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The quantum state of a spatially closed universe can be described by a wave function which is a
functional on the geometries of compact three-manifolds and on the values of the matter fields on
these manifolds. The wave function obeys the Wheeler-DeWitt second-order functional differential
equation. We put forward a proposal for the wave function of the "ground state" or state of
minimum excitation: the ground-state amplitude for a three-geometry is given by a path integral
over all compact positive-definite four-geometries which have the three-geometry as a boundary.
The requirement that the Hamiltonian be Hermitian then defines the boundary conditions for the
Wheeler-DeWitt equation and the spectrum of possible excited states. To illustrate the above, we

calculate the ground and excited states in a simple minisuperspace model in which the scale factor is
the only gravitational degree of freedom, a conformally invariant scalar field is the only matter de-

gree of freedom and A &0. The ground state corresponds to de Sitter space in the classical limit.
There are excited states which represent universes which expand from zero volume, reach a max-
imum size, and then recollapse but which have a finite (though very small) probability of tunneling

through a potential barrier to a de Sitter-type state of continual expansion. The path-integral ap-
proach allows us to handle situations in which the topology of the three-manifold changes. We esti-

mate the probability that the ground state in our minisuperspace model contains more than one con-
nected component of the spacelike surface.

I. INTRODUCTION

In any attempt to apply quantum mechanics to the
Universe as a whole the specification of the possible
quantum-mechanical states which the Universe can occu-
py is of central importance. This specification determines
the possible dynamical behavior of the Universe. More-
over, if the uniqueness of the present Universe is to find
any explanation in quantum gravity it can only come from
a restriction on the possible states available.

In quantum mechanics the state of a system is specified
by giving its wave function on an appropriate configura-
tion space. The possible wave functions can be construct-
ed from the fundamental quantum-mechanical amplitude
for a complete history of the system which may be regard-
ed as the starting point for quantum theory. ' For exam-
ple, in the case of a single particle a history is a path x(t)
and the amplitude for a particular path is proportional to

exp(iS[x (t)]),
where S[x(t)] is the classical action. From this basic am-
plitude, the amplitude for more restricted observations can
be constructed by superposition. In particular, the ampli-
tude that the particle, having been prepared in a certain
way, is located at position x and nowhere else at time t is

@(x,t) =N f 5x(t)exp(iS[x(t)]) .

Here, X is a normalizing factor and the sum is over a class

of paths which intersect x at time t and which are weight-
ed in a way that reflects the preparation of the system.
g(x, t) is the wave function for the state determined by
this preparation. As an example, if the particle were pre-
viously localized at x' at time t' one would sum over all
paths which start at x' at t' and end at x at t thereby ob-
taining the propagator (x, t ~x', t'). The oscillatory in-
tegral in Eq. (1.2) is not well defined but can be made so
by rotating the time to imaginary values.

An alternative way of calculating quantum dynamics is
to use the Schrodinger equation,

t alb7at =IIlb . (1.3)

'tbp(x, 0)=N J 5x(T)exp( —I[x(r)]), (1.4)

where I[x(r)] is the Euclidean action obtained from S by

This follows from Eq. (1.2) by varying the end conditions
on the path integral. For a particular state specified by a
weighting of paths C, the path integral (1.2) may be
looked upon as providing the boundary conditions for the
solution of Eq. (1.3).

A state of particular interest in any quantum-
mechanical theory is the ground state, or state of
minimum excitation. This is naturally defined by the
path integral, made definite by a rotation to Euclidean
time, over the class of paths which have vanishing action
in the far past. Thus, for the ground state at t=O one
would write

28 2960 1983 The American Physical Society



28 WAVE FUNCTION OF THE UNIVERSE 2961

sending t —+ —i~ and adjusting the sign so that it is posi-
tive.

In cases where there is a well-defined time and a corre-
sponding time-independent Hamiltonian, this definition of
ground state coincides with the lowest eigenfunction of
the Hamiltonian. To see this specialize the path-integral
expression for the propagator (x,t

~

x', t') to t=0 and
x'=0 and insert a complete set of energy eigenstates be-
tween the initial and final state. One has

As in the mechanics of a particle the functional integral
(1.7) implies a differential equation on the wave function.
This is the Wheeler-DeWitt equation which we shall
derive from this point of view in Sec. II. With a simple
choice of factor ordering it is

$2—Gjkt —R(h)h ' +2Ah ' 4'[htj. ]=0,
ij kl

(x,O
~
O, t') = g P„(x)g„(0)exp(iE„t')

n

x texpiSx t

where G,jkl is the metric on superspace,

,Jkt
——

2 h (htkhjt+h;thjk —h,~hkt) (1.10)

where P„(x) are the tiine-independent energy eigenfunc-
tions. Rotate t'~ ir' in—(1.5) and take the limit as
r'~ —oo. In the sum only the lowest eigenfunction (nor-
malized to zero energy) survives. The path integral be-
comes the path integral on the right of (1.4) so that the
equality is demonstrated.

The case of quantum fields is a straightforward general-
ization of quantum particle mechanics. The wave func-
tion is a functional of the field configuration on a space-
like surface of constant time, %=%[/(x), t]. The func-
tional % gives the amplitude that a particular field distri-
bution P(x) occurs on this spacelike surface. The rest of
the formalism is similarly generalized. For example, for
the ground-state wave functional one has

%0[/(x), 0]=N f 5$(x)exp( —I[/(x)]), (1.6)

where the integral is over all Euclidean field configura-
tions for v & 0 which match P(x) on the surface r=0 and
leave the action finite at Euclidean infinity.

In the case of quantum gravity new features enter. For
definiteness and simplicity we shall restrict our attention
throughout this paper to spatially closed universes. For
these there is no well-defined intrinsic measure of the lo-
cation of a spacelike surface in the spacetime beyond that
contained in the intrinsic or extrinsic geometry of the sur-
face itself. One therefore labels the wave function by the
three-metric h;~ writing %=%[h;J]. Quantum dyanmics is
supplied by the functional integral

+[h J ]=N f 5g(x)exp(iSE[g]) . (1.7)

SE is the classical action for gravity including a cosmolog-
ical constant A and the functional integral is over all
four-geometries with a spacelike boundary on which the
induced metric is hj'and which to the past of thai surface
satisfy some appropriate condition to define the state. In
particular for the amplitude to go from a three-geometry
h,z on an initial spacelike surface to a three-geometry h,j'
on a final spacelike surface is

(h;~
~

h J ) = f 5g exp(i' [g]),

where the sum is over all four-geometries which match h,j
on the initial surface and h;~ on the final surface. Here
one clearly sees that one cannot specify time in these
states. The proper time between the surfaces depends on
the four-geometries in the sum.

and R is the scalar curvature of the intrinsic geometry of
the three-surface. The problem of specifying cosmological
states is the same as specifying boundary conditions for
the solution of the Wheeler-DeWitt equation. A natural
first question to ask is what boundary conditions specify
the ground state?

In the quantum mechanics of closed universes we do
not expect to find a notion of ground state as a state of
lowest energy. There is no natural definition of energy for
a closed universe just as there is no independent standard
of time. Indeed in a certain sense the total energy for a
closed universe is always zerc the gravitational energy
canceling the matter energy. It is still reasonable, howev-
er, to expect to be able to define a state of minimum exci-
tation corresponding to the classical notion of a geometry
of high symmetry. This paper contains a proposal for the
definition of such a ground-state wave function for closed
universes. The proposal is to extend to gravity the
Euclidean-functional-integral construction of nonrelativis-
tic quantum mechanics and field theory [Eqs. (1.4) and
(1.6)]. Thus, we write for the ground-state wave function

%0[h,j ]=N f 5g exp( IF.[g]), —

where IE is the Euclidean action for gravity including a
cosmological constant A. The Euclidean four-geometries
summed over must have a boundary. on which the induced
metric is h,j. The remaining specification of the class of
geometries which are summed over determines the ground
state. Our proposal is that the sum should be over com-
pact geometries. This means that the Universe does not
have any boundaries in space or time (at least in the Eu-
clidean regime) (cf. Ref. 3). There is thus no problem of
boundary conditions. One can interpret the functional in-
tegral over all compact four-geometries bounded by a
given three-geometry as giving the amplitude for that
three-geometry to arise from a zero three-geometry, i.e., a
single point. In other words, the ground state is the am-
plitude for the Universe to appear from nothing. In the
following we shall elaborate on this construction and show
in simple models that it indeed supplies reasonable wave
functions for a state of minimum excitation.

The specification of the ground-state wave function is a
constraint on the other states allowed in the theory. They
must be such, for example, as to make the Wheeler-
DeWitt equation Hermitian in an appropriate norm. In
analogy with ordinary quantum mechanics one would ex-

pect to be able to use these constraints to extrapolate the
boundary conditions which determine the excited states of
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the theory from those fixed for the ground state by Eq.
(1.7). Thus, one can in principle determine all the allowed
cosmological states.

The wave functions which result from this specification
will not vanish on the singular, zero-volume three-
geometries which correspond to the big-bang singularity.
This is analogous to the behavior of the wave function of
the electron in the hydrogen atom. In a classical treat-
ment, the situation in which the electron is at the proton
is singular. However, in a quantum-mechanical treatment
the wave function in a state of zero angular momentum is
finite and nonzero at the proton. This does not cause any
problems in the case of the hydrogen atom. In the case of
the Universe we would interpret the fact that the wave
function can be finite and nonzero at the zero three-
geometry as allowing the possibility of topological fluc-
tuations of the three-geometry. This will be discussed fur-
ther in Sec. VIII.

After a general discussion of this proposal for the
ground-state wave function we shall implement it in a
minisuperspace model. The geometrical degrees of free-
dom in the model are restricted to spatially homogeneous,
isotropic, closed universes with S topology, the matter
degrees of freedom to a single, homogeneous, conformally
invariant scalar field and the cosmological constant is as-
sumed to be positive. A semiclassical evaluation of the
functional integral for the ground-state wave function
shows that it indeed does possess characteristics appropri-
ate to a "state of minimum excitation. "

Extrapolating the boundary conditions which allow the
ground state to be extracted from the Wheeler-DeWitt
equation, we are able to go further and identify the wave
functions in the minisuperspace models corresponding to
excited states of the matter field. These wave functions
display some interesting features. One has a complete
spectrum of excited states which show that a closed
universe similar to our own and possessed of a cosmologi-
cal constant can escape the big crunch and tunnel through
to an eternal de Sitter expansion. We are able to calculate
the probability for this transition.

In addition to the excited states we make a proposal for
the amplitudes that the ground-state three-geometry con-
sists of disconnected three-spheres thus giving a meaning
to a gravitational state possessing different topologies.

Our conclusion will be that the Euclidean-functional-
integral prescription (1.7) does single out a reasonable can-
didate for the ground-state wave function for cosmology
which when coupled with the Wheeler-DeWitt equation
yields a basis for constructing quantum cosmologies.

II. QUANTUM CyRAVITY

In this section we shall review the basic principles and
machinery of quantum gravity with which we shall ex-
plore the wave functions for closed universes. For simpli-
city we shall represent the matter degrees of freedom by a
single scalar field P, more realistic cases being straightfor-
ward generalizations. We shall approach this review from
the functional-integral point of view although we shall ar-
rive at many canonical results. None of these are new
and for different approaches to the same ends the reader is
referred to the standard literature.

A. Wave functions

Our starting point is the quantum-mechanical ampli-
tude for the occurrence of a given spacetime and a given
field history. This is

exp(iS[g, g]), (2.1)

The sum is over a class C of spacetimes with a compact
boundary on which the induced metric is h,J and field
configurations which match P on the boundary. The

where S[g,g] is the total classical action for gravity cou-
pled to a scalar field. We are envisaging here a fixed man-
ifold although there is no real reason that amplitudes for
different manifolds may not be considered provided a rule
is given for their relative phases. Just as the interesting
observations of a particle are not typically its entire histo-
ry but rather observations of position at different times, so
also the interesting quantum-mechanical questions for
gravity correspond to observations of spacetime and field
on different spacelike surfaces. Following the general
rules of quantum mechanics the amplitudes for these
more restricted sets of observations are obtained from (2.1)
by summing over the unobserved quantities.

It is easy to understand what is meant by fixing the
field on a given spacelike surface. What is meant by fix-
ing the four-geometry is less obvious. Consider all four-
geometries in which a given spacelike surface occurs but
whose form is free to vary off the surface. By an ap-
propriate choice of gauge near the surface (e.g., CJaussian
normal coordinates) all these four-geometries can be ex-
pressed so that the only freedom in the four-metric is the
specification of the three-metric h;J in the surface. Speci-
fying the three-metric is therefore what we mean by fixing
the four-geometry on a spacelike surface. The situation is
not unlike gauge theories. There a history is specified by
a vector potential A„(x) but by an appropriate gauge
transformation Ao(x) can be made to vanish so that the
field on a surface can be completely specified by the A;(x).

As an example of the quantum-mechanical superposi-
tion principle the amplitude for the three-geometry and
field to be fixed on two spacelike surfaces is

(h;J', P"
~

h'J. ,P') = f 5g5$exp(iS[g, g]), (2.2)

where the integral is over all four-geometries and field
configurations which match the given values on the two
spacelike surfaces. This is the natural analog of the prop-
agator (x",t'

~

x', t') in the quantum mechanics of a sin-
gle particle. We note again that the proper time between
the two surfaces is not specified. Rather it is summed
over in the sense that the separation between the surfaces
depends on the four-geometry being summed over. It is
not that one could not ask for the amplitude to have the
three-geometry and field fixed on two surfaces and the
proper time between them. One could. Such an ampli-
tude, however, would not correspond to fixing observa-
tions on just two surfaces but rather would involve a set of
intermediate observations to determine the time. It would
therefore not be the natural analog of the propagator.

Wave functions 4 are defined by

4'[h,j,g]= f 5g 5g exp(iS[g, g]) . (2 3)
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remaining specification of the class C is the specification
of the state.

If the Universe is in a quantum state specified by a
wave function 4 then that wave function describes the
correlations between observables to be expected in that
state. For example, in the semiclassical wave function
describing a universe like our own, one would expect 4 to
be large when P is big and the spatial volume is small,
large when P is small and the spatial volume is big, and
small when these quantities are oppositely correlated.
This is the only interpretative structure we shall propose
or need.

B. Wheeler-DeWitt equation

A differential equation for 4 can be derived by varying
the end conditions on the path integral (2.3) which defines
it. To carry out this derivation first recall that the gravi-
tational action appropriate to keeping the three-geometry
fixed on a boundary is

Classically the field equation H:5—S/5N =0 is the Ham-
iltonian constraint for general relativity. It is

H=h'~ (K Kj—K'+ R —2A —I T„„)=0, (2.9)

In a similar manner the energy of the rnatter field can be
expressed in terms of the momentum conjugate to the
field m~ and the field itself. Equation (2.8) thus implies
the operator identity H(mtj, hz, m~, g)4=0 with the re-
placernents

where T« is the stress-energy tensor of the matter field
projected in the direction normal to the surface. Equation
(2.8) shows how H =0 is enforced as an operator identity
for the wave function. More explicitly one can note that
the EC,J involve only first-time derivatives of the h;J and
therefore may be completely expressed in terms of the mo-
menta m.

;J conjugate to the h;J which follow from the La-
grangian in (2.6):

(2.10)

('SE=2 f d'x h'~'K+ f d'x( —g)'"(R —2A) .
am M

J— . 5
'5h, ,

' ' '5y (2.11)

ds = (N N;N—')dt +—2N;dx'dt+h;jdx'dx j .

The action (2.4) becomes

l S = f d xh' N[K K'~ K+'R"(h) ——2A],
where explicitly

(2.5)

(2.6)

(2.4)
The second term is integrated over spacetirne and the first
over its boundary. K is the trace of the extrinsic curvature
K,j of the boundary three-surface. If its unit normal is n',
E;.= —V;n in the usual Lorentzian convention. l is the&J & J 1/2 .Planck length (16irG) ~ in the units with ih'=c = 1 we use
throughout. Introduce coordinates so that the boundary is
a constant t surface and write the metric in the standard
3+ 1 decomposition:

These replacements may be viewed as arising directly
from the functional integral, e.g. , from the observation
that when the time derivatives in the exponent are written
in differenced form

i —f 5g 5pe' = f 5g 5$ n'Je'
5hlj

(2.12)

Alternatively, they are the standard representation of the
canonical commuation relations of h;J and m' .

In translating a classical equation like 5S/5N=0 into
an operator identity there is always the question of factor
ordering. This will not be important for us so making a
convenient choice we obtain

l BhJ.
(2.7)

2. —G,,k, +h '~' —'R(h)+2A+l'T„„i-
ij kl

5S0= f 5g5$ exp(iS[g, g)) . (2.8)

More precisely, the value of the integral (2.3) should be
left unchanged by an infinitesimal translation of the in-
tegration variable N. If the measure is invariant under
translation this leads to (2.8). If it is not, there will be in
addition a divergent contribution to the relation which
must be suitably regulated to zero or cancel divergences
arising from the calculation of the right-hand side of (2.8).

and a stroke and R denote the covariant derivative and
scalar curvature constructed from the three-metric h;J.
The matter action S~ can similarly be expressed as a
function of N, N„h;j, and the matter field.

The functional integral defining the wave function con-
tains an integral over N. By varying N at the surface we
push it forward or backward in time. Since the wave
function does not depend on time we must have

X%'[hij,Q] =0 . (2.13)

This is the Wheeler-DeWitt equation which wave func-
tions for closed universes must satisfy. There are also the
other constraints of the classical theory, but the operator
versions of these express the gauge invariance of the wave
function rather than any dynamical inforination.

We should emphasize that the ground-state wave func-
tion constructed by a Euclidean functional-integral
prescription [(Eq. (1.11)] will satisfy the Wheeler-DeWitt
equation in the form (2.13). Indeed, this can be demon-
strated explicitly by repeating the steps in the above
demonstration starting with the Euclidean functional in-
tegral.

C. Boundary conditions

The quantity G,Jk~ can be viewed as a metric on
superspace —the space of all three-geometries (no connec-
tion with supersymmetry). It has signature
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and inversely,

+[h,j]=f 5Kexp +i ', l f d—x h'~ K @[h;,K] .

(2.16)

In each case the functional integrals are over the values of
h'~ or K at each point of the spacelike hypersurface and
we have indicated limits of integration.

The condition (2.14) implies through (2.15) that
4[hO K] is analytic in the lower-half K plane. The con-
tour in (2.16) can thus be distorted into the lower-half K
plane. Conversely, if we are given @[h,&,K] we can recon-
struct the wave function 0' which satisfies the boundary
condition (2.14) by carrying out the integration in (2.16)
over a contour which lies below any singularities of
@[h;J,K] in K.

In the presence of matter K and h,j remain convenient
labels for the wave functional provided the labels for the
matter-field amplitudes P are chosen so that a multiple of
K is canonically conjugate to h' . In cases where the
matter-field action itself involves the scalar curvature this
means that the label P will be the field amplitude rescaled
by some power of h ' . For example, in the case of a con-
formally invariant scalar field the appropriate label is
P=gh'~ . With this understanding we can write for the
functionals

0'=%'[hq, p], @=N[h;J,K,Q] (2.17)

and the transformation formulas (2.15) and (2.16) remain
unchanged.

( —,+,+,+,+,+) and the Wheeler-DeWitt equation is
therefore a "hyperbolic" equation on superspace. It would
be natural, therefore, to expect to impose boundary condi-
tions on two "spacelike surfaces" in superspace. A con-
venient choice for the timelike direction is h' and we
therefore expect to impose boundary conditions at the
upper and lower limits of the range of h'~. The upper
limit is infinity. The lower limit is zero because if h,j is
positive definite or degenerate, h' )0. Positive-definite
metrics are everywhere spacelike surfaces; degenerate
metrics may signal topology change. Summarizing the
remaining functions of h,j by the conformal metric
h,j ——h,j/h '~ we may write an important boundary condi-
tion on 4 as

ql[h, , h'~', P]=0, h'~'&0. (2.14)

Because h' has a semidefinite range it is for many
purposes convenient to introduce a representation in
which h' is replaced by its canonically conjugate vari-
able ——,Xl which has an infinite range. The advan-
tages of this representation have been extensively dis-
cussed. In the case of pure gravity since ——,El and
h '~ are conjugate, we can write for the transformation to
the representation where h;J and K are definite

@[h;,K]= f 5h'~ exp —i —,l f d x h'~ K 0'[h,z]

(2.15)

D. Herrniticity

(2.19)

has the geometric interpretation of a sum over all histories

(4', ql) =K'X f 5g 5P exp(iS[g, g]), (2.20)

where the sum is over histories which lie in class C to the
past of the surface and in the time reversed of class C' to
its future.

The scalar product (2.19) is not the product that would
be required by canonical theory to define the Hilbert space
of physical states. That would presumably involve in-
tegration over a hypersurface in the space of all three-
geometries rather than over the whole space as in (2.19).
Rather, Eq. (2.19) is a mathematical construction made
natural by the functional-integral formulation of quantum
gravity.

In gravity we expect the field equations to be satisfied
as identities. An extension of the argument leading to Eq.
(2.8) will give

f 5g 5$H(x)exp(iS[g, g])=0 (2.21)

for any class of geometries summed over and for any in-
termediate spacelike surface on which H(x) is evaluated.
Equation (2.21) can be evaluated for the particular sum
which enters Eq. (2.20). H(x) can be interpreted in the
scalar product as an operator acting on either +' or %.
Thus,

(Hql', 4) =(O', H%') =0 . (2.22)

fhe Wheeler-DeWitt operator must therefore be Hermi-
tian in the scalar product (2.19).

Since the Wheeler-DeWitt operator is a second-order
functional-differential operator, the requirement of Her-
miticity will essentially be a requirement that certain sur-
face terms on the boundary of the space of three-metrics
vanish and, in particular, at h' =0 and h ' = oo. As in
ordinary quantum mechanics these conditions will prove
useful in providing boundary conditions for the solution
of the equation.

III. GROUND-STATE WAVE FUNCTION

In this section, we shall put forward in detail our pro-
posal for the ground-state wave function for closed
cosmologies. The wave function depends on the topology
and the three-metric of the spacelike surface and on the
values of the matter field on the surface. For simplicity
we shall begin by considering only S topology. Other

The introduction of wave functions as functional in-
tegrals [Eq. (2.3)] allows the definition of a scalar product
with a simple geometric interpretation in terms of sums
over spacetime histories. Consider a wave function 'p de-
fined by the integral

%[h;~,P] =N f 5g 5$ exp(iS[g, g) ), (2.18)

over a class of four-geometries and fields C, and a second
wave function W defined by a similar sum over a class C'.
The scalar product

(0',q)= f 5h 5p% '[h, ,p]%[h,, (()]
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possibilities will be considered in Sec. VIII.
As discussed in the Introduction, the ground-state wave

function is to be constructed as a functional integral of the
orIn

0 p[h&J P] =N f 5g 5$ exp( I[g—,g] ) (3 1)

where I is the total Euclidean action and the integral is
over an appropriate class of Euclidean four-geometries
with compact boundary on which the induced metric is h,z.

and an appropriate class of Euclidean field configurations
which match the value given on the boundary. To com-
plete the definition of the ground-state wave function we
need to give the class of geometries and fields to be
summed over. Gur proposal is that the geometries should
be compact and that the fields should be regular on these
geometries. In the case of a positive cosmological con-
stant A any regular Euclidean solution of the field equa-
tions is necessarily compact. In particular, the solution
of greatest symmetry is the four-sphere of radius 3/A,
whose metric we write as

ds =(o/H) (d8 +sin 8dQi ), (3.2)

where dQ3 is the metric on the three-sphere. M =o. A/3
and we have introduced the normalization factor
cr =12/24m for later convenience. Thus, it is clear that
compact four-geometries are the only reasonable candi-
dates for the class to be summed over when A ~0.

If A is zero or negative there are noncompact solutions
of the field equations. The solutions of greatest symmetry
are Euclidean space (A=0) with

ds =cr (d8 +8 dQ )

and Euclidean anti —de Sitter space (A & 0) with

ds =(cr/H) (d8 +sinh 8dQ3 ) .

(3.3)

(3.4)

Gne might therefore feel that the ground state for A &0
should be defined by a functional integral over geometries
which are asymptotically Euclidean or asymptotically
anti —de Sitter. This is indeed appropriate to defining the
ground state for scattering problems where one is interest-
ed in particles which propagate in from infinity and then
out to infinity again. However, in the case of cosmology,
one is interested in measurements that are carried out in

the interior of the spacetime, whether or not the interior
points are connected to some infinite regions does not
matter. If one were to use asymptotically Euclidean or
anti —de Sitter four-geometries in the functional integral
that defines the ground state one could not exclude a con-
tribution from four-geometries that consisted of two
disconnected pieces, one of which was compact with the
three-geometry as boundary and the other of which was
asymptotically Euclidean or anti —de Sitter with no interi-
or boundary. Such disconnected geometries would in fact
give the dominant contribution to the ground-state wave
function. Thus, one would effectively be back with the
prescription given above.

The ground-state wave function obtained by summing
over compact four-geometries diverges for large three-
geometries in the cases A &0 and the wave function can-
not be normalized. This is because the A in the action
damps large four-geometries when 4 ~0, but it enhances

them when A&0. We shall therefore consider only the
case A & 0 in this paper and shall regard A=O as a limit-
ing caseof A&0.

An equivalent way of describing the ground state is to
specify its wave function in the P, h,J,K representation.
Here too it can be constructed as a functional integral:

@o[h iJK,A]=N f 5g 5/exp( I [g—,g]) . (3.5)

C&[h;J,K,P]= f 5h'~ exp ——', 1 f d x h' 2K

x %[h;J,p], (3.8)

+[A JP]=— . f 5Kexp —", 1 f d x h' K

x 4[h~),K,Q], (3.9)

where the contour C runs from —i oo to +i oo. At the
risk of some confusion we shall continue to use E in the
remainder of this paper to denote the Euclidean E despite
having used the same symbol in Secs. I and II for the
Lorentzian quantity.

There is one advantage to constructing the ground-state
wave function from the functional integral (3.5) rather
than (3.1) and it is the following: the integral in Eq. (3.9)

The sum is over the same class of fields and geometries as
before except that now P, h,j, and K are fixed on the boun-
dary rather than P and h,j. The action I is therefore the
Euclidean action appropriate to holding P, h;1, and K
fixed on a boundary. It is a sum of the appropriate pure
gravitational action which up to an additive constant is

I I~[g]=——,
' f d x h' K—f d xg' (R —2A)

(3.6)

and a contribution from the matter. The latter is well il-
lustrated by the action of a single conformally invariant
scalar field, an example which we shall use exclusively in
the rest of this paper. We have

I [g,y]= , f d' xg'"-[(Vd)'+ ,'Zy']. -(3.7)

These actions differ from the more familiar ones in which

P and h,J are fixed only in having different surface terms.
Indeed, these surface terms are just those required to en-
sure the equivalence of (3.1) and (3.5) as a consequence of
the transformation formulas (2.15) and (2.16). In the case
of the matter action of a conformally invariant scalar field
with P, h,J,K fixed the additional surface term convenient, -

ly cancels that required in the action when p and h; are
fixed.

It is important to recognize that the functional integral
(3.5) does not yield the wave function at the Lorentzian
value of K but rather at a Euclidean value of K. For the
moment denote the Lorentzian value by KL . If the hyper-
surfaces of interest were labeled by a time coordinate t in a
coordinate systein with zero shift [N; =0 in Eq. (2.5)] then
the rotation t~ i ~ and the use of the traditional conven-
tions KL ———V.n and %=V.n will send KL —+ —iK. In
terms of the Euclidean K the transformation formulas
(2.15) and (2.16) can be rewritten to read
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will always yield a wave function +o[h;J.,P) which van-
ishes for h '~ &0 if the contour C is chosen to the right of
any singularities of @o[h;J.,X,P] in Epro'vided @ does not
diverge too strongly in IC T. he boundary condition (2.14)
is thus automatically enforced. This is a considerable ad-
vantage when the wave function is only evaluated approxi-
mately.

The Euclidean gravitational action [Eq. (3.6)] is not
positive definite. The functional integrals in Eqs. (3.1)
and (3.5) therefore require careful definition. One way of
doing this is to break the integration up into an integral
over conformal factors and over geometries in a given
conformal equivalence class. By appropriate choice of the
contour of integration of the conformal factor the integral
can probably be made convergent. If this is the case a
properly convergent functional integral can be construct-
ed.

This then is our prescription for the ground state. In
the following sections we shall derive some of its proper-
ties and demonstrate its reasonableness in a simple minisu-
perspace model.

+0[h;J.) =Nh '~ [b;J]exp( —&,)[h;J]) . (4.1)

Here, I,] is the Euclidean gravitational action evaluated at
the stationary-phase point, that is, at that solution gz' of
the Euclidean field equations

+pv=+gpv ~ (4.2)

which induces the metric h;J. on the closed three-surface
boundary and satisfies the asymptotic conditions dis-
cussed in Sec. III. 6 ' is a combination of determinants
of the wave operators defining the fluctuations about g&'„
including those contributed by the ghosts. We shall focus
mainly on the exponent. For further information on b. in
the case without boundary see Ref. 10.

If there is more than one stationary-phase point, it is
necessary to consider the contour of integration in the
path integal more carefully in order to decide which gives
the dominant contribution. In general this will be the
stationary-phase point with the lowest value of ReI al-
though it may not be if there are two stationary-phase
points which correspond to four-metrics that are confor-
mal to one another. We shall see an example of this in
Sec. VI. The ground-state wave function is real. This
means that if the stationary-phase points have complex
values of the action, there will be equal contributions from

IV. SEMICLASSICAL EXPECTATIONS

An important advantage of a functional-integral
prescription for the ground-state wave function is that it
yields the semiclassical approximation for that wave func-
tion directly. In this section, we shall examine the semi-
classical approximation to the ground-state wave function
defined in Sec. III. For simplicity we shall consider the
case of pure gravity. The extension to include matter is
straightforward.

The semiclassical approximation is obtained by evaluat-
ing the functional integral by the method of steepest des-
cents. If there is only one stationary-phase point the semi-
classical approximation is

2= 2X =exp
3M

(4.4)

The semiclassical approximation for the wave function
gives one considerable insight into the boundary condi-
tions for the Wheeler-DeWitt equation, which are implied
by the functional-integral prescription for the wave func-
tion. As discussed in Sec. II, these are naturally imposed
on three-geometries of very large volumes and vanishing
volumes.

Consider the limit of small three-volumes first. If the
limiting three-geometry is such that it can be embedded in
flat space then the classical solution to (4.2) when A ~ 0 is
the four-sphere and remains so as the three-geometry
shrinks to zero. The action approaches zero. The value of
the wave function is therefore controlled by the behavior
of the determinants governing the fluctuations away from
the classical solution. These fluctuations are to be com-
puted about a vanishingly small region of a space of con-
stant positive curvature. In this limit one can neglect the
curvature and treat the Auctuations as about a region of
flat space. The determinant can therefore be evaluated by
considering its behavior under a constant conformal re-
scaling of the four-metric and the boundary three-metric.
The change in the determinant under a change of scale is
given by the value of the associated g function at zero ar-
gument.

Regular four-geometries contain many hypersurfaces on
which the three-volume vanishes. For example, consider
the four-sphere of radius 8 embedded in a five-
dimensional flat space. The three-surfaces which are the
intersection of the four-sphere with surfaces of x equals
constant have a regular three-metric for ~x

~

&R. The
volume vanishes when ~x

~

=R at the north and south
poles even though these are perfectly regular points of the
four-geometry. One therefore would not expect the wave
function to vanish at vanishing three-volume. Indeed, the
three-volume will have to vanish somewhere if the topolo-

stationary-phase points with complex-conjugate values of
the action. If there is no four-geometry which is a
stationary-phase point, the wave function will be zero in
the semiclassical approximation.

The semiclassical approximation for %0 can also be ob-
tained by first evaluating the semiclassical approximation
to '40 from the functional integral (3.5) and then evaluat-
ing the transformation integral (3.9) by steepest descents.
This will be more convenient to do when the boundary
conditions of fixing h;J and E yield a unique dominant
stationary-phase solution to (4.2) but fixing h,J. does not.

One can fix the normalization constant N in (4.1) by the
requirement

f 5h %0[h;J ]%0[A;J ]= 1 . (4.3)

As explained in Sec. II, one can interpret (4.3) geometri-
cally as a path integral over all four-geometries which are
compact on both sides of the three-surface with the metric
h,z. The semiclassical approximation to this path integral
will thus be given by the action of the compact four-
geometry without boundary which is the solution of the
Einstein field equation. In the case of A &0 the solution
with the most negative action is the four-sphere. Thus,
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V. MINISUPERSPACE MODEL

It is particularly straightforward to construct minisu-
perspace models using the functional-integral approach to
quantum gravity. One simply restricts the functional in-
tegral to the restricted degrees of freedom to be quantized.
In this and the following sections, we shall illustrate the
general discussion of those preceding with a particularly
simple minisuperspace model. In it we restrict the cosmo-
logical constant to be positive and the four-geometries to
be spatially homogeneous, isotropic, and closed so that
they are characterized by a single scale factor. An explicit
metric in a useful coordinate system is

ds =o. [ N(t)dt +a (t)dQ, 3
—], (5 1)

gy of the four-geometry is not that of a product of a
three-surface with the real line or the circle. When the
volume does vanish, the topology of' the three-geometry
will change. One cannot calculate the amplitude for such
topology change from the Wheeler-DeWitt equation but
one can do so using the Euclidean functional integral. We
shall estimate the amplitude in some simple cases in Sec.
VIII.

A qualitative discussion of the expected behavior of the
wave function at large three-volumes can be given on the
basis of the semiclassical approximation when A&0 as
follows. The four-sphere has the largest volume of any
real solution to (4.2). As the volume of the three-
geometry becomes large one will reach three-geometries
which no longer fit anywhere in the four-sphere. We then
expect that the stationary-phase geometries become com-
plex. The ground-state wave function will be a real com-
bination of two expressions like (4.1) evaluated at the
complex-conjugate stationary-phase four-geometries. We
thus expect the wave function to oscillate as the volume of
the three-geometry becomes large. If it oscillates without
being strongly damped this corresponds to a universe
which expands without limit.

The above consideratioris are only qualitative but do
suggest how the behavior of the ground-state wave func-
tion determines the boundary conditions for the Wheeler-
DeWitt equation. In the following we shall make these
considerations concrete in a minisuperspace model.

The Lorentzian action keeping X and a fixed on the boun-
daries is

S=—, fdt—1 2V

a

2

+a —A,aa da 2

X dt
2

a
dt

(5.5)

From this action the rnornenta m, and ~& conjugate to a
and 7 can be constructed in the usual way. The Hamil-
tonian constraint then follows by varying the action with
respect to the lapse function and expressing the result in
terms of a, 7, and their conjugate momenta. One finds

—,( n, a—+la—+m» +X )=0. (5.6)

The Wheeler-DeWitt equation is the operator expres-
sion of this classical constraint. There is the usual
operator-ordering problem in passing from classical to
quantum relations but its particular resolution will not be
central to our subsequent semiclassical considerations. A
class wide enough to remind oneself that the issue exists
can be encompassed by writing

1
7TQ a~

a& Ba Ba
(5.7)

although this is certainly not the most general form possi-
ble. In passing from the classical constraint to its quan-
tum operator form there is also the possibility of a
matter-energy renorrnalization. This will lead to an addi-
tive arbitrary constant in the equation. We thus write for
the quantum version of Eq. (5.6)

1 1 8 8
2 a& Ba Ba

2—a +An — +X —26p2 4 ~ 2

BX

X +(a,X)=0 . (5.8)

A useful property stemming from the conformal invari-
ance of the scalar field is that this equation separates. If
we assume reasonable behavior for the function 4 in the
amplitude of the scalar field we can expand in harmonic-
oscillator eigenstates

where N(t) is the lapse function and o =l /24m For.
the matter degrees of freedom, we take a single confor-
rnally invariant scalar field which, consistent with the
geometry, is always spatially homogeneous, P=P(t). The
wave function is then a function of only two variables:

4(a,X)= g c„(a)u„(X),

where

d2 +X' u„(X)=(n+ —,
' )u„(X) .

2 dX2

(5.9)

(5.10)

% =%(a,P), 4 =C(X,P) .

Models of this general structure have been considered pre-
viously by DeWitt, ' Isharn and Nelson, ' and Blyth and
Isham. '

To simplify the subsequent discussion we introduce the
following definitions and rescalings of variables:

The consequent equation for the c„(a) is

1 1 d den 2 4a~ +(a —Aa )c„=(n+—,—eo)c„.
2 a& da da

(5.11)

For small a this equation has solutions of the form

(5.3) c„=constant, c„=a' (5.12)

&=3k/o, H =, ~A,
~

(5 4)
[ifp is an integer there may be a log(a) factor]. For large
a the possible behaviors are
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c„-a '& + "exp(+ , i—Ha ) . (5.13)

ds =cr [dr +a (~)dQ3 ] (5.14)

for which a(r) matches the prescribed value of ap on the
hypersurface of interest. The prescription for the matter
field would be to sum over homogeneous fields X(r) which
match the prescribed value Xo on the surface and which
are regular on the compact geometry. Explicitly we could
write

0 p(ap Xp) = f 5a 5X exp( I[a,X])—
where, defining dg =d~/a, the action is

(5.15)

2 2

—a+Ra+ dX +x'
de

(5.16)

To construct the solution of Eq. (5.11) which corre-
sponds to the ground state of the minisuperspace model
we turn to our Euclidean functional-integral prescription.
As applied to this minisuperspace model, the prescription
of Sec. III for 4'p(ap, Xo) would be to sum exp( I[g—,g])
over those Euclidean geometries and field configurations
which are represented in the minisuperspace and which
satisfy the ground-state boundary conditions. The geome-
trical sum would be over compact geometries of the form

ways with the aim of advancing arguments that the rules
of Sec. III define a wave function which may reasonably
be considered as the state of minimal excitation and of
displaying the boundary conditions under which Eq. (5.11)
is to be solved.

VI. GROUND-STATE COSMOLOGICAL
WAVE FUNCTION

In this section, we shall evaluate the ground-state wave
function for our minisuperspace model and show that it
possesses properties appropriate to a state of minimum ex-
citation. We shall first evaluate the wave function in the
semiclassical approximation from the steepest-descents
approximation to the defining functional integral as
described in Sec. IV. We shall then solve the Wheeler-
DeWitt equation with the boundary conditions implied by
the semiclassical approximation to obtain the precise wave
function.

It is the exponent of the semiclassical approximation
which will be most important in its interpretation. We
shall calculate only this exponent from the extrema of the
action and leave the determination of the prefactor [cf.
Eq. (4.1)] to the solution of the differential equation.
Thus, for example, if there were a single real Euclidean
extremum of least action we would write for the semiclas-
sical approximation to the functional integral in Eq. (5.15)

A conformal rotation [in this case of a(i) )] is necessary to
make the functional integral in (5.15) converge. '

An alternative way of constructing the ground-state
wave function for the minisuperspace model is to work in
the E representation. Here, introducing

k =o.K/9 (5.17)

as a simplifying measure of K, one would have

@o(ko,Xo) = f 5a 5X exp( —I"[a,X]) . (5.18)

The sum is over the same class of geometries and fields as
in (5.15) except they must now assume the given value of
k on the bounding three-surface. That is, on the boundary
they must satisfy

1 da
3Q d7

(5.19)

The action I appropriate for holding k fixed on the boun-
dary is

I =koao (5.20)

[cf. Eq. (3.6)]. Once @p(kp Xp) llas been computed, the
ground-state wave function Vo(kp, Xp) may be recovered
by carrying out the contour integral

Vp(ap, Xo)= — dk e No(k»o)
1 kao3

2'lTl C
(5.21)

where the contour runs from —i ao to +i ~ to the right
of any singularities of @o(kp,Xo).

From the general point of view there is no difference
between computing Vo(ap, Xo) directly from (5.15) or via
the X representation from (5.21). In Sec. VI we shall cal-
culate the semiclassical approximation to Vo(ao, Xo) both

—I(ao, JO)q p(ap, Xp) X e (6.1)

Here, I(ap, Xp) is the action (5.16) evaluated at the ex-
tremum configurations a(~) and X(r) which satisfy the
ground-state boundary conditions spelled out in Sec. III
and which match the arguments of the wave function on a
fixed-~ hypersurface.

A. The matter wave function

A considerable simplification in evaluating the ground-
state wave function arises from the fact that the energy-
momentum tensor of an extremizing conformally invari-
ant field vanishes in the compact geometries summed
over as a consequence of the ground-state boundary condi-
tions. One can see this because the compact four-
geometries of the class we are considering are conformal
to the interior of three-spheres in flat Euclidean space. A
constant scalar field is the only solution of the conformal-
ly invariant wave equation on flat space which is a con-
stant on the boundary three-sphere. The energy-
momentum tensor of this field is zero. This implies that
it is zero in any geometry of the class (5.14) because the
energy-momentum tensor of a conformally invariant field
scales by a power of the conformal factor under a confor-
mal transformation.

More explicitly in the minisuperspace model we can
show that the matter and gravitational functional integrals
in (5.15) may be evaluated separately. The ground-state
boundary conditions imply that geometries in the sum are
conformal to half of a Euclidean Einstein-static universe,
i.e., that the range of il is ( —ao, O). The boundary condi-
tions at infinite i) are that X(i)) and a(i)) vanish. The
boundary conditions at il =0 are that a(0) and X(0) match
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the arguments of the wave function ao and Xo. Thus, not
only does the action (5.16) separate into a sum of a gravi-
tational part and a matter part, but the boundary condi-
tions on the a(q) and g(g) summed over do not depend
on one another. The matter and gravitational integrals
can thus be evaluated separately.

Let us consider the matter integral first. In Eq. (5.16)
the matter action is

H
k =—cot8 .

3
(6.7)

For three-sphere hypersurfaces of the four-sphere with
an outward pointing normal, k ranges from approaching
+ 0c for a surface encompassing a small region about a
pole to approaching —Do for the whole four-sphere (see
Fig. 1). More exactly, in the notation of Eq. (3.7)

2
dX +x'
dn

(6.2)

The extremum action is constructed through (5.20) with
the integral in (5.16) being taken over that part of the
four-sphere bounded by the three-sphere of given k. It is

This is the Euclidean action for the harmonic oscillator.
Evaluation of the matter field integral in (5.15) therefore
gives

Ig(k) = — 1—k K

3II (x +1)'~ (6.8)

Xo /
'4(uo»o) =e 4o(&o) (6.3)

where

k= T~H .1 (6 9)
Here, $0(a) is the wave function for gravity alone given by

$0(ao)= f 5a exp( —I+[a]), (6.4)
The semiclassical approximation to (6.6) is now

$0(ko) =N exp[ IE(ko—)] . (6.10)

$0(ko)= f 5a exp( IE[a])—. (6.6)

IE"[a] is related to IE as in (5.20) and the sum is over a(r)
which satisfy (5.19) on the boundary. Equation (6.3)
shows that as far as the matter field is concerned,
%0[ao»0] is reasonably interpreted as the ground-state
wave function. The field oscillators are in their state of
minimum excitation —the ground state of the harmonic
oscillator. We now turn to a semiclassical calculation of
the gravitational wave function fo(ao).

IE being the gravitational part of (5.16). Equivalently we
can write in the K representation

2/
'4«0»0) =e ' 4o(ko» (6.5)

where

The wave function $0(ao) in the same approximation
can be constructed by carrying out the contour integral

Po(&0)= — . f dk exp[«o —IE (k)]
l' C

(6.11)

I~(a)= ka +IF (k)—. (6.12)

2=
K

by the method of steepest descents. The exponent in the
integrand of Eq. (6.11) is minus the Euclidean action for
pure gravity with a kept fixed instead of k:

B. The semiclassical ground-state
gravitational wave function

The integral in (6.4) is over a(r) which represent
[through (5.14)] compact geometries with three-sphere
boundaries of radius a. The integral in (6.6) is over the
same class of geometries except that the three-sphere
boundary must possess the given value of k. The compact
geometry which extremizes the gravitational action in
these cases is a part of the Euclidean four-sphere of radius
1/H with an appropriate three-sphere boundary. In the
case where the three-sphere radius is fixed on the boun-
dary there are two extremizing geometries. For one the
part of the four-sphere bounded by the three-sphere is
greater than a hemisphere and for the other it is less. A
careful analysis must therefore be made of the functional
integral to see which of these extrema contributes to the
semiclassical approximation. We shall give such an
analysis below but first we show that the correct answer is
achieved more directly in the K representation from (6.6)
because there is a single extremizing geometry with a
prescribed value of k on a three-sphere boundary and thus
no ambiguity in constructing the semiclassical approxima-
tion to (6.6).

FIG. l. The action I"for the Euclidean four-sphere of radius
1/H. The Euclidean gravitational action for the part of a four-
sphere bounded by a three-sphere of definite K is plotted here as
a function of a (a dimensionless measure of IC [Eq. (6.9)]). The
action is that appropriate for holding K fixed on the boundary.
The shaded regions of the inset figures show schematically the
part of the four-sphere which fills in the three-sphere of given K
used in computing the action. A three-sphere of given K fits in
a four-sphere at only one place. Three-spheres with positive K
(diverging normals) bound less than a hemisphere of four-sphere
while those with negative K (converging normals) bound more
than a hemisphere. The action tends to its flat-space value
(zero) as K tends to positive infinity. It tends to the Euclidean
action for all of de Sitter space as K tends to negative infinity.
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To evaluate (6.11) by steepest descents we must find the
extrema of Eq. (6.12). There are two cases depending on
whether Hap is greater or less than unity.

For Hao & 1 the extrema of IE(k) occur at real values of
k which are equal in magnitude and opposite in sign.
They are the values of k at which a three-sphere of radius
ao would fit into the four-sphere of radius 1/H; That is,
they are those values of k for which Eq. (6.7) is satisfied
with ao ——(sin8/H) . This is not an accident; it is a
consequence of the Hamilton-Jacobi theory. The value of
IE at these extrema is

Po(ao) =N exp[ —I (ao)], Hao & 1, (6.14)

corresponding to filling in the three-sphere with less than
a hemisphere's worth of four-sphere.

From Eq. (4.4) we recover the normalization factor N:

N=exp( ——,H ) . (6.15)

into a steepest-descents path passing through only one of
them —the one with positive k as shown. The functional
integral thus singles out a unique semiclassical approxi-
mation to go(ao) which is

1 [1+(1 H a ) /],
3H

(6 13)
Thus, for Ha o « 1

Po(ao) =exp( —,
'

ao ——,
' H ) . (6.16)

where the upper sign corresponds to k (0 and the lower
to k&0, i.e., to filling in the three-sphere with greater
than a hemisphere of the four-sphere or less than a hemi-
sphere, respectively.

There are complex extrema of Iz but all have actions
whose real part is greater than the real extrema described
above. The steepest-descents approximation to the in-
tegral (6.11) is therefore obtained by distorting the contour
into a steepest-descents path (or sequence of them) passing
through one or the other of the real extrema. The two real
extrema and the corresponding steepest-descents direc-
tions are shown in Fig. 2. One can distort the contour

One might have thought that the extremum I+, which
corresponds to filling in the three-geometry with more
than a hemisphere, would provide the dominant contribu-
tion to the ground-state wave function as exp( I+) is-
greater than exp( I ). —However, the steepest-descents
contour in the integral (6.7) does not pass through the ex-
tremum coresponding to I+. This is related to the fact
that the contour of integration of the conformal factor has
to be rotated in the complex plane in order to make the
path integral converge as we shall show below.

For Hap & 1 there are no real extrema because we can-
not fit a three-sphere of radius ao & 1/H into a four-
sphere of radius 1/H. There are, however, complex extre-
ma of smallest real action located at

1/2

k=+ —H 1—l

H ap
(6.17)

It is possible to distort the contour in Eq. (6.11) into a
steepest-descents contour passing through both of them as
shown in Fig. 3. The resulting wave function has the
form

Rek (H2a 2 1 )3/2

1(to(ao ) =2 cos
3H

Hap&1
4

or for Hap »1
+iHa03/3 iHa03/3—

oao =e +e

(6.18)

(6.19)

FICx. 2. The integration contour for constructing the semi-
classical ground-state wave function of the minisuperspace
model in the case A & 0, IIap ( 1. The figure shows schematical-
ly the original integration contour C used in Eq. (6.11}and the
steepest-descents contour into which it can be distorted. The
branch points of the exponent of Eq. (6.11}at ~=+i are located
by crosses. There are two extrema of the exponent which corre-
spond to filling in the three-sphere of given radius a with greater
than a hemisphere of four-sphere or less than a hemisphere. For
FIap (1 they lie at the equal and opposite real values of E indi-
cated by dots. The contour C can be distorted into a steepest-
descents contour through the extremum with positive K as
shown. It cannot be distorted to pass through the extremum
with negative E in the steepest-descents direction indicated. The
contour integral thus picks out the extremum corresponding to
less than a hemisphere of four-sphere (cf. Fig. 1}as the leading
term in the semiclassical approximation.

IE[a]= z J dq
da

doer

2

—a'+H'a4 (6.20)

If one performed the functional integration

Vo(ao) = f &a(~)exp(-IE[a]) (6.21)

The semiclassical approximation to the ground-state
gravitational wave function Po(a) contained in Eqs. (6.16)
and (6.19) may also be obtained directly from the func-
tional integral (6.4) without passing through the k repre-
sentation. We shall now sketch this derivation. %'e must
consider explicitly the conformal rotation which makes
the gravitational part of the action in (5.16) positive defin-
ite. The gravitational action is



WAVE FUNCTION OF THE UNIVERSE 2971

Rek

In the case of Hap & 1, we have already seen that there
are two real functions a(il) which extremize the action
and which correspond to less than or more than a hemi-
sphere of the four-sphere. Their actions are I and I+,
respectively, given by (6.13). In fact, I is the maximum
value of the action for real a(i)) and therefore gives the
dominant contribution to the ground-state wave function.
Thus, we again recover Eqs. (6.14) and (6.16). In the case
of Hap) 1 there is no maximum of the action for real
a(q). In this case the dominant contribution to the
ground-state wave function comes from a pair of
complex-conjugate a (i) ) which extreinize the action.
Thus, we would expect an oscillatory wave function like
that given by Eq. (6.19).

C

FIG. 3. The integration contour for constructing the semi-
classical ground-state wave function of the minisuperspace
model in the case A & 0, Hao ~ 1. The figure shows schematical-
ly the original contour C used in Eq. (6.11) and the steepest-
descents contour into which it can be distorted. The branch
points of the exponent of Eq. (6.11) at ~=+i are located by
crosses. There are two complex-conjugate extrema of the ex-
ponent as indicated by dots and the contour C can be distorted
to pass through both along the steepest-descents directions at 45'
to the real axis as shown.

|(o(ap) =N exp( IE[a(q)]j) . — (6.22)

If there were another real function a(i)) which extremized
the action but which did not give its maximum value there
would be a nearby real function a(g)+5a(i1) which has a
greater action. By choosing the contour of integration in
(6.21) to cross the real a axis at a(g)+5a(g), one would
get a smaller contribution to the ground-state wave func-
tion. Thus, the dominant contribution comes from the
real function a (i) ) with the greatest value of the action.

It may be that there is no real a(q) which maximizes
the action. In this case the dominant contribution to the
ground-state wave function will come from complex func-
tions a(g) which extremize the action. These will occur
in complex-conjugate pairs because the wave function is
real.

over real values of a, one would obtain a divergent result
because the first, term in (6.20} is negative definite. One
could make the action infinitely negative by choosing a
rapidly varying a. The solution to this problem seems to
be to integrate the variable a in Eq. (6.21}along a contour
that is parallel to the imaginary axis. ' For each value of
g, the contour of integration of a will cross the real axis at
some value. Suppose there is some real function a(i1)
which maximizes the action. Then if one dis-
torts the contour of integration of a at each value of g so
that it crosses the real axis at a(g), the value of the action
at the solution a(i) } will give the saddle-point approxima-
tion to the functional integral (6.21), i.e.,

go(ap)=2(H ao —ap +op+ —, )2 4 2 —1/4

(Ha —1) ~

icos
3H

(6.24)

We could also solve the equation numerically. Figure 4
gives an example when p =0 and eo ————,'. There we have
assumed that the wave function vanishes at a=0. The
dotted lines represent graphs of the prefactor in Eq. (6.24)
and show that the semiclassical approximation becomes
rapidly more accurate as Ha increases beyond 1. We shall
return to an interpretation of these facts below.

D. Correspondence with de Sitter space

Having obtained gp(a), we are now in a position to as-
sess its suitability as the ground-state wave function.
Classically the vacuum geometry with the highest symme-
try, hence minimum excitation, is de Sitter space—the
surface of a Lorentz hyperboloid in a five-dimensional
Lorentz-signatured flat spacetime. The properties of the
wave function contained in Eqs. (6.16) and (6.19) are those
one would expect to be semiclassically associated with this
geometry. Sliced into three-spheres de Sitter space con-
tains spheres only with a radius greater than 1/H. Equa-
tion (6.16) shows that the wave function is an exponential-

C. Ground-state solution of the Wheeler-DeWitt equation

The ground-state wave function must be a solution of
the Wheeler-DeWitt equation for the minisuperspace
model [Eqs. (5.8) or (5.11)j. The exp( —g /2) dependence
of the wave function on the matter field deduced in Sec.
VIA shows that in fact gp(a) must solve Eq. (5.11) with
n =0. There are certainly solutions of this equation which
have the large-a combination of exponentials required of
the semiclassical approximation by Eq. (6.19) as a glance
at Eq. (5.13) shows. In fact the prefactor in these asymp-
totic behaviors shows that the ground-state wave function
will be normalizable in the norm

(go, Pp) = I da aifo(a)4o(&) (6 23)

in which the Wheeler-DeWitt operator is Hermitian.
The Wheeler-DeWitt equation enables us to determine

the prefactor in the semiclassical approximation from the
standard WKB-approximation formulas. With p =0, for
example, this would give when Hao ~ 1
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FIG. 4. A numerical solution of the Wheeler-DeWitt equa-
tion for the ground-state wave function go(a). A solution of Eq.
(5.11) is shown for H =1 in Planck units. We have assumed for
definiteness @=0, eo ———2, and a vanishing wave function at
the origin. The wave function is damped for Ha ~ 1 correspond-
ing to the absence of spheres of radii smaller than H ' in

Lorentzian de Sitter space. It oscillates for Ha &1 decaying
only slowly for large a. This reflects the fact that de Sitter space
expands without limit. In fact, the envelope represented by the
dotted lines is the distribution of three-spheres in Lorentzian de
Sitter space: [Ha (&2a 2 —1 ) '/~]

inclusion of more degrees of freedom in the model would
produce a ground state which resembles our Universe
more closely or it might be that we do not live in the
ground state but in an excited state. Such excited states
are not to be calculated by a simple path-integral prescrip-
tion, but rather by solving the Wheeler-DeWitt equation
with the boundary conditions that are required to main-
tain Hemiticity of the Hamiltonian operator between these
states and the ground state. In this section, we shall con-
struct the excited states for the minisuperspace model dis-
cussed in Sec. VI.

In the minisuperspace model where the spacelike sec-
tions are metric three-spheres all excitations in the gravi-
tational degrees of freedom have been frozen out. We can
study, however, excitations in the matter degrees of free-
dom. These are labeled by the harmonic-oscillator quan-
tum number n as we have already seen [cf. Eq. (5.10)].
The issue then is what solution of Eq. (5.11) for c„(a) cor-
responds to this excited state. The equation can be written
in the form of a one-dimensional Schrodinger equation

where

V(a)= —,'(a —A,a ) . (7.2)

[ (H2~2 1)i/2] —i (6.26)

This is the envelope of the probability distribution
a~

~
P(a)

~

for spheres of radius a deduced from the semi-
classical wave function and shown in Fig. 4. The wave
function constructed from the Euclidean prescription of
Sec. III appropriately reflects the properties of the classi-
cal vacuum solution of highest symmetry and is therefore
reasonably called the ground-state wave function.

VII. EXCITED STATES

Our Universe does not correspond to the ground state
of the simple minisuperspace model. It niight be that the

ly decreasing function with decreasing a for radii below
that radius. Equation (6.24) shows the spheres of radius
larger than 1/H' are found with an amplitude which varies
only slowly with the radius. This is a property expected
of de Sitter space which expands both to the past and the
future without limit. Indeed, tracing the origin of the two
terms in (6.19) back to extrema with different signs of k
one sees that one of these terms corresponds to the con-
tracting phase of de Sitter space while the other corre-
sponds to the expanding phase. The slow variation in the
amplitude of the ground-state wave function reflects pre-
cisely the distribution of three-spheres in classical de
Sitter space. Lorentzian de Sitter space is conformal to a
finite region of the Einstein static universe

ds =o a (il)( —dg +dQs ), (6.25)

where a(t) =(coshHt)/H and dt =adq. Three-spheres are
evidently distributed uniformly in g in the Einstein static
universe. The distribution of spheres in a in Lorentzian
de Sitter space is therefore proportional to

At a =0 Eq. (7.1) will in general have two types of solu-
tions one of which is more convergent than the other [cf.
Eq. (5.12)]. The behavior for the ground state which cor-
responds to the functional-integral prescription could be
deduced from an evaluation of the determinant in the
semiclassical approximation as discussed in Sec. IV.
Whatever the result of such an evalution, the solution
must be purely of one type or the other in order to ensure
the Hermiticity of the Hamiltonian constraint. The same
requirement ensures a similar behavior for the excited-
state solutions. In the following by "regular" solutions we
shall mean those conforming to the boundary conditions
arising from the functional-integral prescription. The ex-
act type will be unimportant to us.

The potential V(a) is a barrier of height 1/(4A, ). At
large a, the cosmological-constant part of the potential
dominates and one has solutions which are linear com-
binations of the oscillating functions in (5.13). As we
have already seen in the analysis of the ground state, the
two possibilities correspond to a de Sitter contraction and
a de Sitter expansion. With either of these asymptotic
behaviors, a wave packet constructed by superimposing
states of different n to produce a wave function with nar-
row support about some mean value of the scalar field
would show this mean value increasing as one moved
from large to small a.

Since each of the asymptotic behaviors in (5.13) is phys-
ically acceptable there will be solutions of (7.1) for all n
If, however, A, is small and n not too large, there are some
values of n which are more important than others. These
are the values which make the left-hand side of (7.1) at or
close to those values of the energy associated with the
metastable states (resonances) of the Schrodinger Hamil-
tonian on the right-hand side. To make this precise write



%'AVE FUNCTION OF THE UNIVERSE

1 1 d dcai' + V(a)c =ac .
2 a&da da

(7.3)

This is the zero angular momentum Schrodinger equation
in d =p+I dimensions for single-particle motion in the
potential V(a). Classically, for @&1/(4A, ) there are two
classes of orbits: bound orbits with a maximum value of a
and unbound orbits with a minimum value of a. Quan-
tum mechanically there are no bound states. For discrete
values of e « I /(4A, ), however, there are metastable states.
They lie near those values of e which would be bound
states if A, =O and the barrier had infinite height. Since
when A, =0 (7.3) is the zero angular momentum
Schrodinger equation for a particle in a "radial"
harmonic-oscillator potential in d =p+ 1 dimensions,
these values are

2N+d/——2, N=0, 1,2, . . . (7.4)

For nonzero X, if the particle has an energy near one of
these values and much less than 1/(4A, ) it can execute
many oscillations inside the well but eventually it will tun-
nel out.

For the cosmological problem the classical Hamiltonian
corresponding to (7.3) describes the evolution of homo-
geneous, isotropic, spatially closed cosmologies with radia-
tion and a cosmological constant. The bound orbits corre-
spond to those solutions for which the radiation density is
sufficiently high that its attractive effect causes an ex-
panding universe to recollapse before the repulsive effect
of the cosmological constant becomes important. By con-
trast the unbound orbits correspond to de Sitter evolutions
in which a collapsing universe never reaches a small
enough volume for the increasing density of radiation to
reverse the effect of the cosmological constant. There are
thus two possible types of classical solutions. Quantum
mechanically the Universe can tunnel between the two.

We can calculate the tunneling probability for small A,

by using the usual barrier-penetration formulas from ordi-
nary quantum mechanics. Let P be the probability for
tunneling from inside the barrier to outside per transversal
of the potential inside from minimum to maximum a.
Then

(7.5)

2

3K
(7.7)

In magnitude this is just the total gravitational action for
the Euclidean four-sphere of radius 1/K which is the ana-
lytic continuation of de Sitter space. This is familiar from
general semiclassical results. '

Our own Universe corresponds to a highly excited state
of the minisuperspace model. We know that the age of
the Universe is about 10 Planck times. The maximum

where
a&8 =2 f da[ V(a) —e]' (7.6)

~o

and ao and ai are the two turning points where V(a) =e.
In the limit of e«1/(4A, ) the barrier-penetration factor
becomes

expansion, assuming a radiation dominated model, is
therefore at least of order a,„=10' . A wave packet
describing our Universe would therefore have to be super-
positions of states of definite n, with n at least
=a~,„=10' . As large as this number is, the dimen-
sionless limit on the inverse cosmological constant is even
larger. Ln order to have such a large radiation dominated
Universe A, must be less than 10 ' . The probability for
our Universe to tunnel quantum mechanically at the mo-
ment of its maximum expansion to a de Sitter-type phase
rather than recollapse is P =exp( —10' ). This is a very
small number but of interest if only because it is nonzero.

VIII. TGPGI.GCrY

In the preceding sections we have considered the ampli-
tudes for three-geometries with S topology to occur in
the ground state. The functional-integral construction of
the ground-state wave function, however, permits a natur-
al extension to calculate the amplitudes for other topolo-
gies. %'e shall illustrate this extension in this section with
some simple examples in the semiclassical approximation.

There is no compelling reason for restricting the topolo-
gies of the Euclidean four-geometries which enter in the
sum defining the ground-state wave function. Whatever
one's view on this question, however, there must be a
ground-state wave function for every topology of a three-
geometry which can be embedded in a four-geometry
which enters the sum. In the general case this will mean
all possible three-topologies Disconnected as well as con-
nected, multiply connected as well as simply connected.
The general ground-state wave function will therefore
have N arguments representing the possibility of N com-
pact disconnected three-geometries. The functional-
integral prescription for the ground-state wave function in
the case of pure gravity would then read

e,[Bm'",h,',", . . . , BM'"', h,'J"']= J 5g exp( —I~[g]),

where the sum is over all compact Euclidean four-
geometries which have N disconnected compact boun-
daries BM" on which the induced three-metrics are h,z'.
Since there is nothing in the sum which distinguishes one
three-boundary from another the wave function must be
symmetric in its arguments.

The wave function defined by (8.1) obeys a type of
Wheeler-DeWitt equation in each argument but this is no
longer sufficient to determine its form —in particular the
correlations between the three-geometries. The functional
integral is here the primary computational tool.

It is particularly simple to construct the semiclassical
approximations to ground-state wave functions for those
three-geometries with topologies which can be embedded
in a compact Euclidean solution of the field equations.
Consider for example the four-sphere. If the three-
geometry has a single connected component and can be
embedded in the four-sphere, then the extremal geometry
at which the action is evaluated to give the semiclassical
approximation is the smaller part of the four-sphere
bounded by this three-geometry. The semiclassical
ground-state wave function is
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%0[hgj ]=Nb '~
[hgj. ]

(8.2)

where M is the smaller part of the four-sphere and K is
the trace of the extrinsic curvature of the three-surface
computed with outward-pointing normals. Since there is
a large variety of topologies of three-surfaces which can
be embedded in the four-sphere —spheres, toruses, etc. ,—
we can easily compute their associated wave functions.
Of course, these are many interesting three-surfaces which
cannot be so embedded and for which the extrernal solu-
tion defining the semiclassical approximation is not part
of the four-sphere. In general one would expect to find
wave functions for arbitrary topologies since any three-
geometry is cobordant to zero and therefore there is some
compact four-manifold which has it as its boundary. The
problem of finding solutions of the field equations on
these four-manifolds which match the given three-
geometry and are compact thus becomes an interesting
one.

Similarly, the semiclassical approximation for wave
functions representing X disconnected three-geometries
are equally easily computed when the geometries can be
embedded in the four-sphere. The extremal geometry de-
fining the semiclassical approximation is then simply the
four-sphere with the N three-geometries cut out of it. The
symmetries of the solution guarantee that as far as the ex-
ponent of the semiclassical approximation is concerned, it
does not matter where the three-geometries are cut out
provided that they do not overlap. To give a specific ex-
ample, we calculate the amplitude for two disconnected
three-spheres of radius a

~ & ~
and a(2~ assuming

a~~] &a~2] &H '. One possible extrernal geometry is two
disconnected portions of a four-sphere attached to the two
three-spheres. This gives a product wave function with no
correlation. Another extrernal geometry is the smaller
half of the four-sphere bounded by the spheres of radius
a~2] with the portion interior to a sphere of radius a[~] re-
moved. This gives an additional contribution to the wave
function which expresses the correlation between the
spheres. The correlated part in the semiclassical approxi-
mation is

+0 (~(l), +(2) ) ~~ (+(I) ~(2) )C —1/2

Xexp [—(1 Ha(2) )—1 2 2 3/2

3H

+ ( 1 —~~a( ) 2] . (8.3)

While the exponent is simple, .the calculation of the deter-
minant is now more complicated —it does not factor.

Equation (8.3) shows that the amplitude to have two
correlated three-spheres of radius a[~] & a~2] &~
smaller than the amplitude to have a single three-sphere of
radius a~2~. In this crude sense topological complexity is
suppressed. The amplitude for the Universe to bifurcate
is of the order exp[ —I/(3H )]—a very large factor.

IX. CONCLUSIONS

The ground-state wave function for closed universes
constructed by the Euclidean functional-integral prescrip-
tion put forward in this paper can be said to represent a
state of minimal excitation for these universes for two
reasons. First, it is the natural generalization to gravity of
the Euclidean functional integral for the ground-state
wave function of flat-spacetime field theories. Second,
when the prescription is applied to simple minisuperspace
models, it yields a semiclassical wave function which cor-
responds to the classical solution of Einstein's equations
of highest spacetime symmetry and lowest matter excita-
tion.

The advantages of the Euclidean function-integral
prescription are many but perhaps three may be singled
out. First it is a complete prescription for the wave func-
tion. It implies not only the Wheeler-DeWitt equation but
also the boundary conditions which determine the
ground-state solution. The requirement of Hermiticity of
the Wheeler-De%"itt operator extends these boundary con-
ditions to the excited states as well.

A second advantage of this prescription for the
ground-state wave function is common to all functional-
integral formulations of quantum amplitudes. They per-
mit the direct and explicit calculation of the semiclassical
approximation. At the current stage of the development
of quantum gravity where qualitative understanding is
more important than precise numerical results, this is an
important advantage. It is well illustrated by our minisu-
perspace model in which we were able to calculate semi-
classically the probability of tunneling between a universe
doomed to end in a big crunch and an eternal de Sitter ex-
pansion.

A final advantage of the Euclidean functional-integral
prescription for the ground-state wave function is that it
naturally generalizes to permit the calculation of ampli-
tudes not usually considered in the canonical theory. In
particular, we have been able to provide a functional-
integral prescription for amplitudes for the occurrence of
three-geometries with multiply connected and disconnect-
ed topologies in the ground state. In the semiclassical ap-
proximation we have been able to evaluate simple exam-
ples of such amplitudes.

The Euclidean functional-integral prescription sheds
light on one of the fundamental problems of cosmology:
the singularity. In the classical theory the singularity is a
place where the field equations, and hence predictability,
break down. The situation is improved in the quantum
theory. An analogous improvement occurs in the problem
of an electron orbiting a proton. In the classical theory
there is a singularity and a breakdown of predictability
when the electron is at the same position as the proton.
However, in the quantum theory there is no singularity or
breakdown. In an s-wave state, the amplitude for the elec-
tron to coincide with the proton is finite and nonzero, but
the electron just carries on to the other side. Similarly, the
amplitude for a zero-volume three-sphere in our minisu-
perspace model is finite and nonzero. One might interpret
this as implying that the universe could continue through
the singularity to another expansion period, although the
classical concept of time would break down so that one
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could not say that the expansion happened after the con-
traction.

The ground-state wave function in the simple minisu-
perspace model that we have considered with a conformal-
ly invariant field does not correspond to the quantum
state of the Universe that we live in because the matter
wave function does not oscillate. However, it seems that
this may be a consequence of using only zero rest mass
fields and that the ground-state wave function for a
universe with a massive scalar field would be much more
complicated and might provide a model of quantum state
of the observed Universe. If this were the case, one would

have solved the problem of the initial boundary conditions
of the Universe: the boundary conditions are that it has
no boundary.
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