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An explanation of the thermal quantum radiance of black holes discovered by Hawking is offered
in terms of a black-hole metric undergoing quantum zero-point fluctuations of zero mean in its
gravitational quasinormal modes. It is shown that such zero-temperature fluctuations, governed by
the uncertainty principle, lead to the formation of a quantum ergosphere that enables matter of all

species to tunnel out of the hole. The results confirm that a black hole cannot be in equilibrium at
zero temperature. A dynamical temperature is calculated by equating the mean irreducible mass as-
sociated with the quantum ergosphere to the mean thermal energy of a quantum oscillator with the
lowest quasinormal frequency. The result agrees with the Hawking temperature to within two per
cent. The nature of the dynamical equilibrium and the higher modes are discussed, and it is calcu-
lated that the thermal excitations of the resonant modes have the canonical distribution to within
several per cent. A calculation of the black-hole entropy using the statistical mechanics of the
quasinormal modes yields a value (0.27654)fi '(16aM ), which is near the value usually assumed,
(0.25)A '(16aM ). Characteristic fluctuation scales are derived. The rms energy fluctuation of the
physical ("dressed") event horizon is about 10' GeV, independent of M. The physical metric fluc-
tuations near the hole are of order unity when the hole has mass=(0. 15) (Planck mass) =1.8)& 10'
GeV.

INTRODUCTION AND OVERVIEW

The thermal quantum radiance of black holes
discovered by Hawking' demonstrated remarkable connec-
tions among gravity, quantum theory, and a thermo-
dynainic interpretation of black-hole mechanics. Such
connections had previously been conjectured and discussed
by Bekenstein. Hawking's demonstration of emission of
energy by black holes put these ideas on a firm basis. Yet
in the treatments of this effect that have appeared to date,
the spacetime of the black hole plays no dynamical role; it
serves only as an arena in which the spontaneous creation
of energy quanta can occur. However, because there re-
sults an observable transfer of energy from the black hole
to large distances, one concludes that there must exist a
dynamical spacetime description of the Hawking effect.
In this paper I give such a description by showing that the
zero-point fluctuations of the metric of the black hole
near its horizon necessarily create a quantum ergo-
sphere" that enables matter of all species to tunnel out of
the hole by a process closely akin to the phenomenon of
evanescence in physical optics. By using a semiclassical
treatment of the quantum-mechanical uncertainty associ-
ated with a simple model spherical black-hole metric os-

cillating in its quasinormal modes, I am able to calculate a
dynamical temperature that differs from the Hawking
temperature by less than 2%%uo. One can also establish from
this model that the thermal excitations of a black hole in
equilibrium are distributed over its quasinormal modes in
accordance with the canonical Boltzmann probability to
an accuracy of better than 4%%uo. As I shall argue, and as
indeed is necessary for the existence of thermal equilibri-
um, the dynamical effects are dominated by the low-
frequency ringing modes. It is possible that a more so-
phisticated metric is needed for more precise results,
though the qualitative nature of the various phenomena
exhibited here is firmly established.

From this treatment it is also possible to calculate by
simple statistical methods, rather than by mechanical-
thermodynamical analogies, the entropy of a black hole.
One finds a value close to the one usually assumed.

In the second section of this paper I summarize some
recent findings concerning the backreaction on the hor-
izon caused by the decay of a black hole "in vacuum. "
This work ignores the zero-point metric fluctuations but
serves to motivate consideration of them. The basic result
is that the emission of energy by an uncharged spherical
hole is necessarily associated with the formation of a
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"quantum ergosphere, " which means that the quasistatic
or timelike limit surface (TLS) must lie a bit outside the
event horizon (EH). In the case of strictly spherical radi-
ance, the TLS coincides with the apparent horizon (AH)."
If A denotes the surface area, then the existence of a quan-
tum ergosphere (QE) is characterized by the fact that
524 QE:j4 TLs 3EH )0. Of course, 5A QE )0 is just the
opposite of what occurs classically when a black hole ac-
cretes energy, so in itself 5AQE) 0 is not surprising when
a black hole is losing energy. What is of interest, howev-
er, is that when the Hawking temperature TH ——iii(8~M)
and luminosity I. =8@% go to zero as M becomes arbi-
trarily large, the quantity 5AQE does not vanish, but takes
on a value determined by Planck's constant and by the
number of species of massless quanta that exist in Nature.
5A QF vanishes in the classical limit R~O.

The nonvanishing of 5AoE as TH approaches zero sug-
gests that zero-temperature vacuum fluctuations of the
spacetime metric of the horizon may play a role in the
phenomenon of quantum radiance. This is the central is-
sue considered in this paper. It addresses the previously
unanswered question as to whether quantum gravity,
through the phenomenon of vacuum or zero-point fluc-
tuations, which are well established for other quantum
fields, is related to and is consistent with quantum radi-
ance as calculated using external quantum fields on a
background whose own quantum-mechanical degrees of
freedom are ignored. (Here I take the attitude that includ-
ing massless propagating spin-2 external fields in the cal-
culation of total luminosity is irrelevant to the issue of the
effect of nonradiative zero-point fluctuations of the
black-hole metric. )

I find that zero-point metric fluctuations, governed
essentially by the uncertainty principle, do play an impor-
tant role. In this introduction, I set out the basic ideas I
have used. Remarkably, one can show that even if one ig-
nores all the quantum fields except gravity, and disregards
all models as to how it came into existence, a black hole
that undergoes vacuum metric fluctuations cannot be in
equilibrium at zero temperature because of a vacuum po-
larization effect ("tidal quadrupolarization") that creates a
quantum ergosphere. One can, in a natural way, calculate
an effective temperature that results from zero-
temperature fluctuations. This is possible because
Ace/k&T is small for all the relevant frequencies. Note
that both the resonant frequencies co and the temperature
T scale with the mass M of the hole as M '. This scaling
property is important because it will enable us to assert
unambiguously that the black hole is "cold." That is, the
"energy level" structure of the hole, as characterized by its
ringing modes, is only slightly excited above its "ground
state" at zero temperature.

There is in these calculations, ostensibly, a problem
with the high frequencies. The temperature T at first
sight appears to vary with the resonant co's. However,
consideration of the nature of the resonances shows how a
black hole is able to come to an equilibrium temperature,
the same for all modes, because the high-frequency reso-
nances are associated with "gravitons" propagating effec-
tively in a "storage ring" near the unstable circular photon
orbit at r =3M. Because of this effect, the modes of an-

gular momentum index I greater than 2 (the lowest) are
not able to any large extent to raise tides at r =2M. On
the other hand, the l =2 modes propagate nearly "freely"
in a radial manner: the quadrupole tides will therefore
dominate in equilibrium. These tides are the central
dynamical mechanism because they necessarily have
slightly different effects on the timelike limit surface, the
apparent horizon, and the event horizon. This creates the
quantum ergosphere and shows that dynamically the radi-
ance is driven by curvature fluctuations, in accordance
with the principle of equivalence. The equilibration of the
tidal effects for the resonant frequencies associated with
l =2,3,4, . . . turns out to be equivalent to a Boltzmann
probability distribution for the thermal excitations of the
black hole that are produced by zero-point fluctuations in
these modes.

The physical and geometrical features of a black-hole
spacetime strongly suggest the use of null surfaces to cal-
culate the quantum effects: ingoing null surfaces (there is
no past event horizon) and outgoing null surfaces, among
which there is "one" that is the future event horizon. Us-
ing null surfaces is analogous to the so-called "infinite-
momentum-frame" quantization in flat spactime. How-
ever, here the metric variables that define these surfaces
are fluctuating, unlike the situation with a fixed "back-
ground" spacetime. This cannot be ignored in the present
problem. For example, the "bare" surface r =2M is no
longer null. One must also face the delicate issue that the
physical event horizon defined in the usual manner is not
locally determined by the incoming characteristic data,
that are here prescribed in such a way as to model the
zero-point fluctuations. Nevertheless, these difficulties
can be overcome and the "background" Schwarzschild
metric plays no role in the results; one uses only the
"dressed" physical surfaces.

In this work the null surface commutation relations
(which are obtained from the gravitational action) are ap-
plied only to the extent of obtaining a meaningful "uncer-
tainty relation" to relate classically averaged metric vari-
ances to Planck's constant. One deals with the physical
components of "transverse" metric fluctuations to obtain
dim ensionless amplitude values e (proportional to
R'~ M '). Hence, the method is semiclassical and
represents only an initial step in a fully quantum-theoretic
treatment of black holes. I avoid the problematical issue
of pseudotensor expressions for gravitational zero-point
energy. The notion of energy enters instead through the
"irreducible mass" associated with geometrically well-
defined areas.

This way of dealing with metric fluctuations is some-
what like Welton's instructive semiclassical treatment of
the Lamb shift. Indeed, the phenomena resulting from
metric zero-point fluctuations of a black hole are physical-
ly analogous to the Lamb shift for an electron in hydrogen
in several ways. In both cases, it is the root-mean-square
(rms) value of a dynamical variable (electron position; hor-
izon location), rather than its mean fluctuation (which is
zero), that determines the physical effect. In both cases,
there is a small splitting of otherwise degenerate energy
levels: In the hydrogen atom, the 2S»2 and 2P&&2 elec-
tron states; in the black hole, the "irreducible" masses that
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can be associated with the timelike limit surface, apparent
horizon, and event horizon. (These surfaces coincide —are
degenerate —for a classical Schwarzschild black hole. ) In
the Lamb shift there are apparent ultraviolet problems
that must be regulated; similarly for the black hole. How-
ever, unlike the Lamb shift, there are no infrared prob-
lems for the black hole: the lowest gravity frequencies for
a given angular mode have very small transmission proba-
bilities through the effective potential barrier and do not
affect the horizon. A more important difference is that
the atom can reach an equilibrium at zero temperature in
a "Hohlraum" while a black hole cannot do so in a zero-
temperature Hohlraum: the hole must acquire a nonzero
temperature. This verifies a conjectured interpretation by
Candelas and Sciama of Hawking's original treatment of
black-hole radiance, ' in which they contrasted the atom
and the black hole, and asserted that a black hole formed
from gravitational collapse would not achieve an equilibri-
um state at temperature zero.

Another physical analogy supports and motivates this
work and its interpretation: the phenomenon of evanes-
cence in physical optics. Suppose an optical electromag-
netic wave in a dense medium undergoes total internal re-
flection at an optically flat surface. If that surface is then
perturbed by sprinkling upon in granules of appropriate
size, the evanescent waves lying along the surface become
real and propagate away. Or, if another similar optical
medium is brought sufficiently near the first one, the
waves will tunnel through the gap and propagate in the
second medium as photons.

For a vacuum black hole, the "flat" surface can be
imagined to be simply the event horizon r =2M in a stan-
dard Eddington-Finkelstein diagram. When this surface
is perturbed, energy radiates out. Now there are, in fact,
purely imaginary resonant modes for every massless spin
for spherical holes. It is known that if one adds some an-
gular momentum to the hole, creating thereby a classical
ergosphere, these modes acquire a -real part and pro-
pagate. ' It is just as if the time direction were rotated a
bit in the complex plane.

When spherical holes undergo vacuum fluctuations, we
will see that this "complex rotation" of the time direction
is essentially ~/2 in the correct sense during part of every
cycle of an oscillation. The imaginary modes can become
purely real part of the time without changing their modu-
li. Those whose frequency values are sufficiently large for
a given total angular momentum (orbital plus spin) can es-
cape from the hole to infinity. This is a tunneling
phenomenon. Another way to picture it is as a blurring or
oscillation of the physical light cone at the unperturbed
horizon r =2M. When the cone opens, energy of every
kind escapes. When it closes, nothing happens if there is
no "matter" nearby. The net result is then leakage of en-
ergy. This verifies Hawking's remark "It should not be
thought unreasonable that. . . because of quantum fluctua-
tions of the metric, energy should be able to tunnel
out. . . of a black hole. " A black hole is thus a quantum
mechanically unstable excited state of spacetime. Its
"slow" instability —leakage of energy —might even be
termed "secular, " though of course there are no dissipa-
tive terms in the usual sense in its Lagrangian. In essence,

there are boundary effects resulting from the boundary
conditions that condition its existence.

I should emphasize that the present "geometrodynami-
cal" treatment of quantum radiance is to be thought of as
complementary to the usual ways of viewing the
phenomenon. Consistency of the "fixed background plus
dynamical external fields" approach and this one, which
has "dynamical background plus no external fields, "
would seem to be significant. Moreover, the present ap-
proach, while being semiclassical and therefore approxi-
mate, has several bonuses besides giving some indications
about the relations of quantum gravity and black holes.
For example, I calculate by a simple statistical method the
entropy and. thermal fluctuations. I also show that one
can find, independently of the mass of the black hole, a
characteristic rms value for the irreducible mass fluctua-
tion of the physical event horizon (-10' GeV). Within
the present approximation, one can discuss the breakdown
of microcausality: the physical metric fluctuation is of
order unity when the dimensionless parameter e is still less
than one (-10 '). This occurs, in the present approxima-
tion, when the black hole has mass =(0.15)&&(Planck
mass).

A known physical feature of black holes that facilitates
these calculations is the "quasinormal mode" spectrum of
gravitational resonances ("ringing modes") that has been
found in classical perturbation theory. " It has been found
that, for each angular momentum index i, a spherical hole
has a sequence of complex resonant frequencies. For each
1 there is one frequency whose Q is much greater than that
of the others; this is called the "fundamental" resonance
for that l. The real part of the fundamental is the greatest
of any of those in the sequence for fixed 1. On the other
hand, the modulus of the fundamental is the least in the
sequence; in other words, the nonfundamental modes are
highly damped. In perturbations of spherical collapse, it
has been found that at "late" times the gravitation radia-
tion occurs at the least-damped quasinormal mode fre-
quencies. ' Hence, in this paper attention will be directed
to these modes only, as they are expected to be charac-
teristic of spacetime fluctuations. This, in essence, is
"phenomenological" input based on results of the classical
theory of small perturbations of black holes. In this paper
the term "resonance" will be reserved for the least-damped
(fundamental) resonance for a given 1.

Each resonant mode of the hole is capable of being
"spontaneously" activated. Classically, they all damp out
to arbitrarily small amplitudes. However, quantum
mechanically one does not expect the damping to be com-
plete; one would expect a residual zero-point uncertainty
in each such mode. These can be thought of as modeling
the zero-point fluctuations of the black hole. However,
there is an important point that must be kept in mind: the
zero-point oscillations cannot be thought of as sharply lo-
calized at the horizon; this would force the amplitude of
metric fluctuations of the horizon to be very large, which
is physically incorrect. What will happen is that the un-
certainty associated with an oscillation of frequency co will
be spread over a region comparable to the wavelength
2n/co. Thus, the quantum ergosphere is a small region
imprinted on the spacetime metric that results from fluc-
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tuations that cannot be regarded physically as being local-
ized to within a region less than the longest relevant wave-
length as determined by a distant observer.

An outline of the contents of this paper follows.
In Sec. II I review the results of a simple treatment of

the backreaction on the horizon of a neutral spherical hole
radiating spherically at a small rate. This work leads, in
Sec. III, to the introduction of a very simple oscillating
black-hole metric. (The Christoffel symbols, curvature
tensors, and related geometric objects derived from this
metric are displayed in the Appendx. ) Section IV con-
tains, for purely illustrative purposes, a calculation of the
location of horizons and other quantities for purely spher-
ical oscillations. The corresponding results for the physi-
cally relevant nonspherical oscillations characterized by
angular indices I )2 and frequencies coI are worked out in
Sec. V. The results through this point may be regarded as
essentially geometrical.

In Sec. VI, I outline the derivation of null-hypersurface
commutation relations. Using these, I adopt a corre-
sponding form of the uncertainty relation and calculate
approximate dimensionless amplitudes for the relevant
physical components of the metric. Section VII contains a
key physical hypothesis that the mean irreducible mass as-
sociated with the splitting of horizons can be identified
with the mean Planckian thermal energy of the field oscil-
lator whose zero-point motion gave rise to the splitting ef-
fect. Effective temperatures are then calculated, and it is
argued from the physical nature of the quasinormal
resonant modes how thermal equilibrium can come about.
This leads to a picture in which Boltzmann probability
factors determined by the dominant (lowest) mode control
the tidal (curvature) effects of the higher modes. I show
in Sec. VIII that the black hole in equilibrium is only
slightly excited from its putative zero-temperature "classi-
cal" state and therefore has, at any "time, " only a very
small statistical entropy, that is independent of its mass
M, from the viewpoint of a distant observer. However,
upon adding up this black-hole entropy as it decays very
slowly into a heat bath with a temperature infinitesimally
less than its own temperature, one finds a result quite
close (=11%) in magnitude to the large thermodynamic
entropy (0.25) AA' ' that is usually attributed to black
holes on the basis of mechanical-thermodynamical analo-
gies.

In Sec. IX, I show that from the equilibrium (Hawking)
temperature and the frequency of the lowest quasinormal
mode, one can calculate the characteristic rms irreducible
mass fluctuation of the physical ("dressed" ) event horizon.
Its value is about 10' CxeV, independent of the black-hole
mass M. I also show that with this model one can obtain
estimates of the spacetime scale for which a breakdown in
microcausality occurs. In Sec. X, I attempt to assess the
indications of these results for future work.

II. BACKREACTION TO BLACK-HOLE RADIANCE

I shall review briefly the response of an uncharged
spherical black hole to a small spherical emission of ener-
gy. In this paper, by "black hole" I shall always mean a
"hole" with a future event horizon (EH) but no past event

horizon. I shall not consider models as to how black holes
form.

The spacetime of a spherical hole can be described by a
metric of the type considered by Bardeen, '

ds = —e &(1—2mr )dv +2e"dvdr

+r2(18 +sin ed' ), (2.1)

where g and m are functions of v and r. The advanced-
time surfaces v =constant are ingoing null surfaces with
null tangent (normal) Bldr. All areas 2 that arise will be
calculated on v =constant surfaces so that r has the usual
invariant geometrical meaning. If g =0 and
m =constant & 0, then (2.1) is the Schwarzschild metric in
(advanced) Eddington-Finkelstein coordinates. If /=0
and m =m(v), (2.1) is a Vaidya metric. The Einstein
equations for (2.1) are B„m = 4m r —T„", d„$=4m rT„„,and

(2.2)

1'=[l",1",I,l&] =[1,—,
' ei"(1—2mr '), 0,0],

Ig =[0,—e i,0,0],

(2 3)

(2.4)

where I use the normalization P, l'= —1.' From (2.1) it
now follows that the two-metric y, b to which p' and l'
are orthogonal is given by

1 ab gab+laPb+lbl3a

yabdx'dxb=r (dB +sin Odp ) .

(2.5)

(2.6)

This is just ds restricted to v =constant. Note that the

where T'b is the effective stress-energy tensor. Near the
horizon of an evaporating hole, in the "Unruh vacuum, "
it is consistent with calculations of the regularized stress-
energy tensor to assume that the T'b's are regular and of
order IA, where I. is the small dimensionless luminosi-
ty. ' If one defines a "Schwarzschild mass" M(v) &0 as
the value of m (v, r) such that g» ——0, one can show that an
observer at rest at r »2M sees a quasistatic geometry
with L -=—dM/dv—:—BmlBv, where -=denotes equality
through the first order in I.«1. The present coordinates
are advantageous in that the components T'b near the
horizon are regular and approximately constant linear
combinations of the physical components T'- that corre-

b

spond to an observer in an orthonormal frame freely fal-
ling at a speed =-c =1. I shall not assume, initially, that
I. has the Hawking form I.~ ——SAM

There are actually three horizonlike loci of importance
for black holes: the timelike (or quasistatic) limit surface
(TLS), the apparent horizon (AH), and the event horizon
(EH). For classical Schwarzschild holes these three coin-
cide at r =2M, which can be regarded as a degeneracy. In
general, these surfaces, of which all will be regarded as
three-dimensional histories of topologically spherical
two-surfaces, do not coincide. Note that we have already
"found" the TI S (g» ——0) by means of the definition of
M(v): r&Ls ——2M(v). The vector BIBv is spacelike for
r Q rTLS

The AH and EH are most easily found by defining in-
going null vectors P' and outgoing null vectors I':
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outgoing null rays are parametrized by the time U of the
distant observer. This is not an affine parameter for those
rays except as r —+ ao.

For an outgoing null ray near r =2M, one finds in
O(L) (dldv—= l'V', )

= —(1—2mr )
dp

(2.7)

=IIi8d S,
dU

where

(2.9)

O=y, bV'l =V, l' —]c

is the expansion of the outgoing rays and

p'lb% b l, —

(2.10)

(2.11)

is the surface gravity when evaluated on a horizon. In the
case of spherical symmetry, from A =4nrand A. =HA
one finds O=r '(1 —2mr '). Therefore, 8=0 at r =2M.
Hence, in this case the TLS coincides with the outermost
"trapped" surface or apparent horizon.

The event horizon is necessarily a null surface and is
defined by the outermost locus traced by outgoing photons
that can "never" reach arbitrarily large distances r. '

Inasmuch as the final state of an evaporating hole is
somewhat problematical, however, one is forced to resort
to a more practical approximate condition to locate the
EH. We look for photons that could only reach large r in
a time comparable to the evaporation time -ML ' »M.
This implies that the EH is accurately located by the
"unaccelerated" or "stuck" photons with i =-0. It follows
from the above, then, that

r =r(4M) '+L (2M)

The contributions of 1l and B,m are negligible in O(L),
which greatly facilitates the calculations. Hence, one can
take /=0 and B„m =0, as there is no effect in the first or-
der. This means that a Vaidya metric is sufficiently accu-
rate for present purposes. Also, in this case r becomes an
affine parameter for the ingoing null rays.

At r =2M, the "velocity" i for photons is zero, but
r'&0 as follows from (2.8). Hence, photons are only
momentarily at rest on r =2M; they subsequently escape
on a dynamical time scale x '=—4M, @=surface gravity.
The r =2M surface is timelike as one can see by substitut-
ing r'=— 2L in—to (2.1}. We now show that r =2M =rTis
is also the AH in the case of spherical symmetry.

The rate of change of area is

gosphere of a rotating (Kerr) black hole. ' Photons or ul-
trarelativistic particles (with y -L ') that originate in
the QE can escape. However, this effect would only
enhance the assumed luminosity in O(L ), a negligible
amount. The main idea is that the QE is the indelible
mark on the metric of a black hole that is losing energy at
a mean rate determined by L.

An invariant measure of QE is provided by the differ-
ence of areas

5AQE ATLS A EH (2.14)

Now, for the first time in this discussion, let us assume
that L has the Hawking form LH BfiM——, where 8 is a
dimensionless barrier factor. ' We can substitute LH into
(2.14) and consider the limit of arbitrarily small Hawking
temperature TH ——fi(8aM) ', that is, let M become very
large. (In this context, "large" means M » 10' g—10 'A', that is, only massless quanta can be produced
at a significant rate. ' ) One sees that in this limit 5AQE is
strictly independent of the mass M and cannot go to zero:

M gE = 128mB%, (2.15)

~EH
Mirred

16m
(2.16)

Here, in order to provide a useful quasilocal measure of
mass energy, following York and Piran, ' I use this defini-
tion for any of the horizonlike loci:

M; ~(H)= A (H)
16m

' 1/2

(2.17)

where B now depends only on the massless quanta that ex-
ist in Nature.

One does not recover fully the classical Schwarzschild
structure for a black hole in the limit considered unless
iii~O. The nonvanishing of 5AQE as TH ~0 suggests con-
sideration of vacuum or zero-temperature fluctuations, the
treatment of which is begun in the next section. Focus of
attention on area is suggested not only because it is a
geometrically well-defined measure, but also because of its
role in the theory of black holes in Bekenstein's conjecture
that the black-hole entropy is proportional to its area, in
Hawking's area theorems, ' and in the concept of "irredu-
cible" mass introduced by Christodoulou and Christo-
doulou and Ruffini.

The irreducible mass associated with an event horizon
of area A is defined by

1/2

rEH:——2L~ OEH = —2LM g 12} where H= TLS, AH, or EH. Hence we have

rEH(U) =2M(1 —4L), AEH—- 16~M (1—8L) . (2.13) M;,d(AH) =M;„,d(TLS) =M (2.18)

The value of rEH agrees with Bardeen's result. ' (This
value is a bit large, by a negligible amount -ML .) One
can show that these values satisfy the Raychadhuri curva-
ture equation for null geodesics.

Because the EH is inside the TLS, in contrast to the
case of accretion of energy [replace L by L in (2.12) and—
(2.13)] the region between the horizons can be called a
"quantum ergosphere" (QE), in analogy to the classical er-

and

M;,d( EH }=M ( 1 4L ) . — (2.19)

Then we are able to associate a mass with the quantum er-
gosphere by means of

MQE Mj~cd ( TLS ) Mj~gd( EH) (2.20)

Thus MQE 4LM from (2.19). T——he reasonableness of the
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definition is confirmed by the observation that L =~MME,
where sc '=—4M is the dynamical time scale of the hole.

III. FLUCTUATING METRIC

I shall model a neutral nonrotating black hole possess-
ing residual zero-point fluctuations with the following
simple metric:

ds = —(1—2mr ')du +2dudr+r d8 +r sin 8dg

(3.1)

where

compute the splitting of the three "horizons. "
The remarkable features alluded to above are that the

Einstein tensor Gb and the Weyl tensor C',& (and hence
the Riemann tensor A', d) are strictly linear in e, as
displayed in the Appendix. In fact, if we adopt the form
(3.2), one finds further that G,b, Gb, and G' are all strict-
ly linear in e. These properties make the statement "the
time average of (3.1) is the classical Schwarzschild
metric" meaningful. I define the time average of a quan-
tity as being over the time u with period 2~/co at fixed
(r, 8,$) and denote it by an overbar. Hence one has, exact-
ly, that

m =m(u, 8)=M+ g(2l+1)eiMhi(v)qi(8) .
I

(3.2) g,b =g,s(Schwarzschild),

Gb ——G b
——G =0,

(3.5a)

(3.5b)
Here, M is a positive constant, l is the angular index,
hi(v) =sincoiu, and qi(8) is a spherical harmonic with az-
imuthal index zero. Because the hole is nearly spherical,
one can use the axisymmetric modes without loss of gen-
erality. All qI s will be normalized by requiring that the
integral of (qi) over the unit sphere is 4'. The coi's are
the resonant or ringing mode frequencies (real parts) for
the given l.

Each oscillator is labeled by / and, for a given l, there
are (21+ I) of them. All oscillators are taken to be un-
correlated and independent. The dimensionless amplitude
parameter ei will be taken in the form

eI ——aIA M (3.3)

where aI is a pure number. The a~'s will later be evaluat-
ed to give (approximately) the correct uncertainty product
for each mode. In the calculations, each oscillator will be
treated separately and the subscript l will be dropped
where no confusion can result.

Although it is unnecessary, one can regard (3.1) as a
(not necessarily small) perturbation of the Schwarzschild
metric in advanced-time Eddington-Finkelstein coordi-
nates. Then, if we set g,b

——g,b(Schwarzschild) + P,i„we
have

h (u)q (8)=A' h (u)q (8) (3.4)

and all other P,b's are zero. This is a metric perturbation
with zero trace with respect to either g,b(Schwarzschild)
or g,s. It has the expected form and dimensions of a bo-
sonic tensor field. The implicit gauge is such that r re-
tains its usual geometric meaning; that is, on u-constant
null surfaces, one has the usual two-sphere metric. Also, r
is an affine parameter for incoming null rays. P,b satis-
fies a "transversality" condition P,bP =0.

The metric (3.1) has a number of remarkable simplify-
ing features that follow from two facts: (1) It can be writ-
ten in the form g,b ——g,b+k, kb, where q, b is flat and k'
is null (with respect to either g~b or g b). (2) The simple
form of m(u, 8) in (3.2). The latter property is assumed
for simplicity; one could have Bm/Br&0, but this does
not materially change the results of this paper while mak-
ing the calculations messier. We shall see that the use of
scalar spherical harmonics in g,„will lead automatically
to the appropriate tensor spherical harmonics when we

C',~ =C'",d ( Schwarzschild),

~d —8 ~d(Scllwalzschlld) .

(3.5c)

(3.5cl)

We see that from the viewpoint of the classical Einstein
equations Gb ——8mTb, the "mean effective stress-energy
tensor of rnatter" Tb is zero. Hence, on average, there is
no "classical" stress energy passing into or out of the hole.
This is an important point for, later, I shall have to com-
pute certain quantities (horizon loci, areas) to second order
in e (with e « 1) while discarding (for calculational pur-
poses) higher-order terms. We shall find the quantum-
radiance-tunneling phenomenon in order e =O(iii), and
we see that the results will be determined strictly by the
properties of horizons and will not be artifacts of having
improperly truncated the curvature terms, which, in ef-
fect, would amount to having introduced by hand some
sort of "classical dissipative matter. " Let me emphasize
that the idea behind this model is to suppose initially that
the black hole can be in equilibrium in a zero-temperature
environment (oscillations of zero mean; no net shrinkage
or growth of the hole). We shall see, however, that it can-
not be because the hole would necessarily be leaking away
its mass were it in empty space. Thus, the results will im-
ply that equilibrium would occur only in a "heat bath" of
nonzero temperature. However, the effective (=Hawking)
temperature that results leaves the modes so unexcited
that feeding the resulting slightly larger mode amplitudes
back into the calculations has negligible consequences.

It is obvious, of course, that T b is not strictly zero at
all times. That is, during part of each cycle, the usual
classical energy conditions are violated at r =2M. How-
ever, such violations occur in the Hawking effect and
must necessarily occur in the case of intrinsic quantum
fluctuations of the metric.

The oscillating metric (3.1) is seen to be a simple gen-
eralized "Vaidya" type in which there is an oscillating
"null fluid. " This is a good approximation, at least as far
as the computation of horizon loci is concerned, for the
black-hole metric in a region from the singularity at r =0
out to the wavelength hr =k = 16.8M of the lowest
resonant mode. (Because r is affine for incoming modes
and co is defined in terms of the time U of a distant ob-
server, I take the period 2m/n as being synonymous with
a radial wavelength measured by r; I do not employ the
"tortoise" radial coordinate r, =r +2M ln

~

r/2M —1
~
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that is appropriate for the usual spacelike slices
t =constant. )

The mass ("mass aspect") m oscillates around the con-
stant mean value M. As m increases, one thinks heuristi-
cally of an absorption of positive "energy" from the past
along U =constant; as m decreases one can think of the ab-
sorption of negative energy from the past. I assume that
such oscillations appropriately normalized at the ringing
frequencies give a good account of residual nonradiative
"quantum noise" or uncertainty in the black-hole metric.

For each l, I shall find the loci and areas of the TLS,
AH, and EH. We note that the TLS is already defined in
the metric (3.1) by the form chosen for the "input pertur-
bation" P,b Sett.ing g» ——0, we find that

rTLs(»8) =2M [1+eh (v)q (8)] . (3.6)

ATLs =16' ( 1+ 2 e ) (3.8)

As expected, there is no linear term in e. The correspond-
ing mean irreducible mass is defined by

1/2

M;,d(TLS) =-
16m.

—=M(1+ —,'e )

=-M+ 4e (3.9)

This surface has a normal that is sometimes spacelike,
sometimes null, and sometimes timelike. The time aver-
age is of course r =2M On . the other hand, we can inter-
sect (3.6) with an incoming null slice u =constant and
compute its area from

2' 7r

ATLs(u)= f [rTLs(u, 8)] sin8d8dg . (3.7)

We are interested only in the mean area and the rms value
of rTis. The mean area is

metric. Nevertheless, the I =0 case will be considered as
an illustrative exercise. Some of the results carry over to
the physically interesting cases l )2.

With q(8) = 1 we have m =M [1+eh (u)] and (3.1) is a
spherically fluctuating Vaidya metric. From a "classical"
viewpoint, the only piece of the stress-energy tensor that is
not precisely zero is

Tp E'coM coscoU
ab v

4mr
(4.1)

for which T,"=0. Just as in Sec. II, we find for the outgo-
ing null geodesics

1r'= —,(1 —2mr '), 8=—(1—2mr ') .
r

(4.2)

rEH ——2M [1+ef(v)+e A(u)] . (4.3)

In computing mean areas, it will never be necessary to
know explicitly the second-order term A, (v) because it will
be periodic and make no contribution to the mean area in
0 (e ). However, here I shall find both f (u) and A,(u) to il-
lustrate the procedure, which is elementary.

We have

Hence the TLS and AH coincide at r =2m (u). Clearly
rTi s rAH =——2M. The mean areas are both given by (3.8).

The event horizon is found by simply requiring that it
be a null surface near r =2M. This is justified by the as-
sumption of equilibrium and of periodic oscillations with
r =2M as the mean value. We can simply solve the first-
order equation for r'=drldv in (4.2); the second-order
forms of the equations we solve yield the same results.
Throughout this work, I shall need only the first-order
null radial equations because I am interested only in the
average properties of the outgoing null trajectories. We
set

where, anticipating that e «1, I have retained only the
second-order correction. From here on, I shall drop the
subscript "irred" and denote mean irreducible masses by
M (surface). It is important that this quantity is not de-
fined by the mean value of r, which will always be 2M.

That ATLs ~ 16~M and MTL»M is expected because
the bare black hole is dressed by the "kinetic energy" of
the oscillation. Hence, M and 3 =16aM have no direct
physical significance. The significant quantities will in-
volve the differences among ATLs, A&H, AEH, and among
MTLs, M~H, MEH. One sees that the gauge freedom
through O(e ) in choosing the vector field 8/Bu that de-
fines the TLS will, therefore, not affect the results, which
depend only on differences of areas.

1 — =e(f —h)+e (A, —f +Af) .
rEH(v)

(4 4)

This gives the O(e) and O(e ) equations

f—af = —~h,
A, —~A, = —~(f —hf),

(4.5)

(4.6)

f (u) =(1+16o ) '(si co n+u4cr coscov), (4.7)

where o.=cd is the dimensionless frequency. Note that

where ~= (4M)
First solve (4.5). The solution has a spurious (homo-

geneous) part exp(au) that I discard. It is present even for
a static metric and has nothing to do with the EH. We
find

IV. SPHERICAL OSCILLATIONS

It is helpful first to illustrate some of the calculations in
the case of spherical oscillations: 1 =O,qo(8) = 1. Of
course, in general relativity a black hole has no oscillatory
spherical gravitational modes. Also, because we are con-
sidering electrically neutral holes, we shall not consider
any 1 = 1 modes of amplitude 0 (e)=0 (iii' ) in the

1 1

1+16' (4.8)

so that the amplitude (V 2)&rms value) associated with f
is (1+16o ) '~; whereas, the amplitude associated with h
is unity. Hence, the amplitude of the fluctuation of the
EH is less than those of the TLS and AH for all o &0.
This is an important property and will be seen to persist in
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all cases.
Substituting (4.7) into (4.6) enables us to find the

second-order solution

k(U) =B~cos2cpu +B2sin2cou,

32o.2 —256o-4

(I+16o ) (I+64cT )

2a —160o
82 ——

(1+16o')'(1+64o')

(4.9)

The dependence on 2' is expected and averages to zero.
The mean radius is rEH =2M and the area is [through

O(e )]

AEH(v)=16' [I+a(2f)+e (f +2k)],
which yields

AEH =16aM [1+ ~ e (I+16cr ) '] .

(4.10)

(4.11)

It is evident that A EH &3TLs ——HAH. Hence, we define the
difference of the mean areas as

16o.2
~~QE =~TLS ~EH 16&M 2 E

1+16o.

128mo.'o
1+16o.

(4.12)

~TLS ~EH
MQE MTLS MEH 32aM

4a o.

1+16o-2 M

4eo. M
1+16o

(4.13)

We observe that Lf QE and MQE are zero only in the static
(cT~O) or classical (A~O) limits.

V. NONSPHERICAL OSCILLATIONS

We return to the metric (3.1) and, treating each mode
labeled by l as independent, we have

m =M[1+el{sincol")qI{~)] (5.1)

where q~ =V47r I'I p= (2l + 1) P((c s8) oand PI is a
Legendre polynomial that defines the shape of the distort-

The property that the amplitude of the motion of the
EH is less than that of the TLS has led to 5AQE &0 and
will be seen to persist in the realistic cases l &2. Hence,
for any mode, during part of each period there is a quan-
tum ergosphere. This enables us to see that tunneling of
energy out of the hole can occur spontaneously, as I have
described earlier. This would lead, in the absence of a
nonempty environment, to a net loss of mass by the hole.
As all the modes are independent and uncorrelated, I
therefore conclude from (4.12) that an equilibrium at zero
temperature would be impossible, in accordance with the
existence of the Hawking effect.

Using the definition of the mean irreducible mass, we
can define a quasilocal measure of energy associated with
the quantum ergosphere in terms of the difference of the
mean irreducible masses of the TLS and the EH:

ed oscillating black hole. Actually, of course, each such
mode is (2l + 1)fold degenerate, and this will be accounted
for at the appropriate places. As I have mentioned, the
mean spherical symmetry and absence of rotation enables
us to work with the axisymmetric modes (azimuthal index

p =0) without loss of generality because we shall deal only
with mean properties. Thus, for l =2 there are five in-
dependent uncorrelated oscillations of the sphere r -=2M
that constitutes the black hole from the viewpoint of an
outside observer. Note that I am not regarding these
modes as being "gravitons" directly, in which case one
would have (2 helicities))&(5)=10 oscillators for 1=2.
The degrees of freedom to be "quantized" are nonradiative
oscillatory modes of the "sphere" or "background" space-
time; each such mode can be thought of as being excited
by two zero-point "gravitons, " each with the given value
of l and azimuthal index p, each created or absorbed, in
effect, at the singularity r =0. (From the viewpoint of
formal scattering theory, it is natural to regard absorp-
tion, and therefore emission, as occurring at r =0.) The
two alternative points of view described here actually yield
in the final analysis the same estimates for the F~ s in the
application of the uncertainty principle in Sec. VI; the
point of view adopted here is, in my opinion, the natural
way to view the problem. The distortions or "ripples" on
the surface can be thought of as somewhat like the pertur-
bations on an otherwise optically flat surface of a "dense"
optical medium, that give rise to the propagation of
evanescent waves. '

One recalls that in the definition of quasinormal
modes, " although the effect on the horizon is ordinarily
ignored in first-order perturbation theory, the boundary
condition at r =2M (r, = —co) shows that the metric at
r =2M is actually undergoing transverse oscillations in
the first order: the perturbation of the geometry goes as

e ' as r„~—oo (r~2M). The situation is formally the
same in considering quasinormal resonances for other
massless fields, e.g., spins 0, —,, 1. However, the behavior

e * as r, ~—oo for these fields do not directly involve
the metric of a neutral spherical hole in O(e) [for zero-
point oscillations, 0 (e) =0 (A' ) for all fields]. This is an
important reason to focus attention on metric fluctuations
of O(A'~ ) at the frequencies of the grauitationcd (spin-2)
resonances. After all, the temperature, entropy, etc., of a
black hole are intrinsic to the hole, which, having no
"hair, " is a purely gravitational object. The idea is that
the uncertainty in these nonradiative or "inductive" modes
creates, in a "gate" effect, a quantum ergosphere that al-
lows radiative modes of all fields to tunnel out of the hole.

Another point should be made before performing the
calculations for all l &2. We are implicitly assuming, in
the "equilibrium" situation with oscillations of zero mean
value about r =2M, that all modes are equally efficient,
modulo normalization of amplitude, in raising tides at
r =2M. By "tides, " I mean the distortions in the shape of
the horizon, indexed by l and p. Hence one is assuming
that all the quasinormal "waves" are moving in and out
radially in an effectively free manner. (One notes that
ringing frequencies are defined by radially outgoing wave
forms. ) However, this assumption of effectively free radi-



28 DYNAMICAL ORIGIN OF BLACK-HOLE RADIANCE 2937

al oscillations can be seen, in fact, not to be a correct
description of the nature of quasinormal resonances in an
equilibrium situation when one considers how they be-
come excited and what their observable effects are to an
outside observer. There are very important orbiting ef-
fects for I & 3. Moreover, we will see that there cannot be
a dynamically induced thermal equilibrium, i.e., one effec-
tive temperature pertaining to the quantum ergosphere,
unless the actual "orbiting" nature of the modes with I & 3
is taken into account. I shall return to this point in Sec.
VII.

I now proceed to the calculations for I & 2.
In the following, I shall drop the subscript "I" except

where it is necessary. Unlike the model case l =0 con-
sidered in Sec. IV, the outgoing rays now have shear,
which turns out to remove completely the degeneracy of
the TLS, EH, and AH. (Recall that for I =0, TLS=AH.
This will no longer hold. ) Thus, one writes for the outgo-
ing null rays a generator l' parametrized by v

8=—I'+ BeI'+ I'cot8 .2 ~ (5.11)

To find r&H(u, 8) we set it equal to 2M [1+ep(v, 8)], sub-
stitute in (5.11) and (5.3), and equate 8 to zero, from
which one finds

p(u, 8)=(sincov)q+ f (u) z +cot8d
dO

(5.12)

Using some recursion properties of the Legendre polyno-
ials yields

P(v, 8)= [sintov —I (I + 1)f(v)]q (8) . (5.13)

A —16M 1AH —1~™1+—
1+16cr2

(5.14)

Hence we can compute the mean area of the apparent hor-
izon by intersecting it with v =constant and averaging
over a period:

I'= (1,I",1,0),

l'= 1 2m
2 r

——,'(rl )

(5.2)

(5.3)

The timelike limit surface is where g» ——0 or
r~Ls ——2m =2M [1+a(sincou)q (8)]. Its mean area is
found as above as

the latter guaranteeing that I,I'=0. We choose p' the
same as in (2.4) with /=0:

P'=(0, —1,0,0) . (5.4)

I'V, le=i,
a = p'IbV—bl, ,

(5.5)

Thus, in the fluctuating geometry, the v =constant sur-
faces remain rigorously null and the ingoing rays are af-
finely parametrized by r.

The equations of motion for I" and I are now coupled.
However, one has that I =0 (e) enters (5.3) quadratically.
Therefore, we can solve the null geodesic equations

Arrs ——16aM [1+—,'e ] . (5.15)

dF I.~ F dF
I

dF
dv

'
Bv BO

(5.16)

Setting F =2M[1+ay(u, 8)] and substituting into (5.3),
one obtains the 0 (e) equation

—~y = —x(sincov)q (8),
Bv

from which follows

(5.17)

To find the event horizon, defined as a strictly null sur-
face near r =2M, we return to (5.3) and write
rEH ——F(u, 8). Then

in 0(e) near r =2M, which is all that is required. Setting
I =ep(u, 8) and referring to the Appendix for the Chris-
toffel symbols, we find the 0 (e) equation

rEH(u, 8)=2M [1+sf(u)q (8)] . (5.18)

(5.7) AEH ——16aM 1+ 2 E
1

1+16o.
(5.19)

where a = (4M) '+0 (e). The solution is Note that we have obtained the important relations

I =ep= f(v) (5.8) +~EH +~TLS +~AH (5.20)

where f (u) is the same function given in (4.7), here repeat-
ed for convenience:

f (u) =(1+16o. ) '[sincou +4o cosiuu] . (5.9)

where the projection operator yb is found by substituting
(5.2), (5.3), and (5.4) into (2.5). (The components of yb are
displayed in the Appendix. ) One finds in 0 (e)

To find the apparent horizon, we must compute the ex-
pansion 0 of the outgoing null rays and find where it van-
ishes. By definition,

(5.10)

Hence, though all surfaces have a mean gravitational ra-
dius r =2M the amplitudes of the fluctuations are always
different, being ordered by (5.20). Observe that the physi-
cal event horizon, being null, remains in effect nearest to
the background event horizon r =2M, while the TLS and
AH make larger excursions. This is because, as three-
dimensional surfaces, they are sometimes timelike ("emis-
sion") and sometimes spacelike ("absorption") with
respect to the background geometry or the physical
geometry.

From (5.20) it follows that there exists a quantum ergo-
sphere (A EH &A &Ls ) with which we can associate an ir-
reducible mass (per mode)
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~TLS ~EH 2 4O M
Q 32~~ 1 + 16~2

(5.21) I II"(u, x ),p~(u', x')
I „„„„=—,g&(u —u'

(6.2)
This expression depends, as we shall see, explicitly on I be-
cause both e and the ringing frequencies o do so.

That Ap, H &ATi.s results from the presence of shear,
which, though its mean value is zero, has a nonvanishing
rms value. I display here its angle-averaged variance per
mode, though it is not needed explicitly in the sequel

(l +2)(l + 1)l(l —1)
16M 1+16o.

where, by definition, o =o,her' and

c d
Oab =Vac7bd~ ~ 2 3 ab~ (5.23)

The angular brackets denote a time average plus an aver-
age over the sphere. The components of the shear tensor
are displayed in the Appendix. It is interesting to note
that their angular dependence is determined by the Gegen-
bauer functions Ct+2 (8) that are ordinarily found to
be characteristic of separable massless spin-2 perturbation
equations for spherical black holes in terms of methods
that are not only entirely different from the present ones,
but are much more complicated and not easily visual-
1zed.

The explicit importance of HAH)ATLs)AEH in this
work, as we shall see, is that the fluctuations of the ap-
parent horizon determine the physically significant trans-
verse metric variances to which the uncertainty relation is
applied. This will determine the e 's in MQE. That the
behavior of the apparent horizon is crucial is suggested by
the fact that, of the mean area formulas, only AzH de-
pends explicitly on l, for fixed e and cr.

VI. UNCERTAINTY RELATION AND FLUCTUATION
AMPLITUDES

I have modeled the zero-point oscillations with charac-
teristic data belonging to "retarded time" null surfaces,
among which are past null infinity ("seri minus") and the
(future) event horizon. The classical Poisson brackets and
quantum cornmutators of such data are "equal time"
brackets, where "equal time" means U =constant. This is
analogous to "infinite momentum frame' quantization in
flat spacetime.

To find the U =constant brackets when one has a La-
grangian W=W(g; B,g), with indices on P suppressed,
and U =constant is a null surface, one proceeds formally
just the same as in the standard "space plus time" canoni-
cal formalism. One defines the canonical momentum as

(6.1)

but, as is well known, one does not find that II-B,Q;
rather, one finds II —B„g, where 8/Bu is the null
normal=null tangent of the U =constant slice. (In flat
spacetime, for example, U-t+r, u-t r.) The classical—
Poisson brackets corresponding to (6.1) have the form (us-

ing tensors and proper Dirac 5 functions)

c d
~ab =rarb~ePd . (6.3)

The tensor momentum in physical components corre-
sponding to g~~ is

p
88 (F88 r 88try )

16~
(6.4)

which is formally identical to the tensor form of the
Dirac-ADM momentum of the 3 + 1 formalism.
Evaluating (6.4) for metric (3.1) gives

(6.5)

The method I have used in this paper to make the cal-
culations tractable with pen and ink has only allowed us
to determine fluctuations near r =2M, so in an uncertain-
ty relation based on (6.2) I must calculate variances such
as (Ap)2:—((6p)2) between pairs of surfaces r =r(U, 8)
near r =2M. It is clear from the fact that incoming
characteristic data determine the apparent horizon, that

where x denotes the two transverse (tangent to the sphere)
directions and II and pz IefeI to the transverse physical
components, i.e., II =(II,II&) and 1l~ =(pe, f&). The
factor "—," on the right is understood and can be ob-
tained systematically by following Dirac's procedure for
the construction of brackets. The characteristic trans-
verse data are typically unconstrained and the fixing of a
suitable gauge is understood. The quantum commutator
has an extra factor (ill) on the right.

In the case of metric (3.1), one has 8/Bu~ —8/Br =P',
which is the null normal (tangent) of the U =constant null
slices. It points out of the exterior region, across the fu-
ture event horizon, and into the black hole. It is irrelevant
that 8/BU is only null at r =2m and that the slices
r =constant are not in general null. One needs explicitly
only one family of null surfaces to set up the brackets.
However, physical consistency of the corresponding classi-
cal characteristic (as opposed to "Cauchy") problem
would demand that there be no fields propagating along
the null surfaces crossed by U =constant; this is true at the
physical future event horizon, where the gravitational ana-
log of (6.2) is to be applied

To obtain the gravitational analog of (6.2), one uses
the first-order gravitational Lagrangian
=(16m) 'V —g[R —(divergence terms)], where R is the
scalar curvature. In the usual "3+1" formalism, this is
the ADM or "(I I —I I")"Lagrangian. A suitable geome-
trical form for W can be obtained easily from the results
of d'Inverno, Smallwood, and Stachel or by the ADM
method. In any case, the "kinetic" part of W is
separately quadratic in both the ingoing (P') null second
fundamental tensor and in the outgoing (l') null second
fundamental tensor. The latter is of course constructed
from o.,b and 0. However, choosing as a typical trans-
verse variable g~~, one finds that the corresponding
momentum on U =constant involves the ingoing second
fundamental tensor
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r =rAH should be one of the surfaces. From the require-
ment of consistency mentioned above, the other surface
must be a null surface crossed by v =constant, along
which no physical signals (at least classically) are propaga-
ting: This is the physical event horizon r =rEH. Note that
there is here a slight "acausal feedback" because the data
do not fix the physical event horizon "instantaneously. "
The scale over which this feedback occurs, as we shall see
later, is very small, comparable within a few orders of
magnitude to the Planck distance. I believe this feature is
in principle essential and unavoidable. In reality, there
can be no fixed "background light cone" at any nontrivial
oraer of i'' in the metric fluctuations.

Likewise, in computing (hg) =((5g) ), where angular
brackets include averages over the sphere, I use the physi-
cal components of the difference of gee ——r for the sur-
faces r =r&H(v, 8) and r =rEH(v, 8). One has then

5g:—g (EH) [gee(AH) —gee(EH) ] . (6.6)

One then finds a very simple relation between hg and bp,
namely,

bp =(16') 'a.b,g, (6.7)

where ~=(4M) '+O(e) is the surface gravity. Using the
results for r~H(v, 8) and rEH(v, 8), we obtain

bg=2e((P fq) )'— (6 8)

The semiclassical "least variance" or minimal uncertainty
relation that follows from (6.2) is constructed by the pro-
cedure described by DeWitt. The left-hand side corre-
sponding to (6.2) is (hg)(b, n) or (hg)(bp), where, for ex-
ample, (bg) is obtained from the average ((5g) )n of 5g
over a spacetirne domain Q. For Q I choose the natural
spherical "box," defined by a radius r =A, =2m' ex-
tending from the singularity at r =0 to r =A., times the
corresponding period ~= 2m.co '. Thus

Q= f ' f f f v' g dvdrd8dy, (6.9)

(vac
~ IQ, III

~

vac) ~ ih' —f Ig, lljd Q (6.10)

The right-hand side of (6.10) is

where v' —g =r sin8 for the metric (3.1). Hence, we have
Q=r(vol), where (vol)= —

3 irk, , just as in flat spacetime.
This simple result follows from the facts that r is an af-
fine parameter for ingoing rays and thus measures the
wavelength A, as in flat space, and that the period r refers
to the time U that is the proper time of a distant observer.

The procedure used in this work has not allowed an ex-
plicit determination of 5g for the canonical variables ex-
cept near r =2M. Hence, I make the simplest possible as-
sumption, that the average near 2M is equal to the average
throughout Q: ((5g) )n ——((5g) ) =(hg) as in (6.8). This
should give a reasonably good approximation.

The right-hand side of the semiclassical variance rela-
tion corresponding to (6.2) is found by assuming the
correspondence

2

f f fY g 5(r r—')

5(2 sph-ere)dv'dr'd8'dg' (6.11)

fi
I 1

3
2

3 1+16(yI

l'(l + 1)'+ 16o,'

(6.13)

The numerically calculated dimensionless frequencies
ot ——Meet of the first five ringing modes are given in the
Appendix. A good approximation that can be deduced
from the Regge-Wheeler and Zerilli effective potentials is
also given in the Appendix. For instance, for l =2 we
have the numerically calculated value o.

~
——0.373 67

(A,z ——16.814 80M), and we calculate froin (6.13)

(ez) =2.13504X10
M

(6.14)

Note that eI goes as I, as l becomes very large because as
i~00, otal(27) '~; this gives rise to a high-frequency
problem to be dealt with later.

VII. TEMPERATURE

We can now use the value of et determined by (6.13) in
the expression (5.21) to quantify MQE per mode. The ex-
istence of this quasilocal energy has resulted from the
temperature-independent fluctuations of the black-hole
metric and prompts the question as to whether the results
obtained thus far can be given a thermal interpretation:
Does the energy of the quantum ergosphere have a tem-
perature? If so, the spacetime dynamical theory and the
Hawking effect might be seen to have an even closer rela-
tionship.

To see if this is the case, I shall now conjecture that
MQE can be identified with the mean thermal energy U of
a Planckian oscillator of frequency cot in a heat bath of
temperature T. This thermal energy is regarded as having
resulted from the zero-point Auctuations. If the T calcu-
lated from this assumption satisfies for a given mode
fm/T »1, as it always does, then the mode is relatively
unexcited ("cold" ). This means that if we were to then go
back to e and correct it for the fact that T & 0 [in the un-
certainty principle, one would have on average slightly
more than ( —,iri) per mode], we would find little change.
One mould then iterate and find convergence to some new
T. I have done this, and the new T does not differ signifi-

where the 5 functions are proper. Hence, (6.11) becomes
~ fi (vol) as expected. For the minimal uncertainty re-
lation I thus obtain

(&g)(bp) =—1 A'

2 (vol)

which could have been anticipated. Note that this relation
holds for each of the 2l+1 oscillators labeled by l with
quasinormal frequencies coI, and for all l & 2.

We now collect the results (6.6), (6.7), and (6.12) to ob-
tain
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cantly from the original one.
The mean energy of an oscillator at temperature T is

given by the familiar expression

UT„,i ——,' fico—+fico(e 1)— (7.1)

The first term is the zero-point energy that gives rise to
the quantum ergosphere. The second term is the mean
thermal energy U. I equate U and M&E to find

1+16o.(
TI —— crI ln 1+

M 4~I oI
(7.2)

TABLE I. Quasinormal frequencies and computed tempera-
tures to be compared to TH ——(8m. )

' =0.039 79.

0.373 67
0.599445
0.809 175
1.01229
1.212 01
j' (27}

—1/2

0.040 51
0.068 91
0.095 12
0.12031
0.144 94

I(0.023 37)

0., jT
9.224 14
8.698 56
8.506 91
8.414 24
8.362 12
8.234 37

TEQ

0.040 51
0.042 00
0.042 02
0.041 87
0.041 71
0.040 51

Here I shall present a few results, later tabulated (Table
I) more precisely (temperature in units fiM '):

o.2 ——0.373 67~T2 ——0.040 51;
o.3-0.60—+ T3 -0.07;
o.4-0.8—+ Tg -0.10;
o.5- 1.01~T5 -0.12;
o-6-1.21~=T6-0.14 .

Note that T2 differs from the Hawking temperature
TH ——(8ir) '=-0.03979 fractionally by about 1.8%. The
I & 3 "temperatures" are larger. As l~ oo, crt —&I (27)
and

crtTt '~in[1+6 'ir (27) ]=-8.23437 .

One has for all I that criT2 '&otT! '&8.23437 with
o.2T2 '=-9.224 14. Hence, all modes are relatively unex-
cited. If we define in the usual way a mean occupation
~~~be~ (n! ) by U! =M&E(I) =(n! )fico!, or

( ) (e ~! ! 1)
—1 (7.3)

wefind 10 ((nt) &2.7X10
Of course, if all the T!'s are not equal, there is actually

no clear-cut temperature T associated with the quantum
ergosphere, and it may be doubted whether the dynamical
effect has a simple thermodynamic interpretatian. How-
ever, heuristic arguments can be given to effect a better
understanding. As I mentioned earlier, the description I
have used assumes that all the quasinormal modes can be
interpreted in terms of "waves" passing essentially freely
in a radial manner in and out of the hole. However, stud-
ies by Press, Goebel, Ruffini, and others"' have
given clear pictures of how these modes are excited and
what appears to an outside observer. Ruffini, in particu-

lar, gave a helpful description. One can excite a mode by
injecting relativistic matter into the unstable circular pho-
ton orbit at r =3M, near the top of the effective potential.
Most of the observed gravitational radiation occurs at
1=2; the l =2 modes pass in an essentially free radial
manner to the distant observer. Thus, the equilibration of
such modes would occur as in my description.

On the other hand, radiation to infinity in the modes
l)3 is highly suppressed because most of it orbits the
hole in a "storage ring" effect and what "free" radiation
there is spirals almost entirely down the hole. One can
see that to equilibrate such modes requires waves spiraling
out of the hole to stabilize (in an unstable equilibrium) the
storage ring at r =3M. The modes thus circling the hole
in all directions incoherently would not on average be effi-
cient in raising tides on the black-hole surface. Hence the
true amplitudes et(EQ) in a dynamical equilibrium would
not be as large as I have estimated, except for 1=2. In
this description, because the orbiting effects increase with
I, one thinks of most of the zero-point energy of the
higher modes as having a rapidly decreasing observable ef-
fect. (Ruffini also pointed out that for electromagnetic ra-
diation and charged holes, the orbiting effects are again
very important for all but the lowest mode, which is I = 1

in the case of electromagnetism. )

There is another, I believe quite strong, indication that
the tidal fluctuations I &3 are strongly suppressed in
equilibrium. Indeed, the suppression is required for
thermal equilibrium (T =TE& for all I) from the present
perspective. Let us regard the observable energy levels of
a black hole as being defined by the gravitational ringing
mode frequencies. Let us treat each mode as being either
"on" (n =1) or "off' (n =0), which should suffice for a
cold system. Then assume that the relative probability of
the excitation of the Ith mode with respect to the quadru-
pole mode is given by the canonical ratio of Boltzmann
probability factors:

exp( fico i /TEa )—=—8(I,2, TEo) .
exp( —fico2/TE& )

(7.4)

Taking TE& ——T2 of the "free" quadrupole mode, we have
then

e! e! (EQ)=e! B(I,2, T )2 (7.5)

e~ ——1.8056 & 10
M

(7.6)

in the expression for M&E(l). This substitution modifies
the temperature formula (7.2) via a! . One then finds, re-
markably, that the new T!'s, for all 1=2,3, . . . , oo (denot-
ed TE&), are equal to T2 with fractional differences of less
than 3.8%. The calculations are fully summarized in
Table I, with temperatures in units AM

The near constancy of the derived TE&'s and their small
differences from the Hawking temperature suggest that a
dynamical equilibrium temperature exists and can be iden-
tified with TH ——iii(8irM) '. I shall henceforth assume
TEQ —TH for all mades in the sequel. If TE& T2 = TH, ——
then the value of (e ) would be, from (7.2)
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rather than (ez) =2.1350X10 RM . I shall adopt (7.6)
for l =2.

The results above imply that the quadrupole modes are
of dominant interest. This makes for an interesting analo-

gy with the semiclassical theory of the Lamb shift. Wel-
ton showed that one obtains good results with a high-
frequency cutoff for the electromagnetic zero-point modes
given by co&Re ' with A,z ——4'I, ' being the Cornpton
radius or reduced Compton wavelength of the electron.
Kramers gave the same cutoff in terms of the dipole ap-
proximation to semiclassical nonrelativistic quantum elec-
trodynamics. The general physical argument is to the ef-
fect that shorter wavelengths would act incoherently over
the quantum-mechanically defined volume "occupied" by
the electron. A general description of the main effects of
zero-point fluctuations for any kind of field is given in
these terms, with analogous conclusions, in Misner,
Thorne, and Wheeler. ' (In particular, they discuss zero-
point fluctuations of the spacetime metric. ) Such argu-
ments invite a comparison of the gravitational ringing
mode frequencies with the reciprocal of the gravitational
radius =-2M of a hole of mass M. One sees from Table I
that only the quadrupole mode satisfies ai & (2M)
which is very suggestive. The standard argument that a
quantum gravitational high-frequency cutoff should be
comparable to the Planck frequency is irrelevant to the ti-
dal curvature fluctuations at the surface of the black hole
unless the mass of the hole is comparable to the Planck
mass. See Sec. IX.

Obviously, none of the heuristic arguments I have ad-
vanced about regulating the high-frequency modes can be
regarded as final, although I regard the orbiting effects in
the l & 3 modes as persuasive. The self-consistency of the
hypothesis that the tidal effects (geometrical) are
suppressed by a factor equal to the Boltzmann factor
(thermal) is also highly nontrivial evidence. In the case of
the Lamb shift, one has a consistent theory of renormali-
zation that makes the semiclassical theory unnecessary,
though still helpful. There should be possible a similar
more nearly complete treatment for black holes, thus
rendering the present semiclassical theory unnecessary.

We are left with the picture of a quantum black hole in
equilibrium as an excited state of spacetime associated
with a temperature. Dynamical equilibrium with its own
zero-point fluctuation is impossible in the absence of an
appropriate "heat bath. " The zero-point fluctuations are
much larger than the thermal fluctuations b, U associated
with U=M~E. In turn, b, U&&U (Sec. VIII). From the
viewpoint of statistical thermodynamics, the degree of ex-
citation of its energy levels is very slight, as
Picot /TH 8irot& 8iro z

——9 3'91 35, ——ind. ependent of the
black-hole mass.

associated with the quantum ergosphere at temperature
T =TH =irt(8~M)

St = ( & ni &+ 1)ln( & ni &+ 1)—& ni &ln& ni &

1=—(Ui Fi)—,T (8.2)

S= g (2l+1)Si .
1=2

Here

(8.3)

5S2 ——4.335 75 X 10 (8.4)

However it may be that S is small and independent of
M, a large statistical entropy SBH-AA ',A =16m.M, re-
sults when we add up all the excited states that disappear
if we allow the hole to evaporate down to a final mass
zero. We must do this by allowing the black hole to evap-
orate very slowly, nearly in equilibrium, into a heat bath
of temperature 8, in the limit as 8~T from below. We do
not define SBH using an evaporation into the vacuum.
(This goes as

~

dM/du
~

-M and is considered below. )
Then, each time the hole surrenders thermal energy
U =5M into the heat bath, the thermal states being con-
tinually repopulated by the zero-point oscillations, the cor-
responding entropy S=bSnH in (8.3) disappears. Note
that in an "equilibrium" decay one does not, by the princi-
ple of detailed balancing, need to take account of the
quasinormal mode opacities (transmission coefficients),
which, in any event, are nearly equal (see below). In this
argument, the types of matter into which the hole decays
is not important; we are concerned only with the entropy
of the black hole and not that of the radiated matter.

Recall that S is independent of M and that U goes as
(M ')&&(factors independent of M). The decay may be
taken sufficiently slowly such that the factor M ' in U
changes arbitrarily little in any time interval of interest.
Note that UM ' &iriM (1.6)& 10 ). Hence, in the limit
of infinitely slow decay one has

~
hSBH/bMBH

~

=S/U
which we identify as

~

dS/dM
~
iiH. Thus,

dS
dM

Fi =T in[1 —exp( Picot —/T) ]

is the free energy. Clearly S2 is the dominant term in
(8.3). This entropy at any "moment" is small and is in
dependent of M because of the scaling property T-M
and ru1 -M '. For example,

VIII. ENTROPY

U= Q (2l+1)Ui
1=2

(8.1)

First we consider the entropy S corresponding to the
mean thermal energy

(8.5)

The only explicit dependence on M occurs in the first fac-
tor on the right of (8.5). The second factor is independent
of M and has a value = 1.106 17. (The "ln" terms are neg-
ative. ) Integrating (8.5) from zero to M yields
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SBH=-(1.106 17) 4
——:(0.276 54)—I 3

(8.6)

dM =a(8n)'dA, . (8.7)

where ~=(4M) '. This formula, which is usually ob-
tained by differentiation of the relation M =x.(4m. ) A

that holds for static vacuum holes, was verified by the
perturbative dynamical treatment given in Sec. II. ' Upon
the identification by Hawking that T =fi( 8aM).
=ah'(2m ) ', it would follow from the hypothesis that (8.7)
can be written in thermodynamic form, with

dSBH=(0. 25)A' 'dA, if and only if one assumes that the
thermodynamic law for neutral nonrotating holes has the
form dM =THdS&H, that is, that there is present no term
corresponding to free energy, e.g., "—pdV' for a simple
mechanical system. Given T =a.A' '(2') ', the formulas
for M and dM do not by themselves imply uniquely a
value for the entropy; dM =THdSBH is the "simplest"
possibility.

It was noted recently that there existed no statistical
calculation independently confirming SBH ——(0.25)AA'

However, one sees that if the entropy is defined in terms
of the excitations of the "energy levels" of the hole, identi-
fied here with the quasinormal modes, then a simple argu-
ment based on ordinary statistical thermodynamics gives a
value close to the usual one. If we adopt the value given
by (8.6), then the mechanical-thermodynamic relations
previously written M =2T~SBH, dM =T~dSBH become,
respectively,

M =2(THSaH —A,vA),

dM = THdS —X~dA,

(8.8)

(8.9)

where A, =constant=(8ir) '(0.106 17). Writing the "extra
pair" of variables as a and A is convenient and simple, but
is not unique and is done here only because I do not at
present know a more illuminating presentation. It seems
to me quite plausible that if one slowly adds "heat"
THdS&H to a black hole in equilibrium, thereby causing it
to expand, that it should do "work" in lifting itself in its

if we assume SiiH ——0 when M =0.
This value of SiiH is close to the value usually assumed,

{0.25)Airi '. That (8.6) is roughly 11% greater than this
results here from the fact that the oscillator modes have a
non-negligible free energy. Another way to look at it is
that in the present treatment the black hole curn normal
modes is not really localizable within r =2M; it has an ef-
fective radius about equal to the wavelength of the lowest
mode, A,2=16.8M. In fact, the high-frequency limit of
(8.5) implies precisely (0.25)Airi '. To see this, we replace
each of the dimensionless physical values of ~i corre-
sponding to the quasinormal modes in (8.5) by a large
value "x" independent of 1. Then the factor in brackets in
(8.5) becomes approximately [1+(8irx) ' (quotient of
identical sums)]. Hence, as x —+co, integration from zero
to M of this limiting form of (8.5) yields
(0.25)Afi '[1+(8mx) '] {0.25)Airi

It is worthwhile to recall that the value 0.25 was origi-
nally obtained from a mechanical-thermodynamical analo-

gy based on

own gravitational "potential well. " I do wish to stress
that (8.8) and (8.9) are mathematically fully equivalent to
M =a(4m) 'A and dM =ir(8m. ) 'dA. The partition be-
tween "heat" and "work" is a physical question depending
upon an independent calculation of SBH, even if we are
given the Hawking temperature.

To give an independent confirmation of the ideas
behind the above estimate of black-hole entropy, let us
consider the decay of the hole into vacuum. We then ex-
pect to find a larger entropy since this process is irreversi-
ble. ' Moreover, inasmuch as our thermal energies are
defined by excitations of the black-hole geometry, it
would not be surprising to find a value comparable to the
entropy that would be radiated by the hole in a hypotheti-
cal decay purely into gravitons, which themselves are the
excitations of the geometry that are "counted" by a dis-.

tant observer in this situation. Page has recently given
this value as (1.3481)(4aM )iii ' over the lifetime of the
hole. In performing this calculation, I shall assume for
simplicity that the transmission coefficients I I for the
quasinormal modes are equal and thus, in the method
given below, can be ignored. (In fact 12-0.47, . . . ,
I i=a bit less than 0.5 for large l. ) Moreover, the fact
that each excitation of the sphere would correspond to
two gravitons (two helicities) is easily seen to be irrelevant
in the method of calculation below.

Now the rate of decay
~

dM/dv
~

-M cannot be ig-
nored. One could suppose the loss of mass (thermal ener-

gy) to occur in M/U events, each yielding the entropy S,
except for the fact the M/U =(M i' '))&(a pure number)
and that M changes in accordance with

~

dM/du
~

-M . This implies that, with an initial mass
M, the average of M over the decay from M to zero is
—,
' M . Hence, the total entropy calculated this way is

3 SmM'-5 1 ——
U

where (1 FU ') was —evaluated in (8.5) as 1.106 17.
Hence we find S—= (1.3274)(4m M )iri ', which differs
fractionally from Page's value by about 1.5%. This result
confirms the reasonableness of regarding black-hole entro-

py as being associated with excitations of its gravitational
quasinormal modes.

IX. FLUCTUATIONS

We begin by computing the rms thermal fluctuation for
the lth oscillator at the Hawking temperature and the cor-
responding ringing frequency. We take into account here
that it is (21 + 1)fold degenerate. The standard calculation
for an oscillator gives

U U
=706 . (9.2)

The numbers are &&1 because the modes are relatively

b, Ui ———[(2I +1)'~ oi(1 —e ') 'e '], (9.1)
M

whereas U = (21 + 1)Ui. For l =2 and l =3 considered in-
dependently we find
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unexcited at T = TII. For large / we find

hU
U

=(21+1) '~ exp[4m. l(27) '~ ] . (9.3)

These values can be compared to the corresponding larger
ratios of zero-point energy (Uo ——, ficoi—per mode) and
thermal energy, for example,

6X103 0 =2X106
U 12 U

One notices that Uo, U, and AU all go as AM '; they
depend on the mass of the hole. However, there is a po-
tentially important rms energy fluctuation that is indepen-
dent of the mass of the hole, being determined only by
Planck's constant, the ringing frequencies, and the Hawk-
ing temperature. This is the characteristic rms fluctuation
of the irreducible mass of the physical event horizon.
This quantity will be determined predominantly by the
five I =2 modes and would be expected to be comparable
to the Planck mass =1.22X10' GeV. We have then,
with MEH ——(AEH/16ir)' corresponding to one of the
five modes

(9.4)

~MEH ~5 [(MEH ) (MEH ) ]
1/2

~EH=v5
16m

v 5[ 1 M2(e. )2(1+ 16cr 2) —1]1/2

= 1.18X 10 A' = 1.44X 10' GeV, (9.5)

e~ =-1.8056X10 2
-8.46X1o

M~
(9.7)

Note that when hg =1, e~-0.09. Solving for M, we
find

M, =0.15A' =1.8X10' GeV . (9.&)

about 2 orders of magnitude less than the Planck energy.
It is of interest to compare the above value to a mass

scale determined by the dynamical metric fluctuations as-
sociated with black-hole radiance. We ask: For what
value of the black-hole mass do the rms fluctuations of
the physical components of the metric become of order
unity'? This mass is denoted by M, . This scale may be
thought of as corresponding to the onset of a modification
of our usual ideas of the causal microstructure of space-
time. Of course, this is something of a speculative exer-
cise, but does turn out to be just within the domain of
mathematical validity of the approximations adopted in
the previous work. Again, the five l =2 modes dominate.
The physical metric fluctuation described in Sec. VI in
this case yields an rms fluctuation

1 36+16o.2
kg =2V 5EH (9.6)

1+16o.

Equating b,g to unity implies that

This is about an order of magnitude less than the Planck
mass and is consistent with the widely held belief that
such large metric fluctuations would occur at about the
Planck scale. Observe that hMEH —10 'M~. The effec-
tive radius of the hole at this mass is about
A,2

——16.8M~ =2.5 times the Planck length.
Elsewhere, based on an expanded version of the

analysis in Sec. II, in which one computes the backre-
action on the horizons to the creation of radiation, ignor-
ing the metric zero-point fluctuations, I extrapolated the
results in O(A') and defined a mass Md;, at which the
disappearance of the hole might occur. This heuristic
definition was essentially that disappearance would occur
when the mass of the black hole equals the irreducible
mass M~E. The value obtained depended on the black-
hole luminosity and hence on an assumed particle spec-
trum. Using a minimal GUT (George-Glashow)&& Ein-
stein theory I obtained Md;, -0.15A' . Using the N =8
supergravity particle content treated as external radiation
fields, I obtained Md;, -0.2iri' . Both of these values
are consistent with the value in the M, =0.15%' where
Ag =1. When Ag =1, it is not unreasonable to think of
the disappearance of the hole. The exact numbers, of
course, cannot be taken too seriously. However, they
again point to the consistency of regarding metric zero-
point fluctuations as being in essence the origin of black-
hole radiance, which is the thesis of this work.

X. CONCLUSION

I have adopted a simple model of a black hole undergo-
ing zero-point fluctuations of zero mean (with respect to a
"background" Schwarzschild metric) in its least-damped
quasinormal modes. Using just this discrete set of fre-
quencies simplifies the calculations and, as I have
described, is in accord with what has been learned classi-
cally from perturbation and scattering "experiments. "
This, in effect, is a partially phenomenological input. It
would be desirable to consider in more detail all the fre-
quencies that can have tidal effects on the surface of the
hole. One would also like to generalize the radia1 depen-
dence of the metric (3.1) to incorporate more nearly exact-
ly the radial waveforms of the modes. The correct angu-
lar functions came out directly in the analysis of the ap-
parent horizon and the outgoing shear.

Attention was directed to the quantum ergosphere.
This small region near r =2M is the imprint on the metric
associated with the inability of a black hole to be in equili-
brium at zero temperature. The method of computation
suggests that the effective size of the region associated
with energy production probably extends out to about
r =A,2

——16.8M or so. It proved natural to associate the
thermal energy and entropy with the quantum ergosphere.
The issue of black-hole entropy deserves a more detailed
study, and this will appear elsewhere.

The characteristic energies and fluctuation scales asso-
ciated with black-hole metric fluctuations and the possi-
bility of relating them to the particle content of the radiat-
ed rnatter suggests that a yet-to-be-found complete and
consistent theory of quantum gravity applicable to black
holes might not be possible without some kind of "unifi-
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cation" with the other fields, such as is currently being
studied from the "particle theory" point of view (super-
gravity, Kaluza-Klein theories, etc.). However, the
"spacetime" point of view, which is complementary, is
also important. This "complementarity" can be stated as
follows: The Hawking temperature is the lowest tempera-
ture consistent with the quantum nature of the metric of
spacetime. It seems that black holes constitute a problem
for quantum gravity with a relative importance not unlike
that of the hydrogen atom and the electromagnetic
Hohlraum in the early history of quantum physics. The
central ideas are the principle of equivalence, spacetime
fluctuations, and the uncertainty principle. Little else in
the way of physics was used in this work. In particular,
the Einstein equations played only an interpretational role
in defining the idea of fluctuations with a zero mean.

It should be possible to give a path-integral version of
this work. Preliminary work shows that the basic effect
(quantum ergosphere) corresponds to a second variation of
the action ("one loop" ) as might be expected.

One should consider as well charged and rotating holes
to see if their quantum radiance can be characterized in
the present terms. Although more difficult, this seems
likely. One would also consider other types of event hor-
izons.

The final goal involves, among other things, doing away
with the semiclassical theory presented in this paper, al-
though its heuristic "pictorial" power seems very helpful.

G„'=r 'F „r—(1 F—),
G„"=r 'F „+(2r ) '(F ss+F scot8)

G„"=G„',Ge —— F„—e (2r—) 'F e,
G, =r Gg GB=Gy= 2F rr+r F r .

The scalar curvature is

R = F„„—4r—'F,+2r (1 F) . —
The Weyl tensor C',d has nonvanishing components

C""„„=——,[F,„—2r 'F „2r—(1—F)],
C"'„e———,' (F „e 2—r 'F e—),
C'

ug ——C vp
— 2C vr ~

ug vg & ur

C vr ——r C vg ~

C" „e——(4r ) '(F ss+F ecot8),

C', g
————,C"„,=C",p,rg & vr rP

C'&,
~ =(4r sin 8) '(2F cot8 Fee F—scot8—),

rP 2 rg Bp rgC By=r C v ~ C v&=C vr ~

C ~gp ——Cu',„.
The Riemann tensor is given by

(A3)

(A4)

(A5)
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APPENDIX

g"'=1 g =F g =r
g&&=(r'sin'8)-' .

The nonvanishing Christoffel symbols are

I „"„=—,
' F„ I gg ———r, I pp

———r sin 0,

(Al)

use MTW (Ref. 16) conventions throughout, with
G =c =kz ——1. The metric is given in (3.1). Its deter-
minant is given by v' —g =r sin8. Define
F= 1 —2mr ' =F(v, r, 8). The nonvanishing contravari-
ant components of the metric are

& "cd =C"cd+ 2 &cGd' 4G—c'+4Gc' &cG—d'

R 5,5d —5d 6, (A6)

The nonvanishing components of the projection opera-
tor y~ =5~+1'Pb+P'lb are given by

y"„=r 2( l e)z, y e r le——, y„=——1e,
(A7)

7B Vp

The only nonvanishing components of the outgoing
shear tensor ob are in 0 (e)

B dqI d qIo8= —cr~=eaf (v) cot8—
dO'

where
2d qg 1/2

dg~ dO
cot8= —,(21 +1) ~ (1+2)(1+1)

X1 (1—1)CI +z (sin 8)

(A8)

(A9)

and C„ is a Gegenbauer function with standard normaliza-
tion.

The least-damped gravitational quasinormal frequencies
for l =2, 3, . . . , 6 are given in units M ' by

r I 1 r 1I „„=——,F u+ 2FF „ I „,= ——,F, ,

I'„g————,F g, I gg
———rF, I pp

———rFsin 0,
I „„=—,

' r F g, I,g ——r ', I ~~
———sinOcosO,

r~ =r-', re~=cote.
ug

The Einstein tensor Gb has nonvanishing components

(A2)

op=(0. 37367)+i (0.08896),
o.

3 ——(0.599 445 )+i (0.092 71),
o4 ——(0.809 175)+i(0.09416),
o 5

——(1.012 29)+i (0.094 87),
o6 (1.21201——)+i (0.09527) .

(A 10)
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(l —1)(l +2) 1

27 2v 27
(A 1 1)

l
large I 27

Reo

A good approximation for the real parts is
T 2 1/2

and for the imaginary parts~

1

2 27' (A12)
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