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A set of junction conditions is stated in terms of the Newman-Penrose variables (tetrad vectors
and spin coefficients). It is shown that these conditions are equivalent to those of Darmois and
Lichnerowicz. As an example we study the matching of the Schwarzschild metric with an axially
and reflection-symmetric metric. For this particular example we study the propagation of the Kil-
ling vectors and show how the propagation is conditioned by the fulfillment of the junction condi-
tions.

I. INTRODUCTION

The problem of matching two solutions of the Einstein
equations belonging to two regions (M,M) of the space-
time, separated by a non-null hypersurface (S), is of
greatest relevance in genera1 relativity. Let us just recall
the (trivial) fact that a solution of the Einstein equations
in one of the regions (say M) can be considered as
representing the source of the metric in the other (M),
only if the two metrics can be matched on the boundary of
the source (S). (This last condition is, of course, not a
sufficient one. ) Thus the search for appropriate interior
solutions, whose relevance is obvious, is a task demanding
a clear understanding of the junction conditions.

In the past, researchers have used different sets of junc-
tion conditions indistinctly. The possible differences (or
equivalences) between the different sets being a subject not
well understood.

Recently, Bonnor and Vickers' (hereafter referred to as
BV) studied in detail the three sets of junction conditions
currently used in general relativity, namely, those of Dar-
mois (hereafter denoted by D), O' Brien and Synge (here-
after OS), and Lichnerowicz (hereafter L). Three impor-
tant results emerge from BV.

(a) The conditions of D and L are equivalent.
(b) The conditions of OS are more restrictive than those

of D and L.
(c) The conditions of OS exclude some physically in-

teresting possibilities.
It should be noted, however, that since the conditions of

OS (and also L) are not covariantly stated, (b) and (c) are
true only for a given class of coordinate systems. It is in
principle possible to find a coordinate system in which the
conditions of OS and L (and D) are equivalent. '

In this paper we shall present yet another set of junction
conditions, which, as will be seen below, are equivalent to
the L (and D) conditions. Our set of junction conditions
(hereafter HJ conditions) is stated in terms of the
Newman-Penrose variables (null tetrads and spin coeffi-
cients). This choice of junction conditions presents two
main advantages.

(i) With respect to the L conditions: The junction con-
ditions are partially stated in covariant form (the condi-
tions on the spin coefficients).

(ii) With respect to the D conditions: The quantities on
which the junction conditions are imposed (tetrad vectors
and spin coefficients) are the dynamical variables in the
Newman-Penrose formalism (beside the Riemann tensor
components). Thus no additional calculations are needed
in order to verify if the junction conditions are satisfied.
(One does not need to calculate, for example, the second
fundamental form. )

The paper is organized as follows. In Sec. II, we give
the HJ junction conditions and show the equivalence be-
tween them and the I. conditions. For the sake of com-
pleteness we also include in this section a very brief sum-
mary of the structure of the field equations in the
Newman-Penrose formalism.

In Sec. III, we use the HJ conditions to match an axial-
ly and reflection-symmetric metric with the
Schwarzschild metric. The propagation of the Killing
vectors across the separating hypersurface is studied in
Sec. IV. En Sec. V, we give some conclusions. The Killing
equations in terms of the Newman-Penrose variables are
given in the Appendix A.

II. THE FIELD EQUATIONS
AND THE JUNCTION CONDITIONS

It is known that the field equations in the Newman-
Penrose formalisin consist of three sets of first-order dif-
ferential equations for the following three sets of vari-
ables.

(a) The components of the Riemann tensor decomposed
in its irreducible parts.

(b) The spin coefficients.
(c) The field of tetrads, from which the metric tensor is

built.
In order to treat a physical situation one must incorpo-

rate the Einstein condition

Rp~:K( Tp~ 2 gp~T)

into the full system of equations mentioned above. Equa-
tion (1) is no longer considered as a second-order differen-
tial equation for the g&„s, but a relation linking the Ricci
tensor (geometry) with the energy-momentum tensor
(matter). The three sets of first-order differential equa-
tions with the condition (1) form the gravitational field
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51I' Dm—"=(a+p vr)—l" (p—+~ ~)m"

—gm I'+an",
5ni' Am"—= vl" +—(p y+y—)m" +km"

+ (r a —p)—n",
5m ~ 5m"=—(p —p)l" +(p —a)m"

+(a p)m—"+(p p)n—",
where

(3)

(4)

I"n = —m "m =1,P P

m "m =I"l =n "np ——1"mp ——n "mp ——0,P P

(6)

and the lower-case Greek letters stand for the spin coeffi-
cients. We shall not display the second and the third set
of equations because we do not need them here.

Now we shall state the HJ junctions conditions as fol-
lows.

Two regions M and M separated by a non™null hyper-
surface S are said to match across S if

(1) there exists a coordinate system such that the tetrad
vectors are continuous across S;

(2) the spin coefficients, taken with respect to the con-
tinuous tetrad whose existence is being asserted, are con-
tinuous across S.

We shall now prove that these conditions are equivalent
to the L (and consequently to the D) conditions.

First of all, let us recall that the L conditions demand
the existence of a coordinate system such that the metric
components and their first derivatives are continuous
across S. Next, the continuity of the metric components
is implied by the continuity of the tetrad vectors, as can be
seen at once from the expression

equations in the Newman-Penrose formalism.
We introduce the null tetrad (l,n, m, m) (an overbar

stands for complex conjugation).
The first set of equations (metric equations) reads

Dn~ d l~—= (y—+y)ll'+(~+r)m~+(r+~)m I'

(—a+ r)n",

Let us now consider the metric equations (2)—(5). Us-
ing (6) we get

l„(Dn" b—1") = (—e'+ e ),
n„(Dn" b, l—")= —(y+ y),
m„(Dn" 61—")= (r—+r7),
m„(Dn" 5—1")= —(~+7),
l„(51" Dm—")=~,
n„(51" Dm"—) =(a+P F),—

mp (51"—Dm") =cr,

m„(51" Dm"—) = (p+ e e), —
lz(5n" b,m")—=(r a P—), —
n„(5n"—b,m") = —V,

m„(5n" Am") =——k,
m„(5n P Am") =— (p—y+—y ),
l„(5m "—5m") =(p —p),
n„(5m ~ —5m") =(p —P),
m„(5m " 5m") = ——(a —p),
m„(5m "—5m") = —(a —p) .

(&)

(9)

(10)

(12)

(13)

(14)

(16)

(20)

(21)

(22)

(23)

(g pd d ~)s

and the second fundamental form

(24)

Thus, if the first derivatives of the tetrad vectors
(metric components) are continuous across S, we get from
(12), (14), (17), and (1&) that Ir, o, v, and A, are continuous
across S. Combining (19), (21), and (9), it follows that y
and p are also continuous. The continuity of p and e can
be seen from (20), (15), and (8). Finally, the continuity of

, r, a, and .P follows from (22), (16), (13), and (11).
Thus if the tetrad vectors and their first derivatives are

continuous, all the spin coefficients are continuous, which
proves that the L (and therefore D) conditions imply the
HJ conditions.

Let us now show that the HJ conditions imply the L (or
D) conditions. For simplicity we shall work in this part
with the D instead of the L conditions.

We recall that the D conditions demand that both the
first fundamental form

g~p —2n (~ ip) 2m (~m p)
(P& ~dx dx )s (25)

(the brackets stand for symmetrization). Conversely, it
can be shown that the continuity of the tetrad vectors is
implied by the continuity of the metric components. In
fact, given the metric tensor, the tetrad field is determined
up to (a) a null rotation about lz', (b) a boost in the
l"—n" plane, and a spatial rotation in the m" —m" plane;
(c) a null rotation about n„.

Thus if there exists a coordinate system for which the
metric components are continuous, for that same coordi-
nate system we can demand the tetrad vectors to be con-
tinuous. P"=fl"+gn" +qm" +q m &, — (26)

be continuous across S [in (25) P„ is a unit vector normal
to S]. Now, from (7) it is evident that the continuity of
the tetrad vectors across S implies the continuity of the
first fundamental form. Thus the existence of a coordi-
nate system where the tetrad vectors are continuous across
S guarantees the continuity of the first fundamental form.

Next, let us show that the continuity of the spin coeffi-
cients, taken with respect to the continuous tetrad whose
existence is being asserted, implies the continuity of (25).
The unit vector I'" can be written as
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m'"=m",
n'I'=A, 'n",

(27)

and a null rotation about the vector n 'I"

n "I'=n'",

l "&=l'"+bm '"+bm'&+bbn'",

m ""=m'"+bn'I'
(28)

(both of which, of course, leave the metric unchanged). '
Since A, is an arbitrary real function and b an arbitrary

complex function, we may choose

q=b,

where

fg —w= —,
' .

VA'thout changing the coordinate system, we have the
freedom to perform a "boost" in the I" n—"plane:

I'"=Al",

For the spin coefficients we get

e —2b —2bg] ~r
v=a=0, p=—

e —2b Ve

2r
—(e' )o—U(e'")2

re'e 2b
a= — ~ UI—v 2e

—s ~2e-'
b2 — cot8 —g2

1 rese b V Ze
U, — (b2+g2 —cot8)

4 2 r

1"=e Pj', n" =8() —&;+UP~',
2r

Im~= (e s&p+iescscW~ ),r 2

or in covariant components

V 2b

2r

( Ue st es—5q ie—s sin86„) .
r

(31)

(32)

Doing so we get for P" (we omit the primes)

n"P~=l~+
2

e —2b
re'U(—

2&2
e ~e2b

b2r

(33)

where we have taken into account the condition

P"Pp ——1 .

If we now calculate (25) using (29), then since the co-
variant derivatives of the tetrad vectors are given in terms
of the spin coefficients and the tetrad vectors, the con-
tinuity of those implies the continuity of (25). We have
shown here the equivalence between the HJ and D (and L)
conditions.

e 2e e
re U~+ b22~2 r

cott9 V+go+ —,
2 r

U V
p =—cotO—

2 2r 2

e V2e

2W2r'

III. MATCHING THE SCHWARZSCHILD
METRIC WITH AN AXIALLY

AND REFLECTION-SYMMETRIC METRIC

Let us consider a nonstatic distribution of matter which
is axially and reflection symmetric. In radiation coordi-
nates' the metric takes the form

s = —e2 —Ur e du +2e dudrV

r=r&, (34)

where r
& may be a constant or a function of u.

For the Schwarzschild metric the expressions for the
spin coefficients and the metric functions are

(differentiations with respect to u, r, and 8 are denoted by
subscripts 0, 1, and 2, respectively).

Now we shall match metric (30) with the Schwarzschild
metric on a hypersurface S defined by the equation

cps =Ks =A,s =vs =7Ts =7s =Es =0, (35)

+2Ur e du d8 r(e d8 +e sin 8d—g ),

(30)

1 cot8 —1 2m
ps =—:as = f3s = — ~ ~ p—s =

r 2V 2r 2r r

where U, V, g, and b are functions of u, 0, and r. Here
u—:x is the timelike coordinate, r—:x' is a null coordi-
nate (not an affine parameter), and 8 and P are the usual
angular coordinates.

The associated tetrad may be chosen to be

bs =gs = Us =0
Vs ——r —2m

(36)

(here the subscript S stands for Schwarzschild).
We start by demanding the continuity of all spin coeffi-
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cients. Thus, from the continuity of p and o. we obtain (U)„„+p=o . (49)

(gi).=., +o=o (37) With the first choice, we obtain from (46)

(38)

1 res ~2e
14 v2 r

2—
W2e-'

(cotO —g2)
r =r&+0

cotO
(39)2~2r r =i +o

(b),=., +o=o .

Next, from the continuity of b [which is implied by
(38)] and the continuity of a and P, we get

( V)„„~p——(r —2m )„„,~p, (50)

Thus U and Vshould be continuous across r =T].
It remains to study the continuity of y. We have, using

the previous results,

which implies the continuity of V.
If we consider the second choice, then, because of (46)

and (47) and the continuity of v, we get

[f(u, r)]„„+p——0 .

1 Teg

M2

~2e 'bz vie-&
+ (cotO —g2)

T T r =ri+0
] Vi Vb

+
2 2T 2T

V —2bo
2T 2 r =ri+0

cotO

2v 2r, =,, +p
(40)

2T r=r +02 (51)

Using

(b2), =„,+p=0,

(egUi )„„,+p
——0,

(41)

(42)

Again, observe that bp may be discontinuous across T =T &,
because r& may be a function of u. Unlike gi, we do not
need to demand b& to be continuous. Thus bp may be also
discontinuous. At r =rj + 0, (51) is automatically satis-
fied because

which result from the continuity of b and ~, respectively,
we get from (39) and (40) (V),=,, +p=—(Vs), =, , +p,

(g),=,, +p=0,

(g2)i=i, +p=0

(43) (bo) =,+o=(bi) =,+o=0

To study (51) at r = r i
—0, let us generalize V inside the

matter as follows":
(Ui), „,+p ——0 .

Finally from the continuity of A, and p we have

U
cotO+go + U2 =01

2 r =r)+0
(45)

V =e "[r—2m (r)] .

Obviously

(V)„,
,
= Vg

(52)

U
2
—coto— v

2T 2 r =ri+02+

1 2m
2T T r=r, +0

(46)

Observe that gp could be discontinuous across T =T&, be-
cause T i may be a function of u. However g& is continu-
ous by virtue of (37), it follows that gp is continuous too.

Thus, from (45) we have

U——cotO+ —U2
2 2 2

r =ri+0
(47)

(U)„„,+p
——Us ——0 .

(b) U is of the form

To satisfy (47) we have two possible choices.
(a) If U is a continuous function across r =r„then by

virtue of (36)

if m (r
& )

—=m; feeding back (52) into (51) we obtain

2m
0 =0.

T 2T r=r& —0
(53)

Parenthetically, (53) is the same condition used in Ref. 13
to avoid the presence of 5 functions in the pressure when
studying the contraction of gravitating spheres. In that
reference, this condition appears by inspection of the field
equations. Here we obtain it just by demanding the ap-
propriate junction conditions.

Interestingly enough, the continuity of the metric com-
ponents (tetrad vectors) appears automatically as a conse-
quence of the continuity of the spin coefficients.

Finally, observe that if we choose to use the L instead
of the HJ conditions, in the example above, we have to
make a coordinate transformation since in the coordinate
system we have used, some derivatives of the metric corn-
ponents (bp, b, ) are not continuous.

IV. THE PROPAGATION OF
THE KILLING VECTORS

(U)„„p——f(u, r) sinO, (48)
%'e shall now show how the results of the previous sec-

tion may be applied to the problem of propagation of Kil-
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ling vectors across the hypersurface separating the two re-
gions M and M.

As before, let the metric of the (inner) region M be
given by (30), and the metric of the (outer) region, M, be
the Schwarzchild metric.

In radiation coordinates, as before, let the separating
hypersurface S, be defined by r =r, .

We shall now consider the following problem: Let us
assume that there exist in M a Killing vector (say P), be-
sides the Killing vector of the axial symmetry, such that
on the separating hypersurface r =r&, it coincides with
one of the Killing vectors of M (say gq). We want to
know under which conditions P defines inside M the
same kind of symmetry as defined by Ps in M.

Let us start by considering the timelike Killing vector
of the Schwarzschild metric,

B(u, ri, 8,$)=1,
C(u, ri, 8,$)=0,

we obtain from (Al 1) and (58)

B(u, r, 8,$)=1 .

From (A12) we get the equations

ReC reg
(ReC) = +g&ReC — U&,

Br r 2

a Imc
(ImC) = —g, ImC,

Br r

whose solutions are

ReC(u, r, 8)= e [gU(u, r&, 8)—U(u, r, 8)],
2

(58)

(59)

(60)

(61)

Ps= 2 1 — if+ng, (54) ImC(u, r, 8)=0 . (62)

where the vectors lg, ng together with mf form the tetrad
associated to the Schwarschild metric. They can be ob-
tained at once by putting

b =g =U=O, V=r —2m

into (31) or (32). We get

Feeding back (61) and (62) in (A13), we get

3 =—e —UcotO —U2
r 2b V

r 2

+ —(g2 cot8—)e [U(u, rj, 8) U(u, r, 8)]—

lg=Pj', ng=P(') —, 1 —— P,',2m

Img= (52+icscW&') .
r 2

(55)

ee —te [U(u, ri, 8)—U(u, r, 8)]I&

reb V
2

—cot8U(u, ri, 8)—U2(u, r „8)r

In general, any vector P may be written as

P=Al" +Bn "+ Cm "+Cm ", (56)

where A, 8, and C are functions of the coordinates. Thus
the Killing vector g'~s may be written as

Using (57),

2b

V — 1 —2m
r r

—re b(Ucot8+U, )

P, =Alg+Bng

with

B=1, A= —, 1—2m
r

or equivalently, as can be seen from (33),

P r=rl
(63)

A (u, r|,8,$)= —,
' 1— (57)

Next, assuming that P as given by (56) is a Killing vector
in M such that

Condition (63) is automatically satisfied by virtue of the
continuity of the spin coefficients across S.

Next, let us use the Killing equations which have not
been used yet. From (A8)—(A10) and (A14) and the previ-
ous results, we have

r V
cot8U(u, r &—,8) —Uz(u, ri, 8)

r

2b

2l

2b
—(e )0—U(e )z + [U(u, ri, 8)—U]

2b ,b

2r
t'

+—e z
—cot8U(u, r&, 8)—Uz(u, ri, 8)

r 2b V

r 0

Ur 2b V+ e cot8U(u, r—i,8) Uz(u, ri, 8—)r

V 2b V. re cot8U(u, r„8)—U2(u, r&, 8) =0,4r r2
, 1

(64)



L. HERRERA AND J. JIMENEZ

—2b Ve 2b

2r

—2b
—(e b)0 —U(e )2 +2b2[U(u, r„8)—U]+ 2bre2b —cot8U(u, r„8)—U2(u, r„8) . =0,

r . 1

(65)

e V2e

2v 2r'
r V

2V2 r'
—cot8U(u, r&, 8)—Uz(u, r&, 8) re Ui—

2e2be-&
b2r

re~ V 1
[U(u, r i8) —U] —+g~ —Ug2 —go —U2

2 2r r
2be

z
—cot8U(u, ri, 8) —U2(u, r&, 8)2~2 r . 2

[e~[U(u, r„8)—U]](o — . e~[U(u, r„8) U]—. + Ie~[U(u, r„8)—U']I, =(),vZ ' ' ' 2r 2
' ', vP

r
2

V cot—8U(u, r „8) Uz—(u, r„8) — U gz—cotO i V
2

+so+ 2 r

[es[U(u, ri, 8)—U]Iq—
(g2 —cot8)

[U(u, r „8)—U] =0 . (67)

V Ve

2r 2r

2b
2b 2b 2—(e )0—U(e )2 2r

Using the continuity of the spig coefficients and the
metric components, Eqs. (64)—(67) may be rewritten as

It is easy to check that the violation of any of the junc-
tion conditions automatically destroys the propagation of
the Killing vector inside M. '

As a second example, let us consider one of the Killing
vectors generating the spherical symmetry, namely,

e V e V e V+ +U
2r o 2r 2r 2r

b—e —2b Ve 2b—(e )0 —U(e )2
2b

2r

2b—2b2U+e- Ve

2r

=0, (68)

=0, (69)

(cosP+i cos8 sing)m f2

(cosP —i cos8sing)m ~q .v2
As before, we ask for the condition of existence of a Kil-
ling vector in M

g"=Al" +Bn"+Cm ~+ Cm I"

e Ve ~ V2
re U&—

2V 2r 2V 2r

3 (u, ri, 8,$)=0,
B(u,r„8,$)=0, (73)

V 1

2r r +Si
L

2bV

—US2 —a0 —U2

r
(esU)0

. 2 2

+ (reeU), — (es'U)z ——0,V g Ur
2 2r 2

(70)

(esU)2+ —(gp —cot8) =0 . (71)
2 ' 2

V cotO V
gi — U 82 —

2
+8'0+ 2 U2

B(u, r, 8,$)=0,

ReC (u, r i, 8,$ )
ri

)& exp[g (u, r, 8) g(u, r i, 8)—], (74)

ri
C(u, ri, 8,$)= — (cosP+i cos8sing) .

2

By a systematic inspection of the Killing equations, we
obtain

It follows at once from (68)—(71) that

Vo=&o= Uo=ao=o. (72)

ImC(u, r, 8,$)
ri

Xexp[g(u, ri, 8)—g(u, r,8)],
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and using the junction conditions together with (73),

rReC = — cosges,
2 (75)

in the region M is closely related to the fulfillment of the
junction conditions.

V. CONCLUSIONS

ImC = — cos8 singe
2

Feeding back (75) in (A13) gives

A (u, r, 8,$)=0 . (76)

V2 =~2 =g2 = U2 =O ~ (77)

As in the first example, the propagation of the symmetry

Finally, (74), (75), (76), together with the remaining Kil-
ling equations, lead to

We have seen so far that it is possible to state a set of
appropriate junction conditions solely in terms of tetrads
and spin coefficients. Furthermore, it appears, in some
cases at least, that demanding the continuity of the spin
coefficients implies the continuity of the metric com-
ponents.

Finally, we would like to stress the close relationship
between the propagation of the Killing vectors and the
fulfillment of junction conditions. This should be taken
into account, especially, when constructing material
sources for gravitational fields.

Let

P=Al +Bn +Cm +Cm

be a Killing vector. Then from the expressions

APPENDIX

lz. „——2 Re(y )1&1 +2 Re(e)l&n (a+p)1—&m„(a+p)l—„m ?m&l —Km„v„—

+o m&m +pm&m —~m&l —vm&n +pm&m +curn&m

n„„=—2 Re(.y)n„l„—2 Re(e)nzn„+ (a+p)n&m, +(a+p)n&mz+ vm&l„+?rmzn, Am„m„—pmzm-

+Qmpl +~m @n —p mmmm
—A,

mmmm

mp. «=vi~1«+?rlpn « 17lpl?1 « ——A lpl?l «
—Tnpl„—Known«+pnsm«+cTn~nl«+2l II11(y)m~1«+21 III1(e)1?l~n«

—(a —p)m„rn —(p—a)m„m„.

It can be shown that the Killing equations

Ae -'b Ve 2b

2r I
)0 U(e )2

may be written as

2A Re(y )+2 Re(Cv)+ ~ =0,

2A Re(e) 2B Re(y)+—2Re(C?r)

(Al)

e 2b

e2bv V
e gRe(C)+Ao — A, + UA2 ——0,

2r 2r

Ve 2b —(e )0—U(e )2
2b 2b

2r

(A8)

—2Re(C1.)+DA +b,B=0, (A2) 2v 2e gb2Re(C)

Bv A(a+—p+r) —CA, —Cp 2iC Im(y)—

—5A +b,C=O,

2B Re(e) CK —CK+D—B =0-,
—AK+B(a+p+?r)+Co+C[p 2i Im(e)]—

(A3)

(A4)

5B +DC =0, (A5)—
2A Re(p) —2B Re(p)+2Re[C(a P)]—

—5C —5 C =0, (A6)

ge 2b Ve
—g g —2b

2v 2r2
2e-ge2b

b2

cote 1—C U g2 — +gp+ —U2 ——g)r

U—C —cotO-
2r

V+e A i +Bo— Bi + UB2 ——0, (A9)2r

A cr BA5C —C(a , —P) =—0 . — (A7)
1 g( e A 2 +«cscOA 3 )

2

For the metric (30), the equations (Al) —(A7) take the
form

V—
+CP — C] + UC2 ——0,2r

(A10)
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8) ——0,
e regU&8

v2

e

—2b—e g&c — +e- C,
—2b Ce —2b-

r

(B2e g+iegcscOB, ) =0,
r 2

V
U cotO — + U2r2

(Al 1)

(A12)

—Ae gi —B U g2—cotO i V

2 ' r+go+ 2 U2 — gi
l

(e gC2+iescscOC3)
r 2

u 2e-g
+ (gz —cot8)Re(C)

v'2
Re(e sC2+iegcscOC3) =0, (A13) (gz —cot8) =0 . (A14)Ce
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