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Four-dimensional field equations are derived for perturbations of the seven-sphere size and
squashing parameter in eleven-dimensional supergravity configurations in which the rank-four ten-
sor gauge field strength is proportional to the four-dimensional volume element. Field equations are
also derived for perturbations in the size of a round or squashed Einstein-metric S and in the mag-
nitude of gauge-field-potential components proportional to an antisymmetric torsion tensor on these

seven-spheres.

The known anti—de Sitter—invariant solutions with round or squashed seven-

spheres are shown to be classically stable to these perturbations.

I. INTRODUCTION

There are now known to be a number of one-parameter
families of classical solutions of the field equations of
N =1 supergravity in d =11 dimensions' in which (i) the
fermion field is set equal to zero, (ii) the geometry is the
product of four-dimensional anti—de Sitter spacetime
(AdS) and a compact seven-dimensional space that is to-
pologically the seven-sphere (S7) , and (iii) the rank-four
antisymmetric tensor gauge field strength is AdS invari-
ant. (1) The S7 may be metrically “round” [SO(8) invari-
ant] and the gauge field strength may have the Freund-
Rubin form? purely proportional to the AdS Levi-Civita
tensor, giving N =8 supersymmetry in four-dimensional
spacetime®~% (2) the S’ may be metrically “squashed”
[maintaining only Sp(2)® Sp(1) invariance] by the amount
needed to give the nonstandard Einstein metric on it”®
while the gauge field strength maintains the Freund-
Rubin form, leaving, in four dimensions, either N =1 or
N =0 supersymmetry, depending on the orientation of the
squashing®>®1%; (3) the S7 may be left metrically round
while the gauge field potential is given not only the
Freund-Rubin spacetime components but also components
proportional to an absolutely parallelizing torsion!! for the
S7, breaking all supersymmetry'2~14; or (4) the S7 may be
squashed and the gauge field potential given components
proportional to an antisymmetric torsion which annihi-
lates the Ricci tensor of the squashed S7, again destroying
all supersymmetry.>!10

In each of these solutions the AdS invariance imposed
implies that various quantities are constants over the
four-dimensional spacetime: (a) the size of the S7, (b) the
degree of squashing, (c) the proportionality between the
Freund-Rubin spacetime components of the gauge field
strength and the Levi-Civita tensor, and (d) the propor-
tionality between the S7 components of the gauge field po-
tential and the appropriate torsion. The field equations
give relationships between these constant quantities so
that in each of the families listed above there is only one
free parameter, which may be chosen to be the size of the
S7, for example.

In this paper various combinations of these four quanti-
ties are allowed to vary as Lorentz scalars over the space-
time, and the spacetime components of the metric are also
allowed to vary. The other components of the metric, the
fermion field, and the gauge field are taken to have the
same form at each spacetime point as in the AdS-invariant
solutions and, hence, are determined purely by the four
Lorentz scalars. The 11-dimensional field equations for
these configurations are reduced to four-dimensional field
equations coupling the metric and scalar fields. The sta-
bility of the AdS-invariant solutions (candidate ground
states) is analyzed against perturbations of the Lorentz
scalar fields.

It is found that when the gauge field strength has the
Freund-Rubin form so that the scalar (d) is zero, both (1)
the round S7 and (2) the squashed S7 are classically stable
to both (a) dilations and (b) squashing. The integral of the
dual of the gauge field strength over the compact S’ gives
a conserved “charge” that is constant over the spacetime
in this case and, hence, fixes (c) the coefficient of the
Freund-Rubin components in terms of (a) and (b). This
conserved charge prevents the S7 from being unstable to
changing size or shape if suitable asymptotic conditions
are maintained in the four-dimensional spacetime. With a
fixed value of this charge, the AdS-invariant (1) round
and (2) squashed solutions have different asymptotic con-
ditions (e.g., values of the effective cosmological constant
in spacetime) and cannot tunnel into each other. The con-
served charge and asymptotic conditions thus label dif-
ferent superselection sectors, each with its own vacuum or
ground state, so it is meaningless to ask which is the true
ground state of the system.

When the gauge potential is given nonzero components
in the S7 dimensions, the analysis is simple only when the
S7 is either round or squashed by the precise amount to
give the nonstandard Einstein metric. Therefore, only
these two values of the squashing parameter (b) were con-
sidered, and perturbations in the Lorentz scalars (a), (c),
and (d) were analyzed. Again a conserved charge fixed (c)
in terms of the other two scalars. Both (3) the round En-
glert solution'>~2* and (4) the squashed solution® !> with
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the gauge field components proportional to an S’ torsion
were found to be stable under small perturbations of these
two scalars, (a) the dilations of the S7 and (d) the magni-
tude of the gauge field proportional to the torsion. In
each of these cases the AdS-invariant solution has no resi-
dual supersymmetry by which one might have been led to
expect this stability.

II. GAUGE FIELD STRENGTH
OF THE FREUND-RUBIN FORM

I shall use conventions similar to Duff et al.3—4%10 g0

that the d =11 coordinates X with indices A4,B,... are
decomposed into d =4 spacetime coordinates x with in-

dices a,B,... and d =7 S’ coordinates y with indices
a,b,... When the fermion field is set equal to zero, the
boson field equations are!

R 3 =5F*PEFpcpy — 3c85F PP Feppy (1)
Fupcp =4V 4A4pcp) (2)
= = _M,- - M BCD = -
VAFABQD:—TIGE ! 8 FMI"'M4FM5"‘M8' (3)

A general metric that is locally the direct sum of an arbi-
-trary spacetime metric and a squashed S’ metric may be
written as

ZypdX*dXB=e ‘7“ga3dx adx b

3
2u+3v | L 2, 1 02 2
+e 7 dp’+ g sin’p 3 w;

i=1

3
+e2 =3 o (v; 4 cospw; )? 4

i=1

The last two terms give the squashed S7 metric’ when
vi=0;+2;, w;=0;—2;, with these one-forms satisfying
the SU(2) algebra

do;=— %eijkaj Noy
and
dzi: —%Gijkzj /\Ek .

The S7 (a) size parameter u =u (x) and (b) squashing pa-
rameter v =v (x) are now taken to be scalar functions over
the spacetime. The metric volume of the S7 is 3~ 7%,
and the squashing parameter’® is A’=e ~7°. A Weyl rescal-
ing of the actual spacetime metric §,5=e ~'“g,p has been
performed to simplify the resulting equations for g,g.
That is, g,g(x), u(x), and v(x) will be taken as the basic
gravitational field quantities, and unbarred spacetime cur-
vature tensors and covariant differentiation will be with
respect to g,g. Barred quantities will be with respect to
the full metric g5.

The Freund-Rubin® form for the gauge field strength is
to take all components of Fpcp zero except for the space-
time components

F—aﬂyé =f(x )Eaﬁyﬁ =fe~ 14“60:378 . 5

Taking f to be independent of the S7 coordinates y implies
that the gauge field strength automatically satisfies the in-
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tegrability condition V[ 4 F, scpE)=0 for (2), so in any local
region there is a gauge field potential Agcp giving rise to
this field strength. In a globally hyperbolic spacetime,
which may be foliated by spatial hypersurfaces, the poten-
tial may be chosen locally proportional to the hypersur-
face volume three-form with the scalar function of pro-
portionality integrated along the foliation by (2) to give a
globally defined potential. If, on the other hand, the
spacetime is compact without boundary, no global poten-
tial will exist and the field strength (5) will be closed but
not exact.

Now the gauge field equation (3) applied to (5) in the
metric (4) implies that Q=fe’ is a constant over the
spacetime, SO

Fogys=0e Meypys . (6)

This conserved ‘“charge” Q is, up to a constant of propor-
tionality, the integral of the Hodge dual of the field
strength over the compact seven-dimensional space and
thus is conserved (independent of moving the seven-
dimensional hypersurface, i.e., changing the spacetime
point at which it is chosen) so long as the right-hand side
of (3) vanishes, as it does for the Freund-Rubin field-
strength form.

More generally, if one defines the gauge-potential
three-form

- %ZBCDdXB AdXCAdXP
and the gauge-field-strength four-form
Fe %F_ABCDdXA AdXBAdXCNdXP

then the gauge field equations (2) and (3) may be compact-
ly written as F=dA and

d«F+FNF=d(xF+ANF)=0. (7)

By Stokes’s theorem, the integral of this throughout an
eight-dimensional region may be replaced by an integral of
*«F+A N\ F over the seven-dimensional boundary, which is
thus also zero. If this boundary has two pieces, the in-
tegral is the same on each piece (up to a sign change
which may be eliminated by reversing the orientation of
one of the pieces from that induced from the eight-
dimensional region). In particular, if the 11-dimensional
space has the topology of the product of a Lorentzian
four-dimensional spacetime with a compact seven-
dimensional space, the integral over the latter at fixed x
gives a conserved charge that is independent of the point x
of the spacetime:

(xF+ANF) . (8)

x fixed

Q=—37r""*

All this applies in general under the assumption that the
fermion field vanishes, for otherwise it may provide a
nonzero source term on the right-hand side of (7).

The next task is to solve the 11-dimensional Einstein
equations (1), which, with the gauge field strength given
by (6), become
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Rj=—50Q% '3, O)
Ri=+3Q% "8}, (10)
R§=Rg=0. (11)

An evaluation of the Ricci tensor of the metric (4) in
terms of g,g, u, and v yields

Rg=e™RG+385uil —Su®ug—210'%.5), (12)
5
5

e 4 3vi%) (13)
ES=E%8___R_“=2e—2u+4u+4e—2u—-10v
—e™uiG—2v3), (14)

all other terms zero. Inserting (13) and (14) into (10)
yields the field equations for u and v:

u’;a=% —9u+4v+ 4 -—9u—3v
12  —9uy— 2 —
—2e u IOU_TQZe 21u , (15)
; 4 — 24 9y — 20  —9u—
v;‘t::_?e 9u +4v+ Ze 9u —3v__ Le 9u —10v . (16)

Putting (15) into (12) and equating this to the right-hand
side of (9) gives

R‘;:—?—u;“u;ﬂ+21v;“v;3
+85(— 24~
+6e—9u—100+Q2e—21u) . (17)

The field equations (15)—(17) are the Euler-Lagrange
equations for the effective four-dimensional Lagrangian

L=V —g(R —%s—u;“u;a~2lv;“v;a+6e_9“ +4
+48€ —%u —3v__ 12e—9u—100__2QZe —Zlu) .
(18)

3e —9%u +4v_

(The Weyl rescaling §Gﬂ=e‘7“g,,3 is thus effective in el-

iminating what would otherwise be a u-dependent coeffi-
cient of the scalar curvature of g,g in the four-
dimensional Lagrangian.)

The AdS-invariant ground-state solutions correspond to
setting u =const, v =const, and having the spacetime cur-
vature maximally symmetric:

RaﬂrGZ%A(gargﬂS—gaSggy) . (19)

Equation (16) then implies that either v =v;=0 (the
round S7) or v =v, =+ In5 (the squashed S’ with the non-

standard Einstein metric).”°
First, examine the round S’ and perturbatlons of it.

For v =v; =0, u =u,, Eq. (15) implies that e 2 +0%

and Eq. (17) gives R g=A8§ with
Aj=—12¢ =12+ Q )32,

In the notation of Duff et al.,>~%*!° where F,,,,
=3mg,,,,, we have
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and the cosmological constant of the full spacetime metric

—Tu,
8ap=¢€

8ap= ]ml l 7ga3
is
Ai=e “IAj=—12m2=—12(+ Q)17 (20)

This solution has one free parameter, which may be taken
as the conserved charge Q, the linear size e“! of the S 7
the parameter m, or the cosmological constant of space-
time.

For small perturbations about the AdS-invariant solu-
tion, we linearize Egs. (15) and (16) to obtain

(4 —up ) 8mT2e " Nu —u)=6(—A)u —uy) , @1

Tyt —A . (22)

vig~16e
Since the coefficients on the right-hand sides are positive,
and since the spacetime metric signature is being taken as
(—+++), the round S’ solution is stable to small per-
turbations of both dilations (changes in u) and squashings
(changes in v). Alternately, we can write the four-
dimensional Lagrangian

L=V —g[R —2A1—62—3u;“u;a—21v;“v;a—2V1(u,v)] ,

(23)
where the potential for the scalar fields is
Vi(u,v)=( —Al)[l-—%e_g(u_“‘)
X (e® 8¢~ _20—100)
+%e—21(u—ul)] _ (24)
which has a local minimum at ¥ =u, v =0.
Second, examine the squashed S7, with e s, Equa-

tion (15) implies that a stationary solutlon has ¥ =u, with

e L Loz 100, _ 3-4510/792
and Eq. (17) gives R =A,8% with

Ay=—108e 427 1%2_ 52365512 10|32,
Now Duff’s

m=my=3Qe T 34/35-5/6 |Q | ~%gnQ
0

Q=1385"m, Ssgnm, =2.099 52m, ~Ssgnm, ,

2=3x57my| 7",

Ay=—2%3755|m, |°,

and

Ay=—12m*=—4(37115°|Q | )71/
=37/35—3/3X,~0.88783635A,, (25)

about 11% smaller in magnitude than the full cosmologi-
cal constant A, for the round S’ with the same conserved
charge Q. (The different values of A for the same Q mean
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the round and squashed S’ solutions are in different su-
perselection sectors with different asymptotic behavior of
the corresponding AdS metrics, so their energies cannot be
compared, nor can one tunnel into the other if the asymp-
totic conditions are kept fixed.)

To check the stability of the squashed AdS-invariant
solutions, we linearize Egs. (15) and (16) about u =u,,
UV =0y

(u —u2)§$z648e_9“2_1002(u —uy)=6(—A)u —u,),
(26)

(v—vz)ggz—SOevguz_lovz(v—vﬂ:—%(—-Az)(v—vz) .
27)

The squashed S7 is thus directly seen to be stable to dila-
tions, but it naively appears to be unstable to the exponen-
I

—u—u, v,)

Vy(u,0)=(—Ay){1— e 12567~ 4 400

At fixed v, ¥V, has no maximum as u is varied, so there
can be no unstable equilibrium for the S7 size parameter.
However, at fixed u, V', has a minimum at v =v; =0 (the
round S7) but a maximum at v =v, (the squashed S7).
One might think the squashed AdS-invariant solution
would be unstable to a perturbation in which the S’
squashing parameter v is different from v, in a region of
AdS space, thereby lowering the potential energy in that
region. However, the point of the Breitenlohner-
Freedman argument is that in AdS space the ratio of the
surface area to the volume of a region is always greater
than some numerical constant times (—A)!/2, so the
spatial-gradient terms in (29), needed in order that the per-
turbation go to zero at spatial infinity, dominate the
reduction in the potential energy and make the total ener-
gy of a small perturbation positive if the condition (28) is
satisfied.

Although we have seen that when the gauge field
strength has the Freund-Rubin form, both (1) the round
S7 and (2) the squashed S7 AdS-invariant solutions are
stable to small perturbations in (a) the S” size and (b) the
degree of squashing, we might still ask whether there
could be an instability to tunneling to a configuration with
a large perturbation. If we hold the asymptotic conditions
fixed in the AdS space, this tunneling would conserve the
Abbott-Deser energy'® and so would be possible only if a
perturbed configuration existed with the same energy as
the AdS-invariant configuration. One would expect that
an extension of positive-mass theorems in four-
dimensional supergravity theories!®=21:1617:22 o this 11-
dimensional theory might exclude such perturbed configu-
rations of the same energy in the cases that the AdS-
invariant solution has a residual four-dimensional super-
symmetry.?> If so, this would prove that the round S’
solution with N =8 supersymmetry>~® and the Ileft-
squashed S7 with N =1 supersymmetry>>%1° would be
absolutely stable to all perturbations. The Lagrangian (29)
is the same for both left- and right-handed squashings, so

—3(v—v,)
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tial growth of a change in the squashing parameter v.
However, Breitenlohner and Freedman!®!” have shown
that in AdS spacetime, small perturbations in a test field ¢
with suitable asymptotic boundary conditions are actually
stable if

¢G> —(—A) . (28)

Since 2> < 2, small perturbations in the squashing param-

eter are stable, though only by a small margin of safety.
One may alternately examine the stability of the

squashed AdS-invariant solution by rewriting (18) as

L=V _g[R =2A— S u"%. 4—210'%., —2V,(u,0)] ,
2 B B
(29)

where now with A, rather than A; extracted, the potential
V,=V,+A|—A, for the scalar fields has the form

—10(v —v,) 3 —2Nu—u,)
21+ 7e 7).

—2e . (30

the right-squashed S’ AdS-invariant solution with no su-
persymmetry'® would also be stable to the perturbations
considered in this paper.

To get a feel for whether a large perturbation exists
with the same energy as the unperturbed AdS-invariant
solution, one may consider a momentarily static spherical
configuration. For simplicity, consider a perturbation in a
single canonically normalized field ¢ with the Lagrangian

L=V —g[R—-2A—¢%.,—2V($)] . (31)
For example, we could take u =u, and ¢=V21(v —v,).
If the momentarily static spherical three-metric is written
as

-1
2
11+%_ﬁ":—” dr2+r:d6*+sin*0dg?) , (32)

where b2= —3A !> 0 for the asymptotically AdS config-
uration being considered, then the Einstein equations give,
with ¢ =¢(r),

r_2m

b: r

am _
dr

2

re |14+

ENEN

2
¢ ] + L2060 .
dr

(33)

For a given configuration ¢(r), the solution gives a total
energy

2
® r2 r2 iﬁé_ r2
MEM(oo)=f0 dr vy 1+? dr +*2—V
(s |
© p ,
X exp —fr 5 |2 dr ] . (34)

The configuration must have ¢ tending toward an ex-
tremum of V(¢) [which we will here take to be at $=0,
with ¥V (0)=0 in order that M be defined] faster than
r—3/2 at radial infinity in order that the integral of the
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gradient term converge, and if

94
(OREE (35)
which is equivalent to the Breitenlohner-Freedman condi-
tion (28) for a solution of the field equation ¢ig=0V/d¢,
then M >0 with equality only if ¢(#)=0 for all ». How-
ever, the behavior of the potential (30) for u =u, and
large ¢ is

25

BT A >

_ ¢
HpV=vat V2l

which drops far below the criterion (35) for large ¢. If the
last factor were not present in Eq. (34) for M, one could
easily construct configurations with M <0. Nevertheless,
the exponential factor at the end of the expression for M,
which acts to reduce the magnitude of the local energy
density by a gravitational redshift factor, seems to prevent
M <0 from being possible unless =0 everywhere. Al-
though the integrand may be made negative at small 7, it
must become positive at large r as ¢ approaches zero and
the condition (35) applies. The exponential factor in the
integral for M reduces the effect of the negative contribu-
tion much more than that of the positive contribution and
apparently always keeps M >0 (unless ¢=0), though I
have no rigorous proof of this. It would be interesting to
know the fastest decreasing V (¢) possible that does not al-
low M <0. It can be shown that

5v'6
4

Vs p , (36)

V(¢)~——§—~exp

562 ¢

allows M <O, so the borderline case is presumably asymp-
totically exponential.

III. GAUGE FIELDS HAVING COMPONENTS
PROPORTIONAL TO AN S’ TORSION

In these configurations the gauge field strength not only
has the Freund-Rubin components (5) but also has com-
ponents obtained from differentiating a gauge field poten-
tial proportional to a suitable, totally antisymmetric tor-
sion tensor Sy.4 on the S7. Such a suitable torsion is only
known to exist for the round S’ metric'? and for the
squashed S’ with the nonstandard Einstein metric.% 510
Hence, I shall restrict attention to the metric (4) with ei-
ther v =v;=0o0rv =v2=%ln5.

It is convenient to rewrite the 11-dimensional metric as

g‘ABdXAdXBzg“aﬁdx dx B+ g dy°dy®
=e " ""g pdx ®dx P+ e2g,, dydy® (37)

where now g,, is normalized so R,, =6g,,. [This means
that if v =v,, the new u is the same as the old u in the
metric (4), but if v =v,, the factor of ¢?* in the last term
of (37) is the same as 3725'97¢2* in (4).] Unbarred ten-
sors will be defined and manipulated using the unbarred
metrics g, and g,;; barred tensors will be defined and
manipulated using the barred metrics g g and g,,. The
torsion tensor in the normalized g, obeys the equa-
tions!2 15,10
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S§9cds, =682 , (38)
SabSca®Ses®=3Sbar (39)
Sabe;d =S[abe;d] =Se[abS cld » (40)
s, =0, @
Sabe = — 35 €abedess S I . (42)

On the round S there is also a suitable torsion of the op-
posite handedness,'? but for simplicity I shall just consider
this one, since the other is equivalent under a reversal of
the coordinate orientation and the sign of f.

Now, in addition to the Freund-Rubin components (5),
I shall take the field-strength components

Fpea = —Fppca=Fyesa= —Fpegs =4V 4 Apeq) (43)
with the gauge-potential components
Apea =5+ Speq (44)

where e** gives the appropriate scaling when the S’

metric g, is scaled by e?* to give g,;, and where w =w (x)
is a Lorentz scalar field giving the magnitude of these
gauge-potential components:

ApeqAP¥=re™ 45)

Evaluating the conserved charge (8) yields

Q :qS ’ (46)
q=fe7u_%e6u+2w’ 47)
S=37"*[Vgdly

=1 for v=vy, 3’57 for v =v, . (48)

Holding Q fixed is equivalent to solving the gauge field
Eq. (3) with BCD being spacetime indices. The other non-
trivial gauge field equations to be solved are when BCD
are S7 indices. This yields, using (42),

vAF“Abcd: { %67"[2 —3u +w(3u +w);a];a_4e —5u +w}Sbcd

1 _M1~"M8bcd-— —
=—376€ FMI"'M4FM5'“M8

=2e¢ % +wabcd , (49)

so if 4b9=4e—34+ugbd_r() in order that it may be di-
vided out,

f=—2e "+ 5eMBui +wi —9u'u o +ww.,) .
(50)
The nontrivial Einstein equations (1) become
Rg=c™R§+285ui — Suu p)
= %F *BCPF, BBCD — TlssaﬁFABCDF—ABCD
=— 8§ f24 e tw)
+ 2™ T 2[3(3u 4 wF%(3u 4 w).g
—85(3u +wy"(3u +w),, ], (51
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R} =58}(6e=—e™ui3)
= %F aBCDFbBCD - TIG'SZF_ ABCDFABCD
=8Z[-§—f2+%e—2“+2w
+ e ™ T (3u +w)*(3u +w).,] . (52)

Equations (50) and (52) then give four-dimensional field
equations for u and w:

H — 10 — 2 -
u;g:6e 9u__Te 9u+2w_7e 7uf2

— e (3u +w)‘“(3u 4w, (53)
Wi =10~ +2W_2¢ % | go —Buf

+2e 724 U —w W,

+ +e23u +w)y*3u +w),, . (54)

Inserting (53) into (51) allows us to write the four-
dimensional Einstein equations as

Gg="5u"up+Fe(Bu +wi*Gu +w).p
+83[ ——(’}u;yu;y—%ez"’ﬂu +w)?(3u +w),,
+21e-—9u__7e—9u+2w_e—7uf2] . (55)

Equations (53)—(55) are the Euler-Lagrange equations for
the four-dimensional Lagrangian

L=V_g[R—Zu"%.,
—1e®(3u +w)Bu +w).g—2V(u,w)],
(56)
V(u,w)=—21e =4 7e ~ % +2w

+e'7“(qe —7u+ _47_e —u +2w)2 , (57)
where the explicit expression for f from Eq. (47) has been
inserted, since it is determined by the gauge field equa-
tions in terms of the constant ¢ and the Lorentz scalars u
and w and, hence, is not a dynamical variable if ¥ and w
are.

The potential (57) has no extremum at finite u, w if
Q =¢gS >0, but if Q <0 it has a single extremum at

4
u=u3=+In _Tg
and w=w;=0. This gives f=f3=—2¢ , in agree-

ment with Duff, Nilsson, and Pope!® since their
_ __, 43 o 2~

m=mjy=e so that R,, =6m3g,, at the extremum.
(Their unbarred tensors are equivalent to my barred ten-
sors.) Thus, ¢ =—-2m;~° The total conserved charge
(8) is, by (48),

Q=qg=—2"3X5m; %=—3.75m;°
for the round S7 and

Q=3"5"%q=—2"2385"%m, 6= —2.6244m, ¢

for the squashed S”7, where m; has now been used for the
round S7 and m, for the squashed S’ AdS-invariant solu-

2981

tions in order that these may be compared at a fixed value
of the conserved charge.

The value of the potential (57) at the extremum is
—372

V= —10e = _10| =% =—10m},

15

which is the effective cosmological constant A3 of the
metric g,5. The cosmological constant of the full space-

time AdS metric §,5=€ " ’gqp is then
[.7:] [.7:]

A=e V5= —10e —

=—10m;2.
Expressed in terms of the conserved charge Q,
Ay= 217331735473 _ 0)=173

:(3750Q —1)1/3

=2"3/33-1543X, ~0.897 681 124 , (58)
K4= _21/338/35—1/3( —Q)_1/3

=(2624.4Q~H)'/3

=273/33435—1/38, ~0.796 993 9A, , (59)

where the values are compared at the same
Q =203A,73=5184A,73 .

Since the extremum (existing for Q <0) of the potential
(57) is an absolute minimum, and since the kinetic terms
in the Lagrangian (56) have the usual signs, the AdS-
invariant solutions with gauge-potential “torsion” com-
ponents are absolutely stable to perturbations of the S’
size and the magnitude of the “torsion” components. For
small perturbations, one may linearize Eqgs. (53) and (54)
about u =u3, w=w;=0 and diagonalize the resulting
mass matrix to obtain

1o —9u 1
(U —uz+sw)ig=~60e ~ *(u—us+sw)

=6(—A3)(u —uz+sw) , (60)

9

“w=2—Apw . (61)

wig~20e

Both coefficients are positive, so we see directly that these
small perturbations are stable. Note that neither of these
AdS-invariant solutions have any residual supersymmetry
in four dimensions, so there was no formal argument that
they ought to be stable. Of course, my analysis considers
only two of the very simplest modes and, therefore, does
not prove that the solutions are stable to all perturbations,
though if an instability occurs one would rather expect it
to show up in a fairly simple mode, since more complicat-
ed modes of the full mass matrix are likely to have higher
values of the mass squared.?*

The stability analysis used here for the bosonic degrees
of freedom depended crucially on the constancy of the
“charge” Q over the spacetime when the topology is that
of a product manifold of four-dimensional spacetime with
a compact seven-dimensional space and when the fermion
field vanishes so that (7) is the gauge field equation. One
might ask what effect fermion excitations have on Q. For
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example, could they tend to cause Q to get bigger or
smaller as the spacetime evolved? If Q somehow got
bigger than ~ 10°%, the cosmological constant would be
reduced below the observational limits (A <1072 in
Planck units). However, this would not seem to be a satis-
factory solution, for then the compact space would be
very large so that the coupling constants for the four-
dimensional gauge fields resulting from the symmetries of
the compact space would be unmeasurably small. Also,
the infinite tower of massive states would become very
light, so that presumably we would be able to excite them
and see the effects of the extra dimensions (e.g., move
around in them). But, whether the effects are good or
bad, it would be interesting to know how Q might vary
over spacetime. ’
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