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Supersymmetric decay widths of weak bosons
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The partial widths of W and Z decays to supersymmetric particles are evaluated in the simplest N =1 su-

pergravity model. The total widths can be 50% greater than the standard-model predictions. Measure-
ments of the widths at the pp collider can thereby be used either to place improved lower limits on gaugi-

no, scalar-quark, and scalar-lepton masses or to provide indirect evidence for supersymmetry.

The decays of weak bosons offer the most promising
means of searching in the near future for supersymmetric
(SUSY) particles at the CERN pp collider. In recognition of
this possibility, a number of recent papers' ' have addressed
particular SUSY decay modes of 8' — and Z and their ex-
perimental signatures. In this paper we undertake to evalu-
ate the contributions of all expected SUSY gaugino and
s-fermion (scalar-quark and scalar-lepton) modes to the to-
tal widths of the weak bosons, versus the masses of the
SUSY decay products. We find that SUSY contributions
can increase the weak-boson widths by 50% (Ref. 8), with
SUSY masses above present limits. Accordingly, measure-
ments of the total widths in CERN pp collider experiments
can be used either to improve the existing lower limits on
gaugino or s-fermion masses or to provide indirect evidence
for supersymmetry. If the measured widths turn out to be
between 1 and 1.5 times the standard-model values, they
could be used to estimate the SUSY mass gap.

Our present considerations are based on the X= 1 super-
gravity grand unified model of Refs. 1 and 2, with
SU(2) xU(l) breaking at tree level, '2 4 o though the results
can be readily extended to other models. The SUSY
partners of the 8 'and Bo bosons are Majorana fermions 8"
and 8 . The model has two left-handed Higgs doublets
HI =(HI+, HI )L and H2=(H2, HI )L, with equal vacuum
expectation values (0~HI I!0)=—v, and a Higgs singlet UL.
The corresponding Higgs fermions are denoted by 0 and U.

We introduce a Majorana basis for these states,

I (HIL H2L )

~,'= —i(H,L H,')—
'I'r = —i( UL —UL)

where c denotes a charge-conjugate state H = C(H, ) r and
i =1,2. The Lagrangian terms which contribute to the mass
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where p=—J2h.v. The eigenstates, masses, and mixing an-
gles are then

o) I+ =&+cosn + W+ SInn, MI I = (Mw' +~') ' ' + 6
(Sa)

co2+ = y5( —&+ sinn + W+ cosn), tann = Mw/MI

zI=&cosP+ZsinP, pI 2=(Mz +e )'i2+e

z2 = y'( —MsinP + Z cosP), tanP = Mz/p, I

/II=y'(P'cosh+'ksin5), mI 2=(p'+e')Ii'+e
h2 = ( —P'sinh+'Il'r cos5), tanh = —p/mI

(Sb)

(Sc)

We consider e & 0 so that M~, p, ~, and m~ are the light-mass
eigenvalues. The y5 factors result from chiral rotations to
make the masses of the m2+, z2, and h~ states positive. The
gauge interactions of the SUSY fermions,

matrix are

W= [ —i J2H(g2T~ W +gI YB)H —2eHI(i&2) H(

+ &Ho ( U'Ho ) + &H o ( U'Ho ) ] + H.c. , (2)

where gI=e/sinew and gI=e/cossw. In terms of the y, Z
(SUSY partners of y, Z) and the Higgs-fermion combina-
tions

~, )/W~, w=(~, +~,)/J~, (3)

the mass terms take the form

W= [ —eW„+ ( W+y"y) —e cotsw W„+ ( W+y"Z) + e(v 2 sinew) ' W„+ (HI+y"HIL —H2 'y"H2J ) +H.c.]

+e cots wZ„( W+y" W+) +e(sin2&w) 'Z„[(l —2sin'&w) (HI+y"HIL+H2 'y"H2L') —(HIy"HIL +H2'y"H2f) ], (6)

can be expressed in terms of the eigenstates of Eq. (5). The couplings for the physical modes are given in Table I, based on
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TABLE I. The couplings for the general transition of the gauge
boson to the gaugino states.
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FIG. 1. SUSY gaugino and s-fermion contributions to the F+-
boson decay width vs the mass of co~+; see Eq. (5). The partial
width for 8 +

cosh~ is negligible on this scale.

the Lagrangian form

W= eX„(gvby"a +gAbyi'y a)
for the general transition X ba to gaugino final states. The decay rates are determined by

r (X—ba ) =
3 Mxa) '/ (l,x„xb) I(gv +gA ) [I —

2 x, —
2 xb —

2 (x, —xb) ) +3 (g v —
gA ) (x,xb) '

}

where x, = m, '/Mx', x, ——~b'/Mx',

X(l,x~,xb) =1+x, +xb —2x, —2xb —2x,xb

and o. 128

If the SUSY scalars are light, the weak bosons will also
decay into scalar-lepton pairs f f and scalar-quark pairs qq.
The Lagrangian for these decays is

g W„+frl~r+f+ Zjj~( r —sin 8 —Q)fcos8 gr

(9)

where f is the partner of fermion doublet f (we assume that
scalar and pseudoscalar states are degenerate). The partial
widths of these decays are

I

to Mg.
The values of the calculated widths depend somewhat on

the input W'+-and Z masses. For the present we use the
theoretical values" of M +=83 GeV, Mz=94 GeV, and
sin28~=0. 215, which are consistent with the first measure-
ments. ' The total widths from the standard leptons and
quarks, including QCD corrections and assuming m, =35
GeV, are 1 ~ = I z =2.9 GeV.

Figure 1 shows the predicted partial widths for the various
possible SUSY modes equating, for economy of parameters,
the SUSY gap to the co~+ mass, mq=M~. The contributions
from the SUSY modes are sizable if their masses are consid-
erably below M~. Measurements of the widths at the pp

I (W+ ab) =c2rsk/(I, ~, x)xb

I (Z aa ) = c—,rz~' '( I.y„y, )

x(1 —4IQ, Isin28s +8Q, sin 8s)

(10)
2.0

where I"~ and 1 z are the partial widths

GFMt/v 0 GFMz
6&2m

'
1242Ir

for the ordinary 8' ev and Z vv decays, respectively.
In Eq. (10) c = 1 for scalar-lepton and c = 3 for' scalar-quark
final states; also x, = m, '/Ms ' and y, = m, /Mz .

To make numerical estimates of the above contributions
to the weak-boson decay widths and branching fractions, we
fake'

).2

0.8

OA

mf = ms +mf-2= 2 2 (12)

~here m& is the mass of an ordinary quark or lepton and mq
is the SUSY mass gap. PETRA data indicate that mg ) 1'7

GeV." For the SUSY-fermion decays we assume that
p = M~ in Eq. (5) and vary the mass M~ of co,+ from —MIv
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FIG. 2. SUSY contributions to the Z width vs the mass of co~+.
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collider can lead to improved lower limits on gaugino and
s-fermion masses or provide indirect evidence for supersym-
metry (see Fig. 2). The SUSY increases in the total widths
imply corresponding decreases in the branching fractions
8( W+ ev) and 8(Z e+e ), since the leptonic partial
widths are still given by the standard model.
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