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Phase transition and density of states in the quantum-chromodynamic bag model
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In the context of a two-phase model of hadronic matter suggested by Hagedorn and Rafelski, an
analysis of a quark-gluon plasma described by perturbative quantum chromodynamics supplement-
ed by a bag constant to account for nonperturbative effects is presented. A running coupling con-
stant is explicitly implemented. The critical temperature and energy density are determined and the
conditions under which T, &8' are discussed. Next, the asymptotic density of hadronic states is
derived by Laplace-inverting the partition function and the same form as in the statistical bootstrap
model is obtained.

I. INTRODUCTION

It is widely accepted by now that a phase transition
from hadronic matter to a quark-gluon plasma should
occur at high enough temperature and/or density. ' Lat-
tice calculations of Yang-Mills theory suggest that decon-
finement will take place at a critical temperature of ap-
proximately 150—225 MeV. This is so far the only
method to treat all phases within the same theory and a
fully satisfactory lattice description of QCD with fer-
mions has yet to come. Alternatively, two-phase ap-
proaches rely on a different description for each phase and
usually critical quantities are determined by matching the
pressures. For instance, in this manner, the quark-gluon
plasma can be described by first-order perturbative QCD
at finite temperature supplemented by a bag constant to
account for nonperturbative effects. Results of lattice cal-
culations agree very well with such a description above
the critical temperature, suggesting large cancellation. .
among higher-order terms. To describe the hadron phase,
the statistical bootstrap of Hagedorn and Frautschi is a
natural candidate. Indeed, based on this idea, several
models of hadronic reactions have been developed which
account for many features of the data. It is well
known that in this case, the hadronic density of states is
given by'

M/To

p(M) cc

In this expression, To (-160 MeV) should not be inter-
preted as the limiting temperature of the Universe, as first
suggested, but more likely as the critical temperature of a
phase transition. "

Along these lines, a model of strongly interacting
matter was developed by Hagedorn and Rafelski' ' in
which the matching of the two phases occurs when the
pressure vanishes in each phase. In particular, in the
quark-gluon plasma the critical temperature is determined
by the highest value of T on the I'(p, T)=0 curve (p being
the chemical potential). We note that according to the
bag model, ' the plasma will then be at equilibrium, i.e.,

the pressure exerted by the constituents in the bag will be
balanced by the pressure of the vacuum associated with
the bag parameter. An estimate of the critical tempera-
ture was done' (T, —160 MeV assuming 8' =190 MeV)
using a fixed value of the coupling constant (a, = —,

' ).
In this paper, we analyze in Sec. II the quark-gluon

phase using explicitly a running coupling constant and
determine the critical temperature and the resulting ener-

gy density for different flavor numbers and different bag
parameters. We discuss the conditions of applicability of
the model and the conditions under which the critical
temperature will be smaller than the bag parameter. In
Sec. III, we derive the asymptotic density of hadronic
states using a saddle-point method and obtain an expres-
sion of the form found in the statistical bootstrap model
[Eq. (I)]. This was already known in the case of an Abeli-
an bag model' ' and of interacting fields in a bag with a
fixed coupling constant. ' We show that it also holds for
perturbative QCD in a bag with a running coupling con-
stant. In addition, we find that since the matching of the
two phases is done at a vanishing pressure, the tempera-
ture To in the density of states is the same as the critical
temperature T, of the phase transition. Section IV con-
tains a summary and our conclusions.

II. THE PHASE TRANSITION

For simplicity, we assume zero-mass quarks and start
from the thermodynamical potential 0 to first order in a,
in the QCD bag model ":

8m 7m 1 1 4 1 Pf'
4S 60 f p4 4~' 2 p'

+g' ( —, + —,', nf)

I

1 1 4 2 Pf+g+ 41f + z p
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2
A—:( —,'+ —,nf)

15
(4)

and

where V is the volume of the system, nf the number of
quark flavors, pf the chemical potential of quarks of fla-
vor f, B the bag constant, and P the inverse temperature.
The running coupling constant as obtained from the re-
normalization group takes the form '

2~ 2 —24m.2

(33—2nf )ln(PA/4)

where A fixes the scale. Defining

At the same time, in order for perturbation theory to be
applicable, one also requires a, & 1 (obviously this condi-
tion could be made more stringent) which also puts a
lower limit on T, :

6m

(33—2n )
(12)

It is clear, however, that for such a description to make
sense, the quantity in large brackets must be positive.
This puts a lower bound on the critical temperature and
we must have

k/A~

(33—2nf )

and since the highest critical temperature is obtained in
the absence of valence quarks, setting all chemical poten-
tials to zero, Eq. (2) reduces to

Q k 1

V ln(PA/4) P
4 —k /(A —1)B1/4e (13)

Which condition is the most severe depends on the num-
ber of flavors as can be seen from Table I, but clearly in
all cases, T, )0.5A. Therefore, if the critical temperature
does not turn out to be reasonably greater than half the
scale parameter, the whole scheme should be abandoned.

It is also of interest to know whether or not the critical
temperature is smaller than the bag parameter B' . It

(6) will in fact be the case if, as given by Eq. (10),

The equation of state is then obtained from

QP= ——
V

'

and from

The result thus depends (though only slightly as we shall
see below) on the temperature in contrast to the fixed cou-
pling case. At the transition point, the pressure vanishes
and therefore the critical temperature (T, —:I/P, ) must
satisfy

ln(4T, /A)
(10)

E=Q+P
ap

V
3

k k
P' »(PA/4) ln'(PA/4)

where P and E are, respectively, the pressure and energy
of the system. We have

P———4B1 E k
(9)

P in (PA/4) 1/4
T(n+1)

[2 k/ln(4T, '"'/A) ]'i-
together with T,' '=B' produces an accurate answer.
Here A is taken to be 100 MeV as this is the value which
best fits the Monte Carlo lattice calculations. The bag
parameter is not well known and we give results for three
different choices: the usual B'~ =14S MeV from the
original MIT bag model, B' =190 MeV, the seemingly
most generally accepted value as suggested by Satz from

(14)

Numerical values of (A/B'~ );„are listed also in Table I.
Taking into account both constraints, i.e., (11) or (12) to-
gether with (13), one can conclude that T, must be smaller
than B'~ in the four-flavor case (more precisely provided
a, & 0.96) and very likely also in the two- and three-flavor
cases. Indeed, one only has to require cz, &0.9 if nf ——3
and u, &0.8 if nf =2. However, constraints on the pure
gluon plasma are not strong enough to permit a definite
conclusion. Therefore, assuming A to be flavor indepen-
dent, one obtains A (2B'

We can now proceed to the solution of Eq. (10) to deter-
rnine the critical temperature. Owing to the fact that the
logarithm is a slowly varying function of its argument, a
small number of iterations using

TABLE I. Minimum value of T, /A and of A/B' for different numbers of quark flavors.

Number
of

flavors From Eq. (11)

0.49
0.46
0.47
0.48

T min/g
From Eq. (12)

0.44
0.48
0.50
0.53

(W/B'") i„

0.82
1.77
1.83
1.82
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TABLE II. Critical temperature, energy density, and coupling constant for different numbers of quark flavors and bag parame-
ters.

B1/4

Number
of

flavors
V;/B "4

r, (MeV)

0.99
143
0.80
116
0.76
110
0.73
106

145 MeV

e, /4B
e, (GeV/fm3)

1.09
0.25
1.13
0.26
1.13
0.26
1.13
0.26

a,
0.33

0.42

0.47

0.52

Z /B 1/4

T, (MV)

0.96
183
0.78
149
0.74
141
0.71
135

190 MeV

6, /4B
e, (GeV/fm )

1.06
0.72
1.07
0.73
1.09
0.74
1.09
0.74

0.29

0.36

0.40

0.45

Z /B 1/4

T, (MV)

0.95
224
0.77
182
0.73
172
0.70
165

235 MeV

e, /4B
e, (GeV/fm )

1.07
1.67
1.08
1.68
1.08
1.69
1.09
1.70

0.26

0.33

0.36

0.40

lattice calculations, and 8 '~ =235 MeV from spectro-
scopic studies.

In Table II, we present the resulting values of the criti-
cal temperature, the critical energy density e„and of the
running coupling constant evaluated at the transition
point. The following observations can be made.

(1) For each number of flavors, the dependence on the
bag parameter of the critical temperature is almost linear.
The slope is approximately 0.75 except in the pure gluon
case where it is almost unity. This difference is explained
by the somewhat lower value of a, in the absence of
quarks. The actual values of the critical temperature
agree with lattice calculations and other estimates' '

for B ' = 190 or 235 MeV, but not for B ' = 145 MeV
which seems really to low. In the three-flavor case, the
statistical-bootstrap value of 160 MeV would result with
B' =218 MeV.

(2) Within 10%, e, =48 as used by Hagedorn and
Rafelski. ' This is because, as can be seen from Eqs. (8)
and (10), the second term in its expression is proportional
to a, which is small. For B' =190 MeV, one obtains
e, =0.73 GeV/fm or about five times the normal nuclear
density. This is in reasonable agreement with the lattice
estimate of Ref. 2 though a little higher and well within
previous estimates. ' ' ' ' ' Obviously, from an experi-
mental point of view, a higher value of the bag parameter
would have dramatic consequences.

(3) At the critical point, the value of the coupling con-
stant is small enough to ensure a good convergence of the
perturbation expansion above the phase transition.

(4) Finally, one notes that the value of A that we used
fulfills the condition (13) in the pure gluon case, also re-
sulting in a critical temperature smaller than B '

III. THE DENSITY OF STATES

We now address the problem of determining the asymp-
totic density of states in this model. These are actually

hadronic states of a bag of volume V containing our
quark-gluon plasma. We use the fact that it can be ob-
tained by Laplace-inverting the partition function. In or-
der to exclude the spurious excitations of the center-of-
mass system, we write (following Ref. 24)

Z(p, Q)= fdEd pp(E, F)e
(2m)

(15)

where p(E, P) is the number of states per unit of energy at
a given total momentum P. Under Laplace inversion, one
has

p(E, p) = , f —dpd'g ef't' O ',
(2+i) c-t

where we have defined

(16)

f(p, Q)=pE+P Q+lnZ(p, Q) . (17)

To evaluate Eq. (16), we use the saddle-point method
which approximates the integral by its main contribution,
i.e., in a region where f(p, Q) takes its maximum value.
The well-known procedure then leads to the result

f(P0, Qo)

p(E, P):—
/det/ '~' ' (18)

where (PO, Q0) is the saddle point determined by

df
ap==0 and Vgf =0, (19)

and det is the four-by-four determinant of the matrix
made of the second-order derivative of f with respect to p
and QJ and evaluated at the saddle point.

To proceed, one needs lnZ(P, Q) = —PQ. Following
Kapusta, ' one has from Eq. (2)

lnZ(P, Q) = 8m. g 7m

(j0
5 2 pV k pV

72 (P —g )2 ln(PA/4} (P — 2)~
(20)
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Using (17), (19), and (20) to determine the saddle point, we obtain

ln(PA/4)
(21)

and since P=0, we also have Q=O. Therefore, as one readily verifies, all thermodynamical quantities derived in Sec. II
remain valid at the saddle point. Moreover,

k=(E BV)—+ ~ A+ 4P k V
p2 g2 1 2(pA/4) (p2 g2)2

P' ln(PA/4)
=0, (22)

which is the same as Eq. (8). One thus anticipates that the saddle point pp will have to satisfy condition (10). Indeed, at
equilibrium the pressure vanishes and using (9), (22) becoines

1 k
ln(PpA/4)

(23)

Therefore, we obtain

f(Po Qo)=PoE+ ~+, PoBV=—PpE .

The determinant is easily calculated and is given by

P3 V4
det=768

8 Ro,

(24)

(25)

where, by definition,

k 7 1Ro=—2+ 1+ +
ln(PpA/4) 12 ln(PpA/4) 6 ln (PoA/4)

(26)

From (9), the volume at equilibrium is

V=
[4B+k/Po ln (PoA/4) l

Collecting terms, we have for the density of states

(27)

I

clear that in addition to changing the actual value of pp,
the only effect of the coupling constant being running is
to modify slightly the coefficient. Indeed, using the
values of Table II, we estimate the numerical error of
neglecting terms of O(1/ln (poA/4)) to 10—20%. It is
easy to show that the coefficient then reduces to

p(E) =a
E3 (28) a —= BPp

8m

3
(30)

where the coefficient is given by

I4B+k/[Po ln (PoA/4)] I

8v3 ' g 3/2R 1/2 (29)

which is the exact result when the coupling constant is not
running. '

IV. CONCLUSION

Therefore, as in the case of the Abelian bag model' '
or of a bag model with a fixed coupling constant, ' we get
a density of states of the form obtained in the statistical
bootstrap model [Eq. (1)]. We already noted that the
equations determining pp and 1/T, are exactly the same
and therefore of course po ——1/T, . This is due to the fact
that the condition of equilibrium of the bag, i.e., the pres-
sure of the constituents equals the "external" pressure, is
the same as the condition determining the matching of the
two phases of the model, i.e., P(p, ,T)=0. Moreover, it is

In this paper, a quark-gluon plasma described by per-
turbative QCD at finite temperature supplemented by a
bag constant to account for nonperturbative effects has
been studied. The critical temperature of a phase transi-
tion froin hadronic matter to this quark-gluon plasma was
determined for different numbers of flavors and different
bag parameters. For simplicity, all quarks were assumed
massless but a running coupling constant was implement-
ed. After a short discussion on the applicability of the
model, it was concluded that the critical temperature
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mould be smaller than the bag parameter when the num-
ber of flavors is two or more and that the scale-fixing pa-
rameter A should be smaller than -2 8 ' ". Using
A=100 MeV, it was found that in the pure gluon case,
T, /B'~ was close to unity but otherwise was approxi-
mately 0.75. This is a little lower than the value of 0.83
obtained by Rafelski. ' Also, the value of 145 MeV for
the bag parameter appears to be too low as it leads to real-
ly low critical temperatures. A comparison with other es-
timates ' favors a value of approximately 200 MeV.
The resulting critical energy density was in all cases a lit-
tle over the unperturbed result of 4B. Indeed, the cou-
pling constant a, turned out to be relatively small.

Next, the asymptotic density of states was derived by
Laplace-inverting the partition function. The center-of-
mass degrees of freedom were explicitly excluded through
the constraint P, =0. A form identical to that found in

the statistical bootstrap model was obtained. As in the
case of a fixed coupling, ' the running coupling constant
affects only the coefficient a and the actual value of Po.
However, one should realize that as in other treatments,
the plasma states were not required to be color singlets.
Therefore, additional states have been included in the den-
sity and this should affect the pre-exponential power and
the coefficient but not the exponent. ' ' In this connec-
tion, some work has already been done by Cxorenstein and
collaborators. On another hand, it has been shown by
Jennings and Bhaduri' that accounting for the finite size
of the bag in a noninteracting gluon gas leads to a modifi-
cation of the exponent itself. In fact, it is quite difficult
to take into account all relevant aspects at once and since
(it is hoped) different approaches complement each other,
our purpose here was mainly to study the consequences of
irnplernenting a running coupling constant.

See, for instance, E. V. Shuryak, Phys. Rep. 61, 71 (1980);
Quark Matter Formation and Heavy Ion Collisions, proceed-
ings of the XVIII Rencontre de Morrond, Les Arcs, France,
1982, M. Jacob and J. Tran Thanh Van [Phys. Rep. 88, 321
(1982)].

2H. Satz, Phys. Lett. 1138, 245 (1982); Phys. Rep. 88, 349
(1982).

K. Kajantie, C. Montonen, and E. Pietarinen, Z. Phys. C 9, 253
(1981).

~I. Montvay and E. Pietarinen, Phys. Lett. 110B, 148 (1982);
115B, 151 (1982).

5R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965).
6S. C. Frautschi, Phys. Rev. D 3, 2821 (1971).
7R. Hagedorn and J. Ranft, Nuovo Cimento Suppl. 6, 169

(1968).
F. Johns et al. , Phys. Rev. Lett. 29, 756 (1972).
R. Gagnon, Phys. Rev. D 22, 616 (1980).
C. J. Hamer and S. C. Frautschi, Phys. Rev. D 4, 2125 {1971).
N. Cabibbo and G. Parisi, Phys. Lett. 59B, 67 (1975).
R. Hagedorn and J. Rafelski, Phys. Lett. 97B, 180 (1980); in

Statistical Mechanics of Quarks and Hadrons, proceedings of
the International Symposium, University of Bielefeld, Federal
Republic of Germany, 1980, edited by H. Satz (North-
Holland, Amsterdam, 1981),p. 237.

~ J. Rafelski, Phys. Rep. 88, 331 (1982).
' A Chodos e«l Phys Rev D 9 3471(1974)-

J. I. Kapusta, Phys. Rev. D 23, 2444 (1981).
B. K. Jennings and R. K. Bhaduri, Phys. Rev. D 26, 1750
(1982).

~7J. Kapusta, Nucl. Phys. B196, 1 (1982).
S. A. Chin, Phys. Lett. 78B, 552 (1978).

~9J. I. Kapusta, Nucl. Phys. B148, 461 (1979).
T. DeGrand et al. , Phys. Rev. D 12, 2060 (1975).
P. Hasenfratz et al. , Phys. Lett. 95B, 299 (1980).

2~K. Kajantie and H. I. Miettinen, Z. Phys. C 9, 341 (1981).
R. Gagnon, Can. J. Phys. 60, 797 (1982).
B. K. Jennings, L. Satpathy, and S. Das Gupta, Phys. Rev. C
24, 440 (1981).

2~M. I. Gorenstein et al. , Theor. Math. Phys. 52, 843 (1983).
M. I. Gorenstein et al. , Z. Phys. C. 18, 13 (1983).


