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Electromagnetic corrections due to real-photon emission are computed to energy-energy correlations in

high-energy e e+ annihilation with y and Zo exchanges.

Energy-energy correlations in e e+ annihilation at high
energy have been studied in Refs. 1 and 2. The new in-
gredient in these calculations as compared with the low-
energy ones' is that the process proceeds through both y
and Z exchanges. It has been shown' that the angle-
integrated and normalized energy-energy correlations
o.„, 'd2X/d cosX dcos@ and cr„, 'dX/d cosx (see Fig. 1 for
definitions of angles) are independent of initial-state polari-
zations and even more importantly do not depend on weak-
interaction parameters such as the Zo mass and width as
well as coupling constants. 4 5 Thus, they are ideal quantities
to measure if the aim is to test QCD or hadron fragmenta-
tion.

The electromagnetic corrections to the energy correlation
have been calculated in the low-energy region. In particu-
lar, the dominant O(uln( W /m, ')) correction has been
determined and shown to contribute to the energy correla-
tion. ( W is the total center-of-mass energy and m, is the
electron mass. ) The size of this largest contribution
depends upon the experimental cuts made, but an overesti-
mate (i.e. , no cuts assumed) shows that it is generally less
than 15% for the quantity o.„, 'dX/dcosx. It is an impor-
tant open question how the low-energy result is modified if
Z exchange is also taken into account. The present paper

is devoted to the study of this problem. We show that up to
about 8' = 50 GeV Z exchange does not modify the con-
clusions of Ref. 6, while in the Z resonance region elec-
tromagnetic corrections can be disregarded. Furthermore,
above Z the electromagnetic corrections may be very large.

The lowest-order electromagnetic correction to the
energy-energy correlation comes from the emission of a real
photon by the initial electron or positron (see Fig. 2).
Processes with virtual photons do not contribute, since we
are interested only in angles X different from 180'. As dis-
cussed in Ref. 6, because of collinear singularities this
correction is O(aln( W2/m, 2)). The emission of real pho-
tons by the final-state quarks should also be calculated in
principle; however, it gives a much smaller correction of
O(n).

The calculation of the contribution of Fig. 2 is in principle
straightforward and may be performed by analytic methods.
However, in practice it turns out to be rather complicated;
therefore, in what follows we shall evaluate only the dom-
inant [i.e. O(o. ln( W /m, '))] corrections. Nevertheless, it
is possible to start with the exact expressions and discuss
the questions of Z exchange in this framework.

The amplitude for the production of a qq pair with flavor
f and a real photon is given by

FIG. 1. Kinematics of the energy-energy correlation cross sec-
tion. The e momentum is assumed to be parallel to the z axis,
the e+ momentum is in the opposite direction. The azimuthal an-
gles @ and @' are not shown in the figure.

FIG. 2. Graphs representing the dominant electromagnetic
corrections to the energy-energy correlation cross section.
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with the notation of momenta explained in Fig. 2. Mz and 1 z mean the Z mass and width, respectively. The couplings
are those of the standard model with the same notation as in Ref. 2. It is converlient to rewrite Eq. (I) as

with
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v" = u (p) yI'v(p), A" = u(p) y"ysv(p)

There are two final states contributing to the energy-energy correlation; namely, it is possible that the quark (antiquark)
moves in the direction dII (dII') and vice versa. Summing over the two final states as well as quark and antiquark spins
we get

g v~v"'=go~~" ~H~" g v~w" =gatv" =o
where

H""=p"P'+p'p' —p pg" .

Then it follows that

I TI ~ [v„v;(laItl'+ la2II ) +a~a„'(lastl + la4II ) +a~v„'(asiaI'2 +a42a2'J) +v~a," (attaq'~+a22a4'y)]H"'

(6)

!
and k = —p —p must be set everywhere. '

I
TI2 is a rather complicated expression; therefore, the an-

alytic integration of Eq. (9) is difficult. In order to obtain
simpler results let us define

and actually only the symmetric parts of the leptonic tensors
v„v„.. . contribute. A sum over the photon polarizations
e& is performed; however, we keep the initial e and e po-
larized. Throughout the calculation we put the lepton
masses equal to zero except f'or the denominators (I k and
I.k) of the lepton tensors. The description of lepton polar-
ization is taken over from Ref. 1. The e [e+] polariza-
tions are characterized by (sl, sI) [s2,sI.)]. In order to
get the energy correlation Eq. (7) should be integrated as

d X dX
, 5(cosX —cosX) dIt de

'

d cosX dcos @icos@' d & d '

where

cos X = cosOcosty +sin@sin@' cos ( II —It ') (12)

d X /dcosXdcos@dcosly' may be written down in the form
of an integral over the variable p. Namely, substituting Eqs.
(7) and (9) into Eq. (11), the @,@' integrations may be
easily carried out. qb and @' dependences occur only in

(9) 5(cosX —cosX) and in I
TI2 in the scalar products s 2 p,

s2 p, s2 p, and s2 p (k = —p —p). The denominators
1 k and l k do not depend on @ and @'. Calculating the
traces as well as the @, @' integrals the transverse polariza-
tions drop out and the longitudinal polarization dependence
is simple. Putting in all the factors we get

We obtain

dgEM N /2 p2d p p
2

(22r)' 2[ IV+ p(cosx —1) ]

where

8' —2p 8p=
2[ IV+p(cosX —I)] (10)

I T I'-(2~)'g'(p +P + k —I I)—
(22r) (22r)' (22r) 2k

d3 gEM 8'/2 2

p'd p- p P(q') [F(l, l p p, k) +F(l, l p, p, k) +F(l, l p p, k) +F(!,I p p, k)]
dcosX dcos8dcos8' IV o [ IV +p(cosX —1) ]

(13)
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Here q2=(p+p)~,

P(q') = $[(1—sLst) (laifl'+ la2~1'+ la3fl'+ 1a4fl') +2(sL —sL) Re(a3faP&+a4faq'f)]
f

and

(14)

F(II pp, k) = lp kp Ik I+p I[I Ip (I —k)+p II k —p II k]}/(k Ik !) (15)

a.„,= P( W')A ( W)
8'2

(16)

The total cross section n-„, has a similar dependence on
the longitudinal polarizations:

I

ized quantity.
Using the approximation scheme of Barr and Brown, we

may get an estimate for the size of the electromagnetic
corrections. In this dominant approximation the events are
coplanar, i.e.,

where A ( W) =1+m, ( W) /7r to low orders in QCD. (n, is
the running strong coupling. ) In contrast to the purely ha-
dronic case, the propagator factor P(q') containing also the
polarization dependence does not drop out of the normal-

I

d yEM 8(@'-@—~) .
dQ dA'

Going over to the triple-differential distribution we get

(17)
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2 W st@nl s5n(1 —cost)
(sinO+sin8'+sinX)'

(19)

Assuming no cuts on the final-state energies (yielding an
overestimate of a true experimental situation), we may in-
tegrate Eq. (18) to determine

d gEM 1dcos8 dcos8'
o «1 dcosX ~1,[ dcosX dcos@dcos@'

(20)

Note that it is a-„, 'dX/dcosx which is measured in experi-
ments. The resulting one-dimensional integral may be per-
formed analytically. However, considering its intricacy, we
choose a numerical integration for the unpolarized case
only.

Putting in sin 8~=0.23 and three families, the function
P(q2) is completely determined (in the standard model).
The only modification as compared with the case of the
pure y exchange is the factor (q2)2P(q2) jW P( W2) in Eq.
(18). For a fixed x the allowed values of q2 are in the
range

Under Eq. (17) the value of q' is completely fixed by the
angles@, @', and H'.

I

remain unchanged; weak-interaction effects are completely
negligible.

The situation changes dramatically for H =Mz. Here
W4P( W2) takes on its maximum value, while (q )'P(q2)

is much smaller. The result is reduction by about a factor
of 10 of the electromagnetic correction at H =30 GeV,
so that in the Zo resonance region the O(aln( W /m, ))
electromagnetic correction is totally negligible. The non-
dominant corrections are also reduced by the same mechan-
ism; therefore, in the Z region the total correction should
be negligible.

For W & Mz a reversed situation is possible, i.e. ,
(q')'P(q')/W4P( W') »1. This results in a peak in the
W dependence of a„, 'dXEM/dco-sx. The position of this

~LA
+&a ICOS

sin—2X
20, rV',

1 +cos—X
2

(21)
X=3'
~=90'
x 150

which means that even the maximum value q, „2 is usually
much smaller than W.

For W= 30 GeV the factor (q2)2P(q2)/W4P( W~)
essentially constant and equals to unity. Therefore, the
results of Ref. 6—in particular Eq. (1.9) and Fig. 4—

50 100

~It/ (Ge'%j)

150

FIG. 3. Energy dependence of the electromagnetic correction to
the normalized energy-energy correlation at various X values.
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peak ( W„,k) is X dependent. A crude estimate

~„,k=(4q „'/ll'„„.k) 'Mz= 1+cos—Mz

gives

Sln—X
2

(22)

i.e., we are at the energy H „,k, when q,„equals —Mz'.
It is clear that for larger X ~p k is smaller. Figure 3 shows
the energy dependence of a.„, 'd XEM/dcos Y for three
characteristic angles. At 8'„,k the electromagnetic correc-

tion turns out to be very large. For comparison we note
that o.„, 'dXEM/dcosX calculated with only y exchange is a
logarithmically growing smooth function of H.

In conclusion, electromagnetic corrections to high-energy
hadronic energy-energy correlations have been determined.
Numerical results are obtained in the dominant approxima-
tion of Ref. 6. At energies 8'.(50 GeV Z exchange does
not change the results calculated with pure y exchange in
Ref. 6. In the Z region the correction is negligible. For
higher energies it may be very large, especially at the X-
dependent 8'„,k energies.
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