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Second-order contributions to relativistic time delay in the parametrized
past-Newtonian for malism
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Using a parametrized expansion of the solar metric to second order in the Newtonian potential, we
calculate the relativistic delay in the round-trip travel time of a radar signal reflected from a nearby
planet. We find that one second-order contribution to the delay is on the order of ten nanoseconds,
which is comparable to the uncertainties in present-day experiments involving the Viking spacecraft.

I. INTRODUCTION

go =o (1.2)

In an earlier series of articles' we discussed light prop-
agation in the solar system within the context of the
parametrized past-Newtonian (PPN) formalism and
presented a useful extension of the PPN form of the solar
metric. We demonstrated that knowledge of light propa-
gation to any given order requires knowledge of every
component of the metric to that same order. ' In contrast,
to understand particle motion within the solar system to
any given order requires that different components of the
solar metric be known to different orders. For example,
the PPN metric can be used to study particle motion to
second order in GMic R:—e =2X10 (i.e., to order e ),
where M and R are the mass and radius of the Sun, even
though some components of the PPN metric are known
only to first order (i.e., to order e ).

We extended the PPN metric until each component was
given in a pararnetrized form to order e to form the
parametrized post-linear (PPL) metric. With the PPL
metric we were able to calculate second-order contribu-
tions to gravitational light deflection. Here, we will use
the PPL metric to compute the second-order contributions
to relativistic time delay.

To first order (i.e., order e ) the solar metric is linear in
the Newtonian potential (and thus sometimes referred to
as the linearized metric) and is given by
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Here xz, r~ and xT, rT are the values of the coordinates x
and r when evaluated at the positions of the reflector and
transmitter, respectively. [The value of b,r was first calcu-
lated by Shapiro. His result appears in a different form
than that of Eq. (1.4), however, because he used a different
set of coordinates. ]

There are higher-order contributions to the solar metric
well known from the PPN form of the metric which are
often formally treated as though they are of order e .
However, a close examination of these contributions re-
veals that for any realistic model of the Sun such terms
are never as large as they could be (e ) and, in fact, are
never larger than e .' Thus, the first post-linear contribu-
tions to light propagation are of order e and we must, un-

fortunately, systematically expand each component of the
metric to that order. We have previously presented just
such an expansion. After choosing a specific gauge to
work in and assuming the solar gravitational field to be
stationary, the resulting parametrized post-linear (PPL)
metric has the following components in the PPN coordi-
nate frame:
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where r is related to the usual PPN coordinates x, y, z by
r =(x +y +z )'r, and where y is a constant equal to
one in general relativity. (Note that from this point on we
will be working in geometrized units. ) The corresponding
round-trip travel time of a radar signal reflected from a
nearby planet is (neglecting the orbital and rotational
motions of the Earth) given to order e by

r

M xg +Tg4r =2(xtt —xr ) 1 — +2(1+y)M ln
PT XT+TT

(1.4)

(1.8)

Here J2 is the dimensionless quadrupole moment parame-

ter of the Sun, J is its total angular momentum, and 8 is
the angle between the symmetry axis of the Sun and the
field point r. Assuming the Sun to be symmetric about its

angular momentum vector J, we use

cos8= J r

y, P, b, ~, b,2, and A are arbitrary parameters each of which
is equal to one in general relativity. A is a quantity with
units of centimeters given by
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1 r/1—:—Y& f po(r)II(r)d x+Yq f po(r)U(r)d x+Y3 f P(r)d3x+Y4 f po(r) — f po(r')d x' d x2 r

where Yi, Y2, Y3, and Y4 are arbitrary parameters each of
which vanishes in general relativity and where po, II, and
I' are the baryon mass density of the Sun, the specific
internal energy density of the Sun, and the pressure within
the Sun, respectively.

We will now use this PPL metric to calculate the rela-
tivistic time delay to order e . %'e will calculate only the
relativistic effect of the solar gravitational field. Thus, we
will consider only an observer at rest with respect to the
Sun. The motions of the Earth are, in fact, not negligible, '

however, they are quite difficult to deal with in full gen-
erality by analytic means. Furthermore, we will neglect
contributions due to the solar corona, the Earth's gravita-
tional field, etc. These effects can be and have been dealt
with; we will not discuss them here.

dx& dx
(2.6)

where I, is an affine parametrization of the trajectory. Be-
cause the metric is time independent, we immediately have

dx'
dA,

. =constant=—E . (2.7)

In addition, the fact that the trajectory is null gives us

I

path. Thus, the return beam would not satisfy Eq. (2.5),
but would satisfy a time-dependent boundary condition. ]

Now, to find the equation of motion of the photon we
begin with the dynamical form of the Lagrangian,

II. THE BEAM PATH
O=g I aPP (2.8)

ds =0. (2.1)

When terms smaller than e are neglected this can im-
mediately be rewritten in the form

2
dt dt I 2 I0=goo +2go +g +g„y' +g z'
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Because the radar signal will travel along a null curve of
the space-time, the beam path will satisfy

By imposing these conditions [(2.7) and (2.8)], the equa-
tion of motion takes the form

1 gxx g 00
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to order e . When we substitute the linearized form of the
metric [Eqs. (1.1) and (1.3)], we obtain (to order e )

= —(1+y)M— (2.10)
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The solution of this equation to order e which satisfies
the appropriate boundary conditions is

The calculation of the round-trip travel time involves little
more than solving for dt/dx and integrating. However,
because of the last two terms we must first find the equa-
tions of motion y(x) and z(x) of a photon in the radar
beam. Fortunately, we need y (x) and z(x) only to order e
to find dt/dx to order e . Thus, we may calculate the
photon trajectory using the linearized metric [expressions
(1.1)—(1.3)].

To simplify the calculations let us first orient the PPN
coordinate axes so that both the transmitter and reflector
lie in the z =0 surface. Because the linearized metric is
spherically symmetric, the photon trajectory will satisfy
z =0. Next, further rotate the coordinate axes so that we
have

%"e thus have

y'=(1+ y)
y (x 2+y 2)1/2 ( 2+ 2) 1/2

' 1/2

+(1+y)™,f'(x)
yT

(2.13)

(2.12)
for use in Eq. (2.2).

Before we leave the subject of the trajectory let us point
out that use of Eq. (2.11) in r =(x +y )'/ gives

r =(x +yT )'/ 1 +2(1+@) f(x)
( 2+ 2) 1/2

yT =— (x =xT)=0,
dx

(2.5) where

and such that the transmitter has coordinates xT,yT with
XT &0, yT )0 and the reflector has coordinates x~,y& with
xR )0. [Note that this orientation of the axes is quite spe-
cial. If the observer moves at all during the time that the
beam is in transit to and from the reflector, then the re-
turn path of the beam will not coincide with the original

f( )—:
, ( +y )' —( +y')'

( 2+ 2) 1/2

XT
2 2 1/2(X. +» )

(2.14)
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It is not difficult to prove that f (x) is a negative, mono-
tonically decreasing function of x for x & xT, which
asymptotically approaches a finite value as x~oo. In
fact, f(x) satisfies

R 1—
yR

XR 1—R

yT

XR
+O(e ) .

These facts will also be used later.

(2.20)

i
f(x)

i
&2 (2.15)

III. PROPER- TIME CALCULATION

M 4
2

y?

we have

for all x &XT. Because of this finite upper bound on

i f(x) i, and because

2(1+r), , &e (2.16)
(x +yT )'

2

(1+r)' (2.17)

Now we wish to calculate ~TR, the lapse of proper time
(as measured by the stationary observer) between transmis-
sion and reflection of the radar signal. First, we will cal-
culate t?R, the lapse of coordinate time between transmis-
sion and reflection. To do this we solve Eq. (2.2) for
dt/dx. After substituting the PPL form of the metric
[Eqs. (1.5)—(1.7)], using Eq. (2.19) and expanding, the re-
sult is given to order e by

r=(x +yT ) 1+(1+r) f(x)
(x 2+y 2)1/2

+0 (e') (2.18)

= 1+(1+r)U+[—,'(1+r)(3—r) —P+ —,A]
r

7~i+~2 J.yT+—+r 4 r3 2
+

where U is the Newtonian potential to order e,

(3.1)

This relation will be very useful in the calculations to
come. As further consequences of Eq. (2.11) we point out
that

M R2 3cos2g
r r2 2

(3.2)

+O(e ),y yz

r r

and that

(2.19)
Now we use form (1.8} of cos8, substitute expressions
(2.12) for y' and (3.2) for U into Eq. (3.1} and use Eqs.
(2.18) and (2.19) to rewrite every function of r as a func-
tion of x. The result is, to order e,
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Next, we integrate and simplify, using Eqs. (2.18)—(2.20), to obtain, to order e,
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—d7 =g~pdx dx

which gives (to order e )

(3.5)

The proper time ~ of the observer is related to the coor-
dinate time t by

this to order e as

dT
1 —2U+2P — 1+2y v

M M
dt 2 r

1/2

(3.8)

d~= i j 1/2
dt EJ (3.6)

Note that if the Earth were in the Sun's equatorial plane
(8=m/2) and in a circular orbit with

where the metric is to be evaluated along the world line of
the observer and where r =constant,

(3.9)

(3.10)
dx
dt

(3.7)

Using the PPL metric [Eqs. (1.5) and (1.7)], we can rewrite

the right-hand side of Eq. (3.8) would simply be a con-
stant. However, the radial motion of the Earth is non-
negligible as a simple calculation makes clear. Since

radius of Earth at aphelion —radius of Earth at perihelion
1

=10 c,
—,year

we have

time delay due to Earth's radial motion
10 6 z—10 =e

total round-trip travel time

(3.11)

(3.12)

It is because we cannot neglect the complexities of the Earth s orbit that we have restricted our consideration to an ob-
server at rest with respect to the Sun. For such an observer we simply have, from Eq. (3.6),

rTR =& gx l
TrT~—

Thus, to order e, &TR is given by
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where we have dropped one term proportional to

M R XR —XT M 4
zR 3 « zRR rr3

(3.15)

Now consider a radar beam that just grazes the limb of
the Sun:

(3.18)

The total round-trip travel time h~ is just twice the mag-
nitude of &TR.

Now let us estimate the size of each term in A~. For
simplicity, assume the transmitter and reflector lie in the
equatorial plane of the Sun. Then,

Then we have

1
xR -rR 1 ——

2 r (3.19)

J =+J,
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Since reflectors have historically varied from Mercury,
with [in astronomical units (AU)]

r (1.7 AU,

we will use

(3.22)

r &0.3 AU,

to Mars, with

(3.21) r~-rT=—r =1 AU.

Then b~ becomes

(3.23)

b~ r M= 4——4 +4(1+y) —+2(2p —1) —+2(1+y) ln —2(1+ y) —ln
2M r M~ R M 4r M R 4r

R R R r R r

+2—ln +4[2(1+y)—p+ —,A] arctan —+(7b,~+62) +2(1+y)J2A 4r M r J M
R R' R

(3.24)

Table I lists the magnitude of each term in expression
(3.24) in general relativity.

It is worthwhile to point out at this time that since we
have calculated a proper-time interval, the result is in-
dependent of the gauge choice we made to put the metric
in the form of expressions (1.5)—(1.7). Of course, in a dif-
ferent gauge the functional form of 6~ would look dif-
ferent, but its magnitude would remain the same.

IV. CONCLUSIONS

Note that the largest of the second-order contributions
to b~ is on the order of ten nanoseconds. This is already
as large as the uncertainties in measurements of h~ using
the Viking spacecraft, according to a recent report by
Shapiro. Any improvements in the measurement of time

TABLE I. To estimate the size of contributions to the time of
propagation, we assume source and reflector at r=1 AU on op-
posite sides of the Sun, and a grazing photon orbit past the Sun.
Then the time-delay expression simplifies as in Eq. (3.24). This
table lists the individual terms appearing in (3.24), and estimates
their size in the case of general relativity.

Absolute value of term
in expression (3.24)
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M R
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2R' r
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2—ln

4[2(1+y) —p+ —A] arctan—3 M r
R2 R

(7d, +6, )
J

R
2(1+y)J,—M

R

Value in general relativity
of corresponding term in Az

(seconds)

2.0X10-'

3.6X10-'

9.7X10-"

2-4X 10

2.4X 10

2.5X 10

& 3.0X10—"

&4.9X10-"'

'Here the values listed are for Dicke's model of the Sun. The
values would be smaller for a uniformly rotating Sun.

delays (see Shapiro's article for a discussion of the possi-
bilities for improvements) will make it necessary to con-
sider second-order contributions in such experiments.

Shapiro incorrectly states that second-order contribu-
tions to the time delay are only as large as some ten pi-
coseconds. This is clearly contradicted by our calcula-
tions. The largest second-order contribution is on the or-
der of 10 " times the total round-trip travel time:
10 "&(10 sec-10 sec. This term accounts for the
fact that the gravitational deflection of light will increase
the length of the trajectory by forcing the light beam to
follow a curved path. The total one-way path length is

R Rf (dx +dy )' = f (1+y' )' dx
T T

= f (1+—,'y')dx . (4.1)

Thus, we see that the transit time x~ —xT is increased by
an amount

(xR —xT) Xaverage value of—,y' -(xz —xT) X 10

The second-order terms which arise due to the variable
coordinate speed of the light signal are smaller than this
length increase by factors of nearly 100 or more.

Finally, let us point out that there is one term, that pro-
portional to J„which varies in sign on opposite sides of
the Sun. This is apparently the only contribution to the
round-trip time delay with this feature. This unique vari-
ation may make this term accessible to measurement soon-
er than others. Even an upper limit on the magnitude
would be useful in placing an upper limit on the size of
the total solar angular momentum.

As mentioned earlier, the results presented here would
take a different form if another coordinate system were
used. Thus, it is clearly undesirable to leave our results in
a coordinate-dependent form. Expressing the delay in
terms of measurable quantities would be far more useful,
as was pointed out by Ross and Schiff soon after the origi-
nal calculations of the first-order delay. However, at-
tempts to eliminate all reference to coordinate quantities
in the expression for the delay would be very complicated
analytically because of the complicated nature of the orbit
of the Earth. It would not be difficult to express the delay
in terms of observable quantities if the Earth were in a cir-
cular orbit and if the reflector happened to lie in the plane
of that orbit. However, neither of these simplifying as-
sumptions can be applied to any real experiment. [Equa-
tion {3.12) makes it clear that we cannot neglect the radial
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motion of the Earth. Furthermore, angular inclinations
between the orbits of the transmitter and reflector on the
order of a degree, as is typical in the solar system, are not
negligible even at first order. ] Because of the motion of
the transmitter, we would also be required to study the
propagation of the radar signal along two independent
paths. Nonetheless, the results presented here are a useful
first step in the study of second-order effects for several
reasons. For one thing, it has become standard practice to
study relativistic experiments in the solar system using
isotropic coordinates. Having our results in terms of iso-
tropic coordinates will be the most convenient form for
further work if the orbital elements of the transmitter and

reflector can be expressed in terms of those same coordi-
nates. Furthermore, we have demonstrated that there is at
least one physical effect (the increase in path length due to
the bending of the beam path) that will have to be con-
sidered in future experiments. This important conclusion
follows from our results even though those results may
not be written in a form that is immediately accessible to
experiment.
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