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Helicity formalism for transition amplitudes
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Transition amplitudes between states with spin (1 are considered and directly evaluated in terms
of momenta and polarization vectors. A special algorithm is derived to reduce expressions where y
matrices of different lines are saturated. The application of the method is illustrated for radiative
and nonradiative processes, including mass effects.

I. INTRODUCTION

In recent years the theory of strong, weak, and elec-
tromagnetic interactions has developed to a point thai we
are more in a position to make very accurate comparisons
between theoretical predictions and experimental results.
In this investigation we need to compute higher-order
Feynman diagrams. The standard procedures, where we
square the amplitude for a given process and use a covari-
ant sum over polarizations, have become almost intract-
able. However, alternative techniques have been recently
developed for analyzing bremsstrahlung cross sections'
and transition amplitudes between Dirac spinors.
Motivated by these ideas we show that a unified approach
can be formulated in which the amplitude for an arbitrary
process, radiative or not, is directly computable in terms
of the invariants which specify the process and for any set
of spin indices. The formalism is discussed in Sec. II.

II. EVALUATION OF TRANSITION AMPLITUDES

What we need is a convenient procedure which elim-
inates spinors, spin-1 external wave functions, and y ma-

trices in terms of momenta and polarization vectors. In
order to deal with spinors we first develop a method
which makes use of an explicit representation of the y
matrices. Using the conventions of Ref. 2 we find

ug(p;)up(pj ) = N(p;)N—(pJ )(p;+im; )I ~(pj+imJ ),

N-'(p) =2p, (p, +m),

where u (p) denotes a Dirac spinor and A, =+ I gives the
spin assignment in the p rest frame. Having in mind ap-
plications to high-energy physics we restrict our analysis
to massless particles. U spinors are then converted into u

spinors by v~ ———A,y u ~. Next we proceed by reducing
the numerator structure of an arbitrary diagram. Vector
and axial-vector couplings of internal particles are re-
placed with a combination of scalar and pseudoscalar cou-
plings. The basic reduction formula reads

y"S„u~(p)uz(q)S y"= —Ap[S u z(q)u ~(p)S„—y S u z(q)u ~(p)S„y
—u g(p)S„S u p(q)+y u g(p)S„y'S u ~(q)], (2)

where S„stands for an arbitrary string of n y matrices
and S„ is the same string in the reversed order. The for-
mula can be easily proved by using the Chisholm identi-
ties. In this way an arbitrary diagram consisting of n fer-
mion lines connected by internal vector bosons is replaced
by a collection of diagrams each formed by n disconnected
fermion lines. However each application of the Chisholm
identities doubles the number of terms. When many inter-
nal photons are present we could in principle avoid this
problem by using the Kahane algorithm which appears to
minimize the number of terms in the final expression.
The resulting amplitude is computed by introducing

SAp(p q) = 2poqou A(p)u—,(q),
Pt (p, q) = 2poqou~(p—)r'u (q) .

S~(p,q)=p q5~+i(pxq) oq

p~(p q)=(poq —qop). ~~.
(4)

As a bonus for working with an explicit representation of
y matrices we can avoid arbitrary phases. For simple pro-
cesses the amplitude can be immediately computed. Con-
sider p e scattering in massless QED:

(A,,A,p~p, p~) =2
~

M(A, ,Ap~p, p„) ~

. , (5)

It follows

I

(Matrix elements of this type have been tabulated for
light-cone perturbation theory in Ref. 4.) For S and P we
get
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M(A, ,Ap —&p, pp)

~ePp(Sp p S 1. 1, Pp—p P

Sp—,1.„S 1.„—p„+Pp,1„P 1„-p„-).

Thus in the c.m. system of the scattering particles

M(++ ++)=M(—
M(++~ +)=M(

)=u

) =M(++ ~+ )

=M( — —+ +)= i—(tu )'

~++ ) = —tu,

M(+ ~++)=M( —+~ ) =M(+
=M( +~++ ) =is (tu)'

M(+ ~ +)=M( +~+ )=st,
M(+ ~+ }=M( +~ + }=—su,

in agreement with the well-known result

1g ~M~ =2s 1+—+-
SPln $2 $

Calculations of QED processes with polarized particles,
including higher-order corrections can be found in Ref. 5.
In general we have expressions like

fol Q1 = Q Q t p

Finally we must take into account a possible multiphoton
radiation. Qnce the reduction formula is applied the for-
malism of Ref. 1, namely, the use of circularly polarized
photon states, becomes particularly simple since each fer-
mion line with its emitted photons can be analyzed in-
dependently from the rest of the diagram. Even when
strong cancellations between different diagrams are not
expected we use the fact that the polarization vector e& of
Ref. 1 is explicitly given in terms of the external momenta
and the previous formulas suffice in evaluating the ampli-
tude. We also need an explicit representation for massive
vector boson wave functions. A convenient way is to
write

u1.(p;) / gtu (p,.),
l=l

where Qt are linear combinations of external momenta
(even when internal loops are present). This can be re-
duced to a product of S,P functions since

gt =2i g a t pp Q u, (p )u, (p

u1. (p)u1. (p) = i —m+1,
2Po

(10)
V1(P)u&(P) = i-

2po
with m1= —,(1+Ay ). Hence we may use U1= —Ay u
Next we derive

—if
u1.(p}u 1.(q)= - (poqop q) '"W~ 1.2V2

where e is an unspecified phase. When the helicity is
the same u ~u ~

——0 and a different procedure must be used

u 1„(p)u1,(q)
—if

e +- (poqo} '"(2p nq n pq) '"P&q~t, , —
2V2

(12)

where n& is an arbitrary vector normalized to n = l. If R
is the operator which reverses the order of a string of y
matrices, RS =S,we get

Ru1(p)up(q) =u p(q)u 1(p) .

Application of the Chisholm identities gives now

X,I=1,2, 3, k = —M
From Ref. 2 we learn that a specific reference to spinor
components can be avoided (see also Ref. 6) if we allow
for arbitrary phases. Here we derive the formalism for
the massless limit with a new version of the reduction for-
mula and also consider the general case; i.e., massive par-
ticles with arbitrary polarization vectors.

First however we want to compare the general features
of this method with alternative works, in particular the
one of Farrar and Neri.

To start with, we do not need in what follows a specific
representation of the y matrices and the method is com-
pletely general. As far as we consider only the massless
spinor, the Farrar-Neri method can perhaps be faster for
evaluating certain transition amplitudes, but the present
method allows the extraction of helicity amplitudes in the
general case. For instance, massive particles can easily be
accommodated and no restriction is made on the polariza-
tion. Thus transverse polarization can be studied, and we
have in mind polarization driving mechanisms in circular
colliders which lead to transverse polarization of both
e+e beams. Also, external photons are easy to include
in the scheme, which is simple and amounts to transform
spinor amplitudes into a trace of y matrices with no re-
peated indices.

Let u1 and U1 be eigenstates of —,
' (1+A,y ) and

—,(1—Xy ), respectively. The only property we need is

ypS„u1(p)u1(q)S y"= —2S"u 1(q)u t„(p)S„(n +m even),

y"S„u1(p)u1(q)S~y"=u 1(p)S„S u 1(q)—y u 1(p)S„y S u 1(q) (n+m odd),

y"S„u1(p)u 1.(q)S~y =u 1.(p)S„S u1. (q) —y u 1(p}S„yS~u1(q) (n+m even),

y"S„u~(p)u 1(q)S~y"= 2S~u1(q)u 1(p—)S„(n+m odd) .

(13)
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An alternative approach can be found by means of identity

tr(y~S) tr(y~S') =2 tr(S+S")S' .

As an example we consider

u4y u] u3y u2 ——tr(y"u &u4) tr(y"uzu3 ), u; =u~ (p;)

=2up(p3)ug(p, )ug(p~)up(p2)+2up(p3)u g(p4)u g(p))up(p2), A, =Xi,i2, p=k2, 13. (14)

The first term contributes only for p= —A, , the second only for p=A, . Helicity conservation prevents in general from a
proliferation of diagrams in the repeated use of the reduction formula. The mechanism which eliminates saturated y
matrices has the advantage that the result can still be written as a Feynman diagram. Also it can be applied directly, no
matter where the y matrices are .ocated inside the graph. Scalar and pseudoscalar bilinear forms can now be derived:

' 1/2

uq(p)uz(q) =e
2po9'o

A (A, ,p),
(15)

uq(p)y'up(q) = —pe
2po9'o

1/2

A (Xp)=e ip

2po9'o

' 1/2

A (A, ,p),
J

where A +—
(A,,p) = —,

' (1+Ap). Also using Eq. (12) with n =Q we get

1/2

ug(p)gu~(q) =e " ~ p q A+(A, ,p), etc.
2Polo

(16)

The arbitrariness of the phases becomes relevant whenever different diagrams interfere. In the following example we useif
e ~= —pe ' to derive

r

2— 2 5 5 2i@, 1 P1P2P3 P4'""""+:" """"= "'2 EEEE1 2 3 4
(gg +Apgp ), —A)=A2=A, , —A3 —A4=p .

As an application we consider the radiative Coulomb potential scattering of an electron. The amplitude is

Using'

Ze p e p'. e 1 g'kt' 1 ke' n'
tr —, rj —— +—, u~(p)u~(p'), n =1 .p.k p'k 2 p k 2 p'. k (17)

e' = (kp'p~ pt 'pter—), .
2N

we find

Ze2
Mr = — (EE') '~ (2p.np' n —p p') '~ [M+A+(cr, A)+M ,A (o,A)], .

,

M+ ——p.p'(p p' —2p np' n+p k pnk n) p.np'.—np k+—(p n) p'.k+2p'. ne(n, pp', k)o,
M =p.p'(p.p' —2p np' n +p'k p' nk n) —pnp' n.p' k—+(p' n) .p k —2p ne(n.,p,p', k)o,

(18)

where A+—(o,A ) = —,
' (1+Acr), e(np p', k) =eI'" n& p p' k jj. Since A+— are projectors M+ do not interfere.

Even in a situation where masses are not negligible there are many advantages in computing directly the amplitude.
The relevant formalism has been developed in Ref. 2. The reduction formula is now more complicated and we derived it
only for a simple example. Let

M =Q4P Q1Q3g Q2

where u; =u (p;, n;, A,; ) denotes a Dirac spinor with polarization A,; =+ 1 along n; with n; = l, n; p; =0. Thus

M =tr(y"u)u4) tr(y"u2u3)=tr(y"M)g ) tr(y"M~3 ),
Mjj Mjj +Mjj Xjj (p j +Em j ) re (pj +Emj )

I,J ——1 + l y ( A,;5'; +A,jg'j ) +A,; Aj1l(fig, '

(20)

is a normalization factor and even (odd) denotes the part of M;j with an even (odd) number of y matrices. We can
easily prove that
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MJ +M~"'"=u (p;, n;, A,;)u(pj, nJ, AJ),
odd evenM" —M" = —u( —p —n A, )u( —p. , n—A, )EJ IJ pl& l& l J' J

MJ =u (pit nial J. )u(p;, —n;, I;), ~

Also

2 t (Modd +Modd, R )Modd

(21)

2 (u3ulu4u2 u3 1 u 4 u2+u3u4u iu2 u3 4u iu2 3 ul 4u2 +u 3 u 1 u 4 u2 u 3 u4u iu2 +u 3 u4u 1u2

where u =u( —p;, n, A,;), u;"= u(p;, n;, A,—;),u "=u( —p;, n—;,A;). , Using the formalism we are able to derive the ex-
pression for ui(p)ui(q) previously given in the massless case. It turns out that n~ can be chosen to satisfy
n.p =n.q =0. Indeed we start by computing u (pl, n 1,A1)u(p2, n2, A2) with

nip
= ( pl, l pl El ) +sill/ n p

cosg
mP;

n& ——(n, O), n p;=O, n =1,
Nl0&/&m/2, p = m', P—2=1-

l

for /=0 this corresponds to longitudinal polarization. As usual

(23)

uiu2 ———,'(E1E2) ' (n+ ' A++n ' A )( i'll—+m) —,'(1+ikiy n'1) ,'(1+—ik2y rl2)( ip2+—m) . (24)

When A, i
——A2 ——I, we find n+ ———2e+' sin tt pi.p2+0 (m ). Thus

i@u (pi, n1, A )u(p2, n2, A ) =e' (E1E2 pi.p2) ' pi[sing+i (cosf+ Ay )lr]p 2+0 (m) .
4 2

(25)

The previous formula and Eq. (13) form the base for computing high-energy cross sections for particles with an arbitrary
degree of transverse polarization. In the limit /=0, m =0

ui, (P1) 2, (P2) le ~ (E1E2P1 P2) Pl+P2~12v'2

As a final application we consider the bremsstrahlung amplitude for e+e « F+F y where t-he F-mass effects are expli-
citly taken into account. Moreover we only include final-states radiation, simulating in this way a QCD three-jet cross
section for heavy quarks. The amplitude is

M =u(p3 n3 A3)[y"5(p4+k)e' +e' b( —p3 k)y"]u(p4—,n4, A4)v(pi, i,1)y"u(P2, A2)

(27)

1(p)= ip+m- ,

where factors due to couplings and an overall s ' from the photon propagator have been omitted. Using'

1 v a P(p4.kp3& p3 kp4& 0e&~—pp4p3k )—, '

~zw
(28)

(P3P4&~. Ilrp13P4~ ), ~.—= —,
' (I+~y'),

&2)V'

i zp3 k . p3 k
M = u3 y~ p3 'P4+ m +1m Ig'77 o+ igp37rg U4U iy u 2

V 2+ p4 k p4'k

2p4. k p4 k
+ 3 P3 P4+m k

lm
k

ir —~1|r+'ir P4k y~u4Uiy~u2
2X p3.k p3-k

Next we use

(29)
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v4v )
——

~ N )4(p4 —tm )(1—i A, )A,4rl4}p (m

tt2173 ——,N23m q p2( 1 +i A@A 3rl3)(p3+™)

Nf (m——p; nl+p; pl. )
' A (A;,Af)+( m—p;.nf+p; pf) ' A+(A;, Af)

g N,lkA"(A;, A.l) .

(30)

Thus M =(i/16' 2N)N~4Nq3 trT. After applying Chisholm identities and rearranging the terms in the trace we find

T =A (A, i, A2)t,

t = p trD~JkA'(O, A, &)A (A, &, A4)A"(A2, A3) .
ijk =+

The A are projectors and the different terms in the sum never interfere in the cross section. However the matrices D for
arbitrary polarizations contain up to a maximum of eight y matrices and therefore their trace is cumbersome but clearly
not impossible (compare with the standard procedure)

Dtjk=A;n(iA))BJCk+A;m( —tA))B;JCk+A CJ Bt'kyar(tA))+A';CJ'B' tkn( —tA)), t J,k =+,—,
p3 k p3 k

A+ ——A +Qp3, A =A +im Ig', A =p3.p4+m
@4k

' p4k '

p4 k pg k
A'+ ——A'+p4ig', A' =A' im — O', A'=p3 p4+m

@3k
' p3k '

B++ p&p&+ m——rl4p~, B + —— impj—+ip4rl'4p~,

C+ ——p2.p3+mp2 n3 2im. p—2+2ip3rl3p2,

C'+ —p, p4+mp& n4+2imp~+2ip~rlqpq,

B'++ ——imp2+ip2rl3p3, B' + p2p3+—mp2rl3 .

Finally

(32)

(33)

M = A (A, ~, A2} g N~4JNz3ktrD&t, A'(o, A, ~)A (A~, A4)&"(A2, A3) .
16&2N

(34)

In our opinion the present method has many advantages,
some of which are, however, more conceptual than practi-
cal. The use of the projection operators, introduced in this
context by Caffo and Remiddi in Ref. 2, allows us to ex-
tract automatically the helicity amplitudes, which can be
written without internal vector and axial-vector couplings.
The result is a highly compact expression even for massive
particles and arbitrary polarization vectors.

The physics of polarized beams in e+e colliders can
be fully analyzed in a covariant way, while cotnplicated
processes such as m-m scattering where everything is mass-
less and each quark is assumed to be collinear with the
hadron are perhaps better computed by other methods,
such as those of Farrar and Neri.

In this respect one should make a distinction between
methods where the study of polarization effects is the

main topic and methods to compute the cross section for
particular processes by using the best strategy. What we
have discussed in this paper belongs more to the first
category but we feel that it is also very useful when
viewed as a short way for performing complicated compu-
tations, especially in the massless case used in conjunction
with an algebraic program as SCHOONSCHIP.
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