore

1/A, =R =0.37&(10 ' cm . (3.31)

Thus, it is the Zitterbemegung which causes the hadronic
size and modifies the affine (Poincare) description for the
extensionless top into that of the de Sitter description'
which is a de Sitter space of radius E. =0.37 fermi, i.e., an
extended object.

Too great an emphasis should not be put on the specific
forms of (3.24) and (3.30) since they came from our partic-
ular model assumptions which can only represent a rough
approximation to reality. In particular, the choice of the
Majorana representation and the use of a constant value
for A, is probably too crude of an approximation and fine-
structure effects will probably require the replacement of
A, by an operator that is a function of the constants of
motion. In this case the form of Eqs. (3.24), (3.30), and
(2.57) will also undergo minor changes. However, our
general conclusion that the size of a hadron (being of the
order of 10 ' cm) is the radius of the helical motion that
the particle position executes with a speed co.d (of the or-
der of the velocity of light) around the center of mass will
probably remain unaffected by these fine-structure effects.
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From Eqs. (3.14), (3.29), and (2.57) one can obtain the
velocity with which the expectation value of the particle
position circles in the center-of-mass frame:

A,
2

co d= (s+ —, )[—,+(s+ —, ) ]'
m

(s + —,
'

)[(s + —,
' )'+ —,

' ]'~'

[a ——", +(s + —,
'

) ]

For large values of s [when (2.57) is probably no longer a
good approximation] co d goes to 1 (the velocity of light),
and for a ) '4', co.d is always less than 1. For baryons,
the phenomenological value of n is approximately '4' or
larger. Thus the velocity in the c.m. frame is, for all
spins, a fraction of the velocity of light and approaches it
for s~ oo ~

For mesons, the phenomenological value for a = 4 or
—", , for which the value of cu-d ~ 1. If one tries to trace
the origin of this disturbing result, one finds that it is a
direct consequence of the value ——,

' in Eq. (2.52) which in
turn follows from (2.45), i.e., it directly follows from our
choice of the Majorana representation. Equation (2.52) is
not valid for the classical model where d = W/m . For
the general case, (2.52) must be replaced by (2.48) where
—,S„„S is not diagonal in the Wigner basis (3.12). Then
d, defined by Eq. (3.29), is no longer an eigenvalue as it is
in Eq. (3.28) and the above-mentioned difficulty can prob-
ably be avoided for any phenomenologically reasonable
value of u .

In the elementary limit A, ~O and a~ ao (see paper III),
we see from Eq. (3.19) that

There is no Zitterbemegung for the relativistic mass point.
In the first part of this paper we defined the observables

by their algebraic relations and calculated immediate
consequences thereof. In order to obtain numbers we al-
ready made use of some of the properties of the represen-
tations of the observables. In a following paper we will
derive these representations and, although it will not con-
tain many intuitively appealing results, it will be the core
of this paper since it demonstrates that such an algebra
really does exist as an algebra of operators in a space
which will turn out to be a precisely specified (by the Ma-
jorana representation relation) direct sum of irreducible
representation spaces of the Poincare group. It is this re-
sult that establishes the already anticipated fact that had-
rons are different mass-spin levels of the QRR.
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