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We examine plane-symmetric cosmological solutions to Einstein s equations which can be gen-
erated by the "soliton" technique, using the homogeneous Bianchi solutions as seeds and arbitrary
numbers of real or complex poles. In some circumstances, these solutions can be interpreted as "in-
cipient" gravitational waves on the Bianchi background. At early times they look like nonlinear in-
homogeneities propagating at nearly the speed of light {"gravisolitons"), while at late times they
look like cosmological gravitational waves.

I. INTRODUCTION

Attention has recently focused on the possibility that
there could exist a background of gravitational waves. '

Such backgrounds would almost certainly have to ori-
ginate at a cosmological red-shift, so any success in
detecting them could yield vital information about the
early Universe. Because the waves would generally have a
considerably longer period than the ones generated by the
sort of burst or continuous sources expected at the present
epoch, they could be observable by a variety of new detec-
tion techniques: for example, by the Doppler tracking of
interplanetary spacecraft, by scrutinizing the timing
noise in pulsars, ' or by monitoring perturbations to
planetary orbits. '

One way in which a background of gravitational waves
could arise would be as a superposition of waves from
many individual bursts generated astrophysically at some
time in the past. "' This could be especially interesting
if a population of pregalactic black holes formed. If
some fraction of the holes formed in binary systems, there
could also be a background of continuous waves generated
by the superposition of their quadrupole emission. '8

Another possibility is that the waves may be "primordial, "
in the sense that they derive from the initial conditions of
the Universe. For example, even if the early Universe was
of Friedmann type, there could be a thermal background
of gravitons with a temperature —I K originating at the
Planck time~; quantum effects could also generate longer-
wavelength (nonthermal) gravitons provided the Fried-
mann equation of state deviated from p =p/3 at early
times. ' Unfortunately, these sorts of primordial back-
grounds would probably be undetectable.

A more interesting possibility, and the one relevant to
this paper, is that the primordial waves may reflect a
purely classical irregularity in the initial structure of the
Universe. In this case, the waves would not look like radi-
ation at sufficiently early times because they would have a
wavelength larger than the Universe's particle horizon.
Also, their dimensionless amplitude, instead of being
small, would be of order unity and thus severely distort
the background spacetime. Thus, classical primordial
waves could arise only if the early Universe deviated con-

siderably from the smooth structure observed today. They
might have a variety of forms, depending on the type of
initial irregularity: if the Universe started off completely
chaotic, one might expect an isotropic stochastic back-
ground with a wide range of wavelengths. ' ' Qn the
other hand, a less extreme form of irregularity might gen-
erate a more correlated anisotropic background, for exam-
ple, one with plane waves all traveling in the same direc-
tion.

There is no doubt that solutions to Einstein's equations
which contain incipient gravitational waves in this sense
ought to exist. Although the complexity of the equations
makes their identification nontrivial, the study of inhomo-
geneous and anisotropic cosmologies has seen considerable
progress during the last few years. ' In particular,
Adams et al. have studied solutions which describe
gravitational waves in Bianchi backgrounds. By confining
attention to plane-wave solutions, which break the homo-
geneity of the Bianchi model only in the direction of wave
propagation (z), they manage to find exact solutions which
do indeed exhibit the sort of properties anticipated. At
early times the Universe is highly inhomogeneous, with
the anisotropy parameter depending on z, while at late
times one gets waves traveling in the z direction. They
thus show explicitly how chaotic behavior near the initial
singularity can be transformed into gravitational waves.

In this paper we will apply the inverse scattering or
"soliton" technique, developed by Belinskii and Za-
kharov and reviewed in Sec. II, to the study of inhomo-
geneous cosmologies. The soliton technique provides a
procedure to solve the Einstein equations in vacuum when
there are two commuting Killing vectors (in our applica-
tion, two spacelike Killing vectors). This limitation is not
too restrictive; in particular, it includes Bianchi types I to
VII and their inhomogeneous generalizations. The two
main ingredients of the soliton technique are the so-called
"pole trajectories" and particular solutions of the Einstein
equations which serve as "seeds." By analyzing solutions
generated by the homogeneous Kasner (Bianchi I) seed, we
will show that it is possible to construct cosmological
models which look like gravitational waves at late times
(in that they evolve towards homogeneity in a wavelike
manner) but which behave like very inhomogeneous
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"gravisolitons" at early times. Since these gravisolitons
propagate at around the speed of light and carry energy in
some sense, they are naturally interpreted as incipient
gravitational waves. In this respect, they resemble the
Adams et al. solutions even though the latter are not
themselves solitons. (They contain many more parameters
and modes and are thus, in some sense, more general than
our solutions; however, they do not possess the structural
persistence associated with soliton solutions. ) Particular
examples of cosmological soliton solutions are already
known; we will here present a more comprehensive
analysis of their properties.

Soliton solutions can be characterized according to the
number n of real and complex poles they contain. If
n = 1, one must have a single real pole. (If a pole is com-
plex, its complex conjugate is also a pole, so complex poles
always go in pairs. ) Belinskii and Zakharov have stud-
ied this case; it remains the seed solution in the region
z &t and contains the perturbation only in the region
z ~ t . Because the first derivative of the metric is
discontinuous on the light cone, the solution can be inter-
preted as a pair of outward-propagating gravitational
shock waves, ' with the region behind the shocks being
left unperturbed. By adding more real poles, one gen-
erates a more complicated solution with a sequence of
propagating discontinuities. This is discussed in Sec. III;
the form of the solution is initially highly structured, but
one gets the exact seed solution at each point once all the
shocks have transversed it.

A somewhat different situation arises for solutions with
complex poles, which we discuss in Sec. IV. These also
have the feature that they evolve to the seed solution at
each point at late times, but they are only asymptotically
(not exactly) seedlike and they are continuous on the light
cones. Belinskii and Zakharov have studied the solu-
tions with a single complex pole (n =2), which can be gen-
erated by the axisymmetric Kasner seed, while Ibanez and
Verdaguer have studied solutions generated by the same
seed with two complex poles (n =. 4). In these cases, the
metric tends to the seed solution in both the "far region"
(z ~t, z~oo) and the "causal region" (z &t, taboo).
The maximum perturbation also appears near the light
cones and it is this feature which leads us to interpret
them as gravitational waves (viz. , inhomogeneities propa-
gating at the speed of light). We extend these analyses to
the more general case with an arbitrary number of com-
plex poles.

The soliton solutions can only be given explicitly if one
makes the mathematically simplifying assumption that
the metric is diagonal (g„~ =0). This corresponds to waves
with a single polarization. We specialize to this situation
in Sec. V. We find that the perturbations always decay
like t '~ in the "light-cone region" (z -t, taboo) and
like t ' in the causal region, but that the solutions tend to
the seed metric in the far region only with special types of
seeds. In other cases, the solutions may be asymptotically
flat or static in the far region or they may even have a
timelike singularity at z = oa, these solutions are of in-
terest in their own right, but they cannot represent gravi-
tational waves on a Kasner background.

In Sec. VI me consider the more general nondiagonal

We first summarize the Belinskii-Zakharov ' tech-
nique for generating solutions of the Einstein equations in
vacuum. These solutions have the form

ds =f(dz dt )+g,bdx'dx (a,b—=1,2), (2.1)

where the metric coefficient f and the two-dimensional
matrix g are functions of t and z alone. This metric in-
cludes the homogeneous Bianchi models of type I to VII,
all of which have two commuting Killing vectors, as well
as their generalizations to models with the homogeneity
broken in the z direction (cf. Adams et al. ).

Because of their cosmological relevance, we shall re-
strict our attention to metrics for which

detg =t (2.2)

This does not, in fact, involve a loss of generality because
we can take any other value for detg, provided its square
root is a solution of the wave equation in t and z (as re-
quired by the Einstein equations), by performing a coordi-
nate transformation

solutions; these can be interpreted as having two polariza-
tions. Although one no longer has explicit analytic solu-
tions, one can still derive asymptotic expansions. In the
two-soliton case, Belinskii and Fargion have already
found nondiagonal solutions in which the background is
contracting in the z direction. We extend their analysis to
the more general Kasner background. We find that the
two-soliton solutions still tend to the Kasner seed in the
causal and light-cone regions (with the perturbations again
falling off like t ' and t '~, respectively), but they do so
in the far region only if the z axis is contracting. If it is
expanding sufficiently fast, the metric tends to diagonality
in the far region but not to the seed metric. We find that
these same features pertain in the general n-soliton nondi-
agonal solution.

We stress that we have chosen to emphasize soliton
solutions in this paper because of their mathematical trac-
tability. In general, however, the initial cosmological
structure associated with primordial gravitational waves
would be more complicated. One would not expect the
homogeneity to be broken in just one direction and many
other solutions could be envisaged which were not
representable as solitons (cf. Adams et al. ). Neverthe-
less, the persistence of solitons suggest that they might be
singled out as modeling the most likely form of irregulari-
ty in the early Universe and we would expect many of the
features found in this paper to be valid in the more gen-
eral case. In this context, it should be noted that the prob-
lem of gravitational waves in inhomogeneous cosmologi-
cal models can be investigated using numerical tech-
niques and approximation methods, as well as
by studying exact solutions. It seems likely that pro-
gress will be made by combining all of these different ap-
proaches. Finally, we emphasize that the solutions de-
rived here may also be of interest in a different context if
one transforms the coordinates (z, t) to (p, t) or (p, 8). We
study these (noncosmological) solutions in a separate pa-
per 46

II. SOLITON SOLUTIONS
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z'=a (z +t)+b (z —t),
t'=a (z+ t) b—(z —t),

(2.3)
are real or complex. Here the lM» are solutions of the
equations

with arbitrary functions a and b. This leaves the metric
(2.1) invariant, while changing the coefficient f according
to

f(~ z ~ z)
f(dz' dt' )—

r(a, +a, }(b, b, )—
Thus, for a given detg, all the results that follow can be
generalized by performing a transformation of the form
(2.3).

The Einstein equations in vacuum take the form

U, —Vz ——0,

(lnf), = ——+—Tr (Uz+ V~),I 1

t 4t

(lnf), =—Tr (U V),
2i

(2.4)

(2.5)

U=—tg g ', V=tg (2.6)

(tU+A, V)
g2 t2 ~ g2 t2

(2.7)

where A, is a complex "spectral" parameter and g(A, , t, z) is
a two-dimensional matrix that satisfies

(2 8)g(t, z)=g(0, t,z) .

Coven a particular solution gp of Eq. (2.4), Eqs. (2.7)
must be integrated to find the corresponding solution

(Ap, , t,z }This integration can be done easily for diagonal
metrics, as shown by Jantzen, and even for some nondi-
agonal metrics, like Bianchi type II, as sho~n by Belinskii
and Francaviglia. Once po has been found, a solution f
can be generated by purely algebraic operations if one as-
sumes that g is the product of a two-dimensional matrix,
with n simple (nondegenerate) poles in the complex
plane, and gp. Equation (2.8) shows that an n-soliton
solution for g (t,z) can then be found.

The explicit procedure is as follows.
(1) One starts by choosing the number n and by specify-

ing whether the "pole trajectories, "defined by

pk ——uk —z+[(uk —z) —t ]' (k =1, . . . , n)

(2.9a)

These equations, and many of the results of this section,
can be obtained from the Belinskii-Zakharov equations
for an axisymmetric metric by changing their cylindrical
coordinate p into it. The Belinskii-Zakharov technique is
based on the inverse scattering transform and provides a
procedure for generating (soliton) solutions to the non-
linear equation (2.4) for the matrix g when a particular
seed solution gp is known. For each solution g, Eqs. (2.5)
can be integrated explicitly. In this techniqu, one associ-
ates a linear "eigenvalue" probletn with Eq. (2.4):

r

(tV+A, U)
g2 t2 ~ — g2 t2

28k 2tIJ, k
Pk, ~= 2 2 Pk, ~= 2t -Pk ' t —Pk

(2.9b)

and the uk are arbitrary (real or complex) constants.
From the gp matrix associated with a given seed metric

go, one then constructs the vectors

m.'"'=(m, ),'"[1t,-'(~„,t,z)].. . (2.10a}

where (mp),' ' are arbitrary real or complex parameters.
One should note that, if one starts with real-pole trajec-
tories, then the parameters (mp),'"' also have to be real.
On the other hand, if one starts with a complex trajectory
pk, its complex conjugate is also a trajectory. Thus, com-
plex trajectories always go in pairs, and we can put

pk+„&z——lM». The complex parameters (mp),'"' will then
satisfy (mo)',"+""'=(mp),'"'.

(2) The next step is the construction of the n && n matrix

m'"'( ) m '"
(2.10b)

PkP~ —t
rkl

and its inverse, Dk! =(I'kl) ', from which one can derive
a matrix g':

Dklm (go } md (go }db
(k) (I)

g''k =(go ).b-
k, ! PkPI

(2.11)

This is a solution of Eq. (2.4) and, while it does not satisfy
condition (2.2), the matrix

Pf

gP» g
k=1

(2.12a)

t n~/2 k=1

ff (Pk P!)—
k, 1=1
k&I

detI kg (2.12b)

where the term in square brackets is 1 for n = 1 and fo is
the value off for the seed metric.

Although the solutions given by (2.12) have been ob-
tained for nondegenerate poles, solutions with multiple
poles can be obtained from them by a limiting procedure
in which uk~uI. Thus, in the axisymmetric version of
metric (2.1), taking the Minkowski metric as seed and us-
ing 2n real poles, the n-Kerr metric is generated; by ap-
proaching the same pole trajectory (giving n double pales),

does and so is the required n-soliton solution of the Ein-
stein equations.

(3) After the solution for g has been found, we can cal-
culate the metric coefficient f, defined by Eqs. (2.5). It is
a remarkable fact that these equations can be integrated
explicitly for the n-soliton solution (2.12a). This has been
proved by Belinskii and Zakharov for axisymmetric
metrics, but it is also true in the cosmological context.
The proof is inductive and uses the fact that the n-soliton
solution can be obtained step by step, starting with the
one-soliton solution. The final result is

n+1
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III. REAL-POLE TRAJECTORIES

The simplest case is the one-soliton solution. The pole
trajectory (2.9) with u1=z1 (real) will be

1M1 ——z 1
—z+ [(z, —z) t]—0 2 2 1 /2 (3.1)

with either sign being allowed. We shall call z& the "ori-
gin" of the soliton. Ciiven a seed metric, Eqs. (2.12) gen-
erate a solution only in the region (z1 —z) )t, where the
pole is real. In (z 1

—z) & t, the solution remains the seed
metric. The spacetime is thus divided into two regions:
inside the light cone (z1 z) =t, the so—lution is unper-
turbed; outside the light cone, one has an inhomogeneous
one-soliton solution depending on just two parameters.
The overall metric is continuous, but it has discontinuities
in its first derivatives on the light cone itself. Plane-
symmetric cosmological metrics with discontinuous first
derivatives have been discussed by Wainwright and Car-
meli et al. In the soliton context, Belinskii and Fran-
caviglia describe these solutions as gravitational shock
waves.

The one-soliton solution generated from the Kasner
seed was given by Belinskii and Zakharov. The axisyrn-
metric version of their metric was studied by Verdaguer
in the latter context there are no discontinuities since the
pole is

p zo z+ [(zo z)2+p2) 1/2

and therefore real everywhere. We can now imagine the

the Tomimatsu-Sato (5=n) solution is generated. '
We shall discuss some cosmological examples of double-
pole solutions later.

In the cosmological context, the technique has been ap-
plied to generate one- and two-soliton solutions from Bi-
anchi type-I (Ref. 27) and Bianchi type-II (Ref. 49) seed
metrics. These solutions are inhornogeneous in the z
direction. For simplicity, and also to allow comparison
with other studies (like those of Adams et al. ,

6 which
find inhomogeneous solutions with many inore parameters
by breaking the homogeneity of the Kasner metric in the z
direction), we shall here study the n-soliton solutions
which can be obtained using the Kasner metric as seed.
The Kasner metric in the form (2.1) is

ds =t'a "~ (dz dt )+—t'+adx +t' ady (2.13)
'This is related to the standard Kasner form,

ds =—dt' +t' 'dx +t' 'dy +t' 'dz

(Pl +72+83 Pl +72 +73 = 1),2 2 2

by a time transformation and

2(1+b, ) 2(1 —b, ) 6,2 —1

g2 3
I 2 g2 3

' g2 3

The real parameter 6 is arbitrary, but we shall assume
that we always have 6)0 or 6 &0 since one can obtain
one from the other by interchanging x and y. b, =0 corre-
sponds to the axisymmetric Kasner solution, while

~

5
~

= 1 corresponds to Minkowski space; the z axis is ex-
panding for

~

b
~
) 1 and contracting for

~

b,
~

&1.

following sequence of solutions. The two-soliton solution
generated from the one-soliton solution will contain two
light cones: (z2 z)—=t and (zi z) —=t . In the region
contained in both light cones, the solution will still be the
seed metric. Inside each light cone, excluding the inter-
section region, it will be of the "one-soliton" form; in the
remaining regions, it will be of the "two-soliton" form and
be described by four parameters. The overall metric will
have discontinuous first derivatives along both light cones.
From this one can generate the three-soliton solution and
so on.

The common feature of these metrics, for an observer at
finite z, is that they start very complicated but evolve to-
wards the seed metric as the inhornogeneities propagate
outwards at the speed of light. If the soliton origins
z =(z1,z2, . . . , z„) are equally spaced, the inhomogeneity
will be reduced in steps at regular intervals. As mentioned
in Sec. II, it is also possible that one could have multiple
poles. Note, however, that double or even-multiple poles
can be obtained as the limiting case in which two or more
complex-conjugate poles become real. We shall study an
example of this when dealing with complex-pole trajec-
tories in the next section.

IV. COMPLEX-POLE TRAJECTORIES

Complex poles differ from real poles in that they do not
have discontinuous derivatives. The parameters uk in Eq.
(2.9) are now complex,

0
Qk =zk —Lwk

and the complex-conjugate poles may be written as

(4.1)

wk —zk (wk +zk )
2 +t2 t4

(wk'+zk')
+ 2 ak

1/2

2(wk —zk ) (wk +zk )
2 2 2 22

ak —— 1+
t2 + t4

(4.4)

These satisfy 0&o-k '&1 and 1&o-k+'& ~.
It is convenient to write down the main asymptotic

values for o.k '. We shall distinquish four asymptotic re-
gions: (i) the causal region ( ~zk

~
&&taboo for all k),

which is contained in the intersection of the set of light

pk= V ~k«pk+nn=irk (k =1,2, . . . , n/2) . (4.2)

The functions ok(z, t) and Pk(z, t) are given by

2zk +crk 2wk V'o k
cosfk = Slunk = (zk =zk —z) .t(1+ok) t(l —o.„)

(4.3)

Two explicit solutions for ok(z, t) can be. found from these
equations by solving a fourth-degree ecIuation. This gives
two real solutions, ok

' and crk+'= 1 icr k ', where

2 2
k +zk

2 +ak
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ok ——1 — +0 (t ) (causal region),( —) k —2

+O(t ') (light-cone region),

t2
o'k '=

2 [1+0(z )] (far region),
4zk2

2

o'k '=
2 2 [1+O(t )] (initial region) .

4( wk +zk )

(4.5)

Belinskii and Zakharov have shown that one recovers
the seed solution in the limit ok~1. Inspection of Eqs.
(4.5) shows that this is always the case in the causal and
light-cone regions, the perturbations decaying as t ' and
t '~, respectively. Therefore, for an observer at finite z,
the n-soliton solution with complex poles will always
evolve towards the seed metric. The situation differs from
the real-pole case, however, in that one never gets the ex-
act seed solution. Nevertheless, the asymptotic property
of the cosmological soliton solution can guide one in
choosing an appropriate seed metric. The behavior of the
soliton solutions in the far region will generally be quite
different from the seed metric. However, we will later see
particular examples of seeds for which the far region also
tends to the seed metric asymptotically. In such cases, the
soliton solution can be regarded as a "perturbation" on the
seed background.

In Fig. 1, the time evolution of cr'k '(t, z) is represented
for wk =0.2. The slope of the curves between small and
large values of z is governed by the parameter wk', the
smaller wk, the steeper the slope. Since the solitons can be
associated with the z derivatives of o.k, the parameter wk

0.8—

0.6

0.4

cones with origins at z =(zi,zz, . . . , z„~2), (ii) the light-
cone region (

~
zk

~

—
~

z
~

= t~ ao ), (iii) the far region
(t &&

~
zk

~

—
~

z
~

~ oo), and (iv) the "initial region"
()zk (, ~

wk (
&&t~0). The respective limiting values of

o.k are( —)

reflects the "width" of the solitons. All the metric-
dependent quantities can be obtained from the pole equa-
tions (2.9b). In terms of ok, these become

k, t =

8zkok (1—ok)
H„(1+ok)t2

2ok(1 —o.k )

Hkt
(4.6)

V. DIAGONAL METRICS

We shall first study the diagonal (one-polarization) n-
soliton metrics. There are two reasons for this: (1) they
are simpler than the nondiagonal ones —in particular,
asymptotic calculations of the Riemann tensor can be car-
ried out explicitly; and (2) they can be used as a paradigm
to understand the general nondiagonal (two-polarization)
solutions.

Equation (2.11) implies that diagonal metrics can be ob-
tained from a diagonal seed (such as the Kasner solution)
by taking one of the arbitrary constants (mo),'"' in Eq.
(2.10a) to be zero. We therefore assume

16Wk 0 kHk—= (1 —O.k) +
(1—ok) t

These equations give a "recursion" relation, enabling one
to find, for instance, the Riemann tensor for the n-soliton
solution with complex poles. It is easy to see, using Eqs.
(4.5), that ok, has a maximum in the light-cone region,
indicating that the corresponding soliton solution contains
inhomogeneities propagating at the speed of light as
t~ oo.

In the limit wk~O, the two complex-conjugate poles
become a double real pole, with o-k ——1 inside the light
cone zk =t and o.k p, k /t ——outside it. Since ok, has a
5-function discontinuity on the light cone, this suggests a
gravitational shock wave propagating at the speed of light
(cf. the one-soliton case). Therefore, double real-pole
solutions can be studied as limiting cases of complex-pole
solutions.

As mentioned earlier, we shall restrict attention to the
soliton solutions generated from homogeneous Kasner
seeds. It is clear that the key point will be the behavior of
the metric in the far region. Providing the metric ap-
proaches the seed metric in that region, the solution can
be interpreted as consisting of inhomogeneities moving on
the corresponding Kasner background. If the metric in
the far region is different from the seed metric, the propa-
gating solitons are simply connecting two regions of
spacetime with different features.

0.2
(mo)11" =0 . (5.1)

0.2 0.6 1.0
Z

1.8

FIG. 1. This shows the function o' '(z, t) for different values
of t, as defined by Eq. (4.4). The origin is z =0 and the width
parameter is m =0.2. The function is unchanged if one reverses
the sign of z. .When o. approaches 1, the corresponding soliton
solution approaches the seed metric.

2
g22 ——t /g» . (5.2a)

The general expression for the metric coefficients g» and
g22 can be obtained for n-solitons by adding solitons one
at a time. The result is

gli t II Pk (go)11
k=1
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n

f=fo "'"
k=1

+ (1 k
—Ct)'

' (2+5—n) k, l =1
k&l

n

(Pk —t )
k=1

When go depends on t only, the coefficient f is best found
by integrating Eqs. (2.5) directly, rather than using Eq.
(2.12b). For the Kasner seed we get

n/2
t 1+6 ~

k=1 (5.3a)

expression can be interpreted as the cosmological version
of the axisymmetric static Belinskii-Zakharov solutions.

The solutions (5.2) are valid for real and/or complex
poles. If one only has complex poles, they can be ex-
pressed explicitly in terms of ok(z, t) W. ith the Kasner
seed we obtain

(5.2b)

When b, = 1 (corresponding to the Minkowski seed), this
I

and

0
n/2

tl —5 Q —1

k=1

t (g —1 —n )/2 n/2

II
k=1

k=1

(b, —n +4)

(1—~k)'

n/2

k, l =1
k&l

( cTk +~l )t

2
8zkzl Wk Nl

(I+c7k )( I+ crl )

64w w o. o
'2

(1 crk) —(1—crt)
(5.3b)

As discussed earlier, the metric in the causal region
represents a Kasner background on which is superposed
some inhomogeneities with "amplitude" decreasing as
t '. On the other hand, the amplitude decreases in the
light-cone region as t ', which is typical of linear gravi-
tational waves on a cosmological background. It remains
to study the behavior of the metric in the far region; this
is the only asymptotic region in which it may deviate ap-
preciably from the seed solution.

We shall distinguish several Ilossibilities: (a) n solitons
with crk ', (b) n solitons with cTk+', and (c) r solitons with
crk

' and n rsolitons wit—h ok+'. Since ok+'=1/ok
case (b) reduces to case (a) if one interchanges x and y in
the seed and then interchanges them again in the soliton
solution. Similarly, in case (c), we only need consider
r )n —r; the asymptotic structure in the far region will
then be similar to case (a) with 2r nsolito—ns, although
the structure in the regions zk-t will be very different
since we still have n solitons there. From the point of
view of solitons propagating in a homogeneous back-
ground, the most interesting case is (c) with r =n/2, since
in the far region we then have

with

1 g11e2=
2f

1 g11 1 gll f 1 g 11 f'
2gll f 2gll f

1 1 g11 g22 1 g11 822e3=
2f 2 gll g22 2 gll g22

(5.4b)

A. n solitons with a'k '

We first discuss case (a) for the situation with b. &0.
The asymptotic expression for the coefficient f in the far
zone is then

1 g'll 1 gll gll 1 gll f' 1 gll f
2f gll 2 gll gll 2 gll f 2 gll f

Here a dot denotes 0, and a prime 0, . The Riemann com-
ponents can be calculated explicitly, using Eq. (4.6) for
oklcrk and ok/ok, and Eq. (2.5) for flf and f'lf. The
final result is expressed in terms of the functions ok(t,z).

E B
R (~~)

(y5) = (5.4a)—B E
where the indices are (01), (02), (03), (23), (31), and (12). E
and B are 3 & 3 matrices whose nonzero components are

11 1 (e2+e3) E22 2

E33 —e3 B12——B21——b,

g go[1+O(z ')]
(If the number of crk

' and ok+' solitons are different, ei-
ther gll —moo Or g22~oo aS Z~oo. ) TheSe madelS Can
therefore be interpreted as n/2 pairs of solitons with ori-
gins at z =(zl,z2, . . . , z„&2) propagating on a Kasner
background. As t~ao, they propagate near the two
branches of the light cones zk ——t, evolving towards grav-
itational waves.

More understanding of the metrics can be obtained by
examining the Riemann tensor. If the metric is diagonal,
this has a very simple form. It can be written as the 6&&6
matrix

1

4f
(6+n + l)(b, +n —1)'

2t

1

4f
(b, +n +1)2(h+n —1)

2t
+ z

e3= (6+n + 1)(b.+n —1) + z

3n (6+n —1)(5+2) 1—+0z
8z t

From this we can define a critical value

5, = —n,
for which

f a+ + a+ — 2 — a+ )[1 (
—)1J

and the Riemann components are

(s.sa)

(s.sb)

(5.6)
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1 0 0
E t-'/' 0 1 p, B~p

0 0 —2

as z~oo. The metric thus becomes Petrov type D as
z~oo. Note that the asymptotic value does not depend
on n. This is very different from the behavior in the
causal region, where the solution tends to the correspond-
ing Kasner background. The Kasner solution is Petrov
type I unless b = —1 (flat space) or b, =0 (axisymmetric
Kasner), in which cases it is also Petrov type D.

For 6 & b„ the Riemann tensor satisfies

E~O, 8—+0

as z~ oo, so the metric is asymptotically flat in the far re-
gion. The interpretation of these metrics is that they
represent inhomogeneities on a flat background which
evolve towards the Kasner solution in the causal region
due to soliton propagation along the z axis. Note that the
metric can be made asymptotically Minkowski explicitly
by the coordinate change t'=t coshy, y'=t sinhy.

For 0&h& 6, and n &2, the metric is singular in the
far zone (E~ 00) and so it has a space singularity as well

as a cosmological singularity. The physical interpretation
of this is not clear. It is also interesting that E-z" for

n+1. There—fore, for n =2 (corresponding to Min-
kowski space), we have

2 0 0
E~ 0 —1 0, 8~0

0 0 —1

as z~oo, which is a time-independent Petrov type-D
metric. This metric can be interpreted as solitons propa-
gating on a static type-D background; as the solitons pro-
pagate, they leave a causal region which tends towards flat
space.

B. The real-pole limit

We now discuss the limit in which wk~0, that is, the
limit in which the complex poles become real. The n-
soliton solution then contains n/2 degenerate double real
poles. As an illustrative example, we shall consider the
n =2 case. The complex two-soliton solution is

1+5 1 —5 —1

(b, +2)
(LL2 5)/2J=t

(1 cr) H—
where we have dropped the index 1.
limit w~O and set z1 ——0, we obtain

2

t '
p

/2f
(

2 1.2)1/2

The main difference is the exponent of (p It)

(5.9)

C. Degenerate complex poles

Solutions with degenerate complex poles can be easily
obtained from Eq. (5.3) by taking the limits zk~zt,
wk~wt for all k, l. This leads to a cosmological version
of the Tomimatsu-Sato axisymmetric solutions:

g t 1 +Ag n /2
g t 1 Q n /2

f t « — —1)/2 n (5+n)/2

Hn/2(1 )n2/2

I 2 2 2 n(n —2)/4

X
z (1—cr) +w (1+a)2
z (1—cr) +w (1+o)4

2 216w cJ

(1 cr)t—
(5.10)

As usual, the metric tends to the Kasner seed in the causal
region, with the perturbation decaying as t '. In the far
region, crit /4z and so f has the asymptotic form given

2 2

by Eq. (5.5a). Likewise, the Riemann components asymp-
totically look like Eq. (5.5b). Thus, the behavior is similar
to that of case (A).

VI. NONDIAGONAL METRICS

In the nondiagonal case, one can no longer give explicit
expressions for the n-soliton metric elements. This is

largely due to the problem of inverting the n )&n matrix
I ki, defined by Eq. (2.10b), which is required in the
evaluation of solution (2.12). However, information can
still be obtained from asymptotic expressions which can
be calculated in the limit in which the nondiagonal metric
tends towards diagonality. There is thus a connection be-
tween the nondiagonal solutions and those of the last sec-
tion. We will first deal with the nondiagonal two-soliton
solutions because some of their features apply for general
n In contrast .to the diagonal case, these can be con-
sidered as solitons with two polarizations.

A. Two-soliton solutions

P Z+(Z2 t2)1/2

we take the + or —sign, depending on the choice of
solution for cr [cf. Eq. (4.4)]. This is the double real soli-
ton solution. It can be compared with the diagonal limit
of the one-soliton solution of Belinskii and Zakharov

t '
p

t(h, +3)/2

(z —t )

where p is the real pole:

(5.8)

The two-soliton solutions have been studied in some de-
tail by Belinskii and Fargion for Kasner metrics with
range 1 & b & 0 (i.e., the space is either contracting in the z
direction or it is Minkowski). These solutions are the sim-

plest nondiagonal metrics with complex poles that one can
evaluate and their analytical expressions are relatively
simple. We shall here study the asymptotic behavior of
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the solutions which can be obtained from all Kasner seeds,
as well as their diagonal limit. Following the procedure in
Secs. II and IV, the two-soliton solution can be shown to
be (see also Belinskii and Fargion )

D I (cr+cr ' —2)sin (/+5)

g»=t +

1 —5g22=t

2w 1 L() 1

1—
t 1+Lo

1+ 2w 1-Lo
t 1+Lo

(6.5)

g22=

+[L cr "+ '+Lp o"+ '+2]sin P}

D
j(cr+cr ' —2)sin (P —5)

+[L cr" ~'+Lo 2cr " ~'+2]sin P},
(6.1)

, [1+O(t ')],
0+ 0

(L()+L() ')'
t(t)2 —i)/2[ 1 +O (t —i )]

16m

where we have imposed on 50 the Belinskii and Fargion
condition

g (2 —— IL po "+ '/ [sin(p+ 5)+cr sin(p —5)]
2M 5p ——m.(1—5)/2 . (6.6)

+Lo 'o " ~)/ [sin(P —5)+o sin(/+5)]},

f=Ct' ' cr DH '(1 —o) (sing)

where the notation of Sec. IV is used (although we drop
the index 1) and

D:(o+cr ' —2)—sin25+(Lp o +Lp o +2)sin p,

5=bg+5p .
(6.2)

where d, and y, are arbitrary real constants and

L p =d i Id 2, 50= 'Y2 p 1 (6.3b)

We can determine the connection with the diagonal
(one-polarization) two-soliton solution by taking the limits

C is an arbitrary real constant; L p and 5p are also real con-
stants, related to the definitions of Sec. II in that the vec-
tor m, "of Eq. (2.10a) is given by

m'"=(d e ' "+ ' d e ' " '
) (63a)

1 —Lo
W =W

1+Lp
(6.7)

Note that the O(t ') part of g)2 is negligible compared to
the expressions for gii and g22 in Eq. (6.5) since

t =detg =g»g22 —g, 2
2 2

The g&2 terms therefore give the nondiagonal correction to
higher-order terms in the diagonal metric.

The solution in the asymptotic light-cone region can be
obtained in a similar way, using Eq. (4.5). The results are

' 1/2 —2 2(Lo Lo —2 sin5p —)

(L()+Lo ') +4 sin 5()
g =t+ 1 —2

LU

Otherwise, the first-order term of gi2 is a constant. Thus,
the two-soliton solution in the causal region can be seen as
a perturbation on the corresponding Kasner background
whose amplitude decreases as t '. We can interpret Eq.
(6.5) in another way: it is the diagonal two-soliton solu-
tion (5.7) in the causal region with a modified width pa-
rameter

Lo ~0, CL p ~C'(finite) .

The dominant term in D, from Eq. (6.2), is

(6.4a)
g22 ——t ' 1+2

1/2 —2 2(L p
—L p

—2 sin5p)

(Lp+Lp ') +4sin 5o

D-Lp cr sin ((),

and so the metric (6.1) becomes

g„=t'+ cr+O(L() ), g22 t' (r ——'+O(L()'),

g)2 ——O(Lo)

C t(4 —)/2H —~(h+ )(1 ~)—2+ O(L 2)

(6.4b)

Comparing with Eq. (5.7), we see that the two-soliton
solution (6.1) can be regarded as a generalization of the di-
agonal metric (5.7). The constant d, (or Lp) can be inter-
preted as a "polarization" parameter, since one can reduce
the two-polarization metric to a one-polarization metric
by taking one of the parameters to be zero (d i

——0).
All the diagonal metrics, whatever the Kasner seed, had

the common feature that they evolved towards the seed in
the asymptotic causal and light-cone regions. The same
holds for the nondiagonal two-soliton solution. In fact, in
the causal region, taking the limits (4.5), we obtain

(6.8)
[(Lp+L p ')cos5p+ (Lp Lp ')sin5()]-

g12 =4Vwt
(Lp+L() ') +4sin 5()

[4sin 5o+(Lo+Lo i)2], 2

32w

the amplitude of the perturbation decreasing as t
This equation can be regarded as giving the first-order
terms of the diagonal two-soliton metric (5.7) with the
width parameter m changed in a manner analogous to Eq.
(6.7). As before, the metric coefficient g(2 represents a
higher-order nondiagonal deviation from the g» and g22
terms given by Eq. (6.8). One should not deduce from Eq.
(6.8) that the Riemann tensor behaves the same way in the
light-cone region as in the seed solution, because the z
dependence in Eq. (6.8) has been hidden in the assumption

~

z
~

-t. The light-cone region has to be seen as a boun-
dary between the causal and far regions which contains
the propagating solitons.
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We now have to study the asymptotic behavior in the
far region. This depends crucially on the seed metric. For
some choices, the metric will evolve towards the seed; for
others, it will evolve to a completely different spacetime.
In the first case, one can interpret Eq. (6.1) as two solitons
propagating on a Kasner background with a velocity
which tends to the speed of light. If we choose the o'
pole, the far region solution is

4 2

2 [1+0(z )] (b & 2),

t2
[1+0(z )] (b.)3),

42

sin 50+4m t Lo [1+0(z ')] (b, =3),
4z 4w t L

g22
sin 5pt'

~ ~ i [1+0(z )] (3&b,)2),
4z 4w t Lp

sin 5p [1+0(z ')] (b, =2),
sin 5p+ 4w t

1+0(z ') (2) b, )0),
(6.9b)

g12

2w

(6,—3)/2
t~ sin5o [1+0(z 2)] (b, &2),

4z 4w t Lp

2
- 1/2t'

4z

Lpsin5p [1+0(z )] (b, =2),
sin 5o+4w t Lo

(1—4)/2)

[1+0(z )] (2& 6& 0),
4z sin5p

1/2 Lo-Lo [1+0(z ')) (b, =O) .
4z sin5p

(6.9c)

The o'+' solutions introduce nothing essentially new since
the change o.~o. ' in Eq. (6.1) is equivalent to the change
Lp~Lp, 5o~ —5p, and g12~ —g12.

—1

The important points to emphasize, because they will be
relevant in the general n-soliton solution, are as follows:
(i) for seeds with b, & 3, all two-soliton metrics became di-
agonal in the far region (cf. Sec. V); and (ii) for seeds with
1&4&0, all the two-soliton metrics become the seed
metric, as already shown by Belinskii and Fargion. Note

42 4wt L
, [1+0(z—')] (b, =2),

t scn5+4w t Ip
g11 2 ~ ~ 4 2 2L 2

4z wt o [1+0(z )] (2& 6 & 1),
t sin 50

sin5+4w t L [1+0(z -')) (5=1),
sin 50

1+0(z ') (1&b,&0),
(6.9a)

that in case (ii) the propagation axis is contracting. Thus,
when the background is contracting in the z direction, the
two-soliton solutions can be interpreted as two perturba-
tions propagating along the z axis. Since the solitons have
their maximum amplitude on the light cone for large t,
they move in opposite directions with a speed asymptoti-
cally approaching the speed of light, i.e., they become
gravitational waves at large t.

As an example, we present in Fig. 2 the evolution of the
two-soliton solution when the background is the axisym-
metric Kasner (b, =O) seed. We take the width of the soli-
ton to be relatively small (io =0.01) and the parameters in
Eq. (6.3b) to be Lo ——1 and cos5O ——(1.01) . In the rep-
resentation of Fig. 2, the x and y axes have been rotated
through m.j4. It is clear that the two-soliton solution
tends to Kasner in the causal and far regions if the propa-
gation axis is contracting. However, we should note that,
if we take C—= to /sin 5O, the f coefficient in the far region
becomes the corresponding f for the Kasner background
(2.13) whereas, in the causal and light-cone regions, it will
include a different constant [see Eqs. (6.5) and (6.3)].
Thus, in those asymptotic regions, the existence of solitons
modifies the "longitudinal expansion" with respect to the
Kasner background.

B. n-soliton solutions

0.7

0.5—

0, 3

-0.8

f)
I)
il

i(
I

1

I
/

/

I I

0 0.4 0.8

FICx. 2. This shows the time evolution of g~(t, z) for the two-
soliton solution (6.1) generated from the axisymmetric Kasner
seed (5=0). The Kasner background has been subtracted and
"normalized" by the factor t; we have also made a m. /4 rotation
of the x and y axes. The soliton characteristics are as follows:
origin z =0, width w =0.01, polarization parameters d~ ——d2 ——1,
and cosy& ——1, cosyq ——(1.01) ' . The dotted line is t =0.1, the
dashed line t =0.3, the dot-dashed line t =0.45, and the con-
tinuous line t =0.7.

We shall now discuss the general n-soliton solution with
complex poles (n even) in the asymptotic regions. We will
find that, for some seeds, it shares many of the asymptotic
properties of the two-soliton and diagonal n-soliton solu-
tions. In particular, as in all the solutions considered so
far, the n-soliton solution evolves towards the Kasner
seed, with the perturbation decreasing as t ' in the
asymptotic causal region. This is a consequence of the
value of ok in that region, given by Eq. (4.5), and it would
be true for any seed.

This can be seen explicitly using the soliton-generating
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technique of Sec. II. For the Kasner seeds the vector m,'"'
can be written as

(k) «(k) '~I —(1+5)/2 «(k) '&2 —(1—5)/2 $ma =~u1 e Pk ~2 e Pk (6.10)

with d,' ' and y,' ' being arbitrary real parameters. The
n X n matrix I qt, defined by Eq. (2.10b), can be written in
the causal region as

T

soliton solution evolves, it does indicate that the presence
of the solitons has an important influence on the longitu-
dinal expansion of the background, i.e., the solitons do not
behave as linear waves superposed on the Kasner seed.

In the asymptotic light-cone region we will obtain simi-
lar results to those of the two-soliton solution. We assume
that the distance between solitons is finite, so that we can
make the approximation

1 1
~kl ~kl + Bkl (6.1 1) 0

where the n X n matrices At, i(d,",y',"',w„) and
Btt(d,'"',y,'"', w„, b, ) are complex constants. It is not diffi-
cult to see that detAt, i&0 for nondegenerate poles, so

Dt t t [(A ')——t t+O(t ')] .

Using Eqs. (2.11) and (2.12), we now obtain
T

g =t+ 1 ——

~l ——z 1—

This means that we will not see the fine structure in the
light-cone region, but only the gross features of the soliton
solution. Proceeding as in the causal-region limit, we find

1 1
~kl 3/2 Ekl + ~ Fklt'' vt

where Ekl and Fkl are constant n &n matrices depending
on the various parameters of the solution. We obtain

g» ——B+0(t '),
where

(6.12) g» ——t'+ [1+A't '"+—O(t ')]-
g„=t' ~[1 A't '/'—+O(t ')],

g t I/2[B~+ O (t —I/2)]

(6.16)

B=0; (6.14)

this restricts the value of one of the parameters of the soli-
ton solution.

The f coefficient can be easily found using Eq. (2.12b).
It is clear from this equation that we will obtain

f=C d tAe„ t'~t—" '[1+0(t—')] (6.15)

in the causal limit. Thus, the longitudinal expansion of
the Kasner seed, given by Eq. (2.13), will be modified in
the causal region by a factor detAkl. While this does not
affect the Kasner characteristics towards which the n-

n/2 n

A =2 g w~+ g d'i" dI 'exp[i(yi" +yI ')](A ')i,i,
k=1 k l=1

(6.13)
B=—g di d2 exp[i (yi" +yq )](A ')~i .

k, l =1

Note that the leading terms in the symmetric matrix
(A ')t, i are those with 0&k & /n2 and n/2 &l&n For.
the n =2 case we recover the previous results: dropping
the pole index 1, we get

2 2

3 =2u)
+8

This agrees with Eq. (6.S) if we use the definition of I.
given by Eq. (6.3b). We also get

m.(1—b, )B =4w sin +/1 —p2d +d
and using the condition (6.6), the gi2 coefficient is O(t ).
Note that one can always extract the constant parameter
in the coefficient gi2 by imposing the condition

where 3' and B' are given by expressions similar to those
for A and B in Eq. (6.13). The f coefficient will be modi-
fied by the factor detEt, t, as before. Clearly the gross
features of the general n-soliton solution in the asymptotic
causal and light-cone regions are similar to those of the
nondiagonal two-soliton solution. They are therefore also
similar to those of the diagonal metrics, with the mk pa-
rameters being modified by the polarization constants da' '

and pa
In the far region, the n X n matrix I kl cannot be treated

as such, so we can no longer find approximate expressions
for the general n-soliton solutions. However, some of
their features can be deduced from the diagonal and non-
diagonal two-soliton metrics. In fact, from the asymptot-
ic expressions for the two-soliton solution, one can infer
that, for seed metrics with 1 & 4 &0, the n-soliton solution
will always tend to the seed metric in the far region. The
reason is that one can find the n-soliton solution step by
step, using the (n —2)-soliton solution as seed, etc. It is
clear that at each step we will recover the seed metric in
the far region. Consequently, the general n-soliton solu-
tion can be considered as n solitons propagating on a Kas-
ner background which is contracting along the propaga-
tion axis. Since the speed of the solitons asymptotically
approaches the speed of light, they evolve towards gravita-
tional waves with two polarizations. If we take

~
zt, —zt, i ~

=d for all k, so that the solitons are equally
spaced, the wave period. will be d.

As an example, we show in Fig. 3 the g„z coefficient of
the four-soliton solution for the axisymmetric Kasner seed
(6=0), the Kasner background itself being subtracted.
The soliton parameters are those of Fig. 2 with two pairs
of equivalent solitons. The structure of four solitons
propagating on a background is clear. One can also ob-



28 SOLITON SOLUTIONS AND COSMOLOGICAL GRAVITATIONAL. . . 3005

0.7 I
)

& I I s

(
I l I I

[
I I I I

[
I I I t

)
I I

0.5—

0.3

0.1

tt
I(
I

I

j)
I

I )

I I

I
I
I

I

-1.0 -0.5

jI

/I
I

I

I

I I I l I I

z

(I
I1
Il
I1

1
I
I

I

I

I

t

I
I

I 1

/

I I I I I t i

0.5 1.0

serve the collision of the two inner solitons. The ampli-
tude of the colliding pair is much greater, implying larger
curvature, than that of the other pair, but the two solitons
leave the collision unmodified (as is typical of solitons in
hydrodynamics). There is a "hierarchy" effect, in that at
large t the gross features of the four-soliton solution will
resemble those of the two-soliton solution.

For seed metrics with 6 ~ 3, the general n-soliton solu-
tion still tends asymptotically to the diagonal n-soliton

FIG. 3. This shows the time evolution of the g~(t, z) com-
ponent for the four-soliton solution generated by the axisym-
metric Kasner seed (6=0). The same conventions are used as in
Fig. 2. The two pairs of solitons have the same parameters:
w& ——w2 ——0.01, d ~

——d2 ——d ~
——d2 ——1, cosy j

——cosy~ ——1,(1) (1) (2) (2) (&) (l)

and cosy~ ' ——cosy2 ' ——(1.01) ' . The separation of the origins
is

~
z~ —zq

~

=1. The dot-dashed line corresponds to the time
t =0.45 during the collision of the inner solitons. After the col-
lision, they move unperturbed. For large t, the gross features of
this solution are those of the two-soliton solution.

solution. We have already seen that this is the case in the
two-soliton solution, and one can prove the general result
by induction. The reason can be seen by considering the
vector m,'"' of Eq. (6.10). For b, &3 and ~z

~
~co, the

m ~

' component is negligible compared to the other com-
ponent and this is equivalent to taking dI"'~0 [which,
from Eq. (5.1), is the way of generating diagonal metrics].
Thus, the general n-soliton solution for the b, & 3 Kasner
seeds behaves asymptotically as the diagonal n-soliton
solution and the results of Sec. V can be applied. This can
be interpreted as the loss of one of the polarizations in the
asymptotic regions.

Of course, the form of the general n-soliton solutions in
the "near regions" is very different from the two-soliton
and diagonal n-soliton solutions. They have a much rich-
er fine structure, with two polarizations and many extra
parameters. The four-soliton solution of Fig. 3 gives a
hint of what the n-soliton solution will look like. The
solutions with 1(A(3 seeds, which include the Min-
kowski seed, have yet to be studied in detail. They are
more complicated because, from Eqs. (6.9), they do not
tend towards either diagonality or the seed metric as
+~ 00 ~
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