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The Lorentz boost transformation for the soliton bag model is constructed in the mean-field ap-
proximation. Assuming that the standard static-bag wave function is equivalent to the zero-
momentum eigenstate, the Lorentz boost transformation generates quark wave functions corre-
sponding to a moving bag. We demonstrate that the mean-field energy and momentum of such a
moving bag are related to the energy of the bag at rest by the correct Lorentz-transformation for-
mulas. The boosted quark wave functions are used to investigate relativistic recoil corrections to
hadronic form factors. Electromagnetic and axial-vector form factors are discussed, as well as the
pion-nucleon vertex corresponding to a hybrid chiral bag model. Various types of bags (e.g., MIT
type and SLAC type) are considered. It is shown that ignoring quark binding in the boost transfor-
mation leads to an overestimate of recoil corrections to magnetic moments. Relativistic recoil gen-
erally hardens the form factors. The proton charge radius is decreased by about 15% compared to
the static-approximation values. The magnetic moment is changed by less than 10%. The inclusion
of recoil corrections leads to reasonable agreement with experiment for all form factors considered
if the bag radius (for an MIT bag) is about 1.3 fm. A comparison is made with other works on this
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topic.

I. INTRODUCTION

It is a generally accepted view that quantum chromo-
dynamics' (QCD) is the correct theory of strong interac-
tions. In QCD, hadrons are made up of colored fermions
in such a way that the hadron is a color singlet. Since
color is not observed experimentally in isolation, it is
necessary to require that the color degrees of freedom be
confined. Although there is theoretical evidence that this
occurs in QCD, the details of the confinement mechanism
are still poorly understood.? In order to bypass this prob-
lem, hadronic models which postulate confinement a
priori have been developed. The most popular such
models fall under the general denomination of bag models
and are characterized either by the postulation of a finite
space-time region to which the quark and gluon fields are
confined (MIT bag model®) or by the introduction of an
effective confining scalar field treated in a nonperturba-
tive fashion (soliton bag model*). In both cases, these de-
vices are thought to approximate long-range QCD effects
and it is assumed that short-range QCD effects can be
treated perturbatively.

In practical applications of these models, a static ap-
proximation is usually made in the calculation of form
factors and other properties. Of course, such an approxi-
mation ignores recoil and it is desirable to improve upon
it. Moreover, the study of multihadron phenomena, such
as nucleon-nucleon scattering and nuclear structure, in
terms of quarks, requires a description of moving bags.

. The description of moving bags requires (a) the
knowledge of a momentum eigenstate in the theory
(translational invariance) and (b) the transformation of
this state from one Lorentz frame into another (covari-
ance). Several approaches to these problems have been
proposed, which address either or both of these questions.
The first is a projection method® borrowed from nonrela-
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tivistic nuclear theory. Although it has the advantage of
yielding momentum eigenstates, it takes no account of the
Lorentz-transformation properties of states. Another in-
teresting approach’ based on the intuitive idea of relativis-
tic center of mass has been used to calculate recoil correc-
tions to charge radii. Yet other proposals® use a relativis-
tic free-particle boost applied to static bag states; the
corrections to calculated magnetic moments are found to
be significant. However, as we shall demonstrate here, the
weak-binding assumption which is implicit in this descrip-
tion does not seem justified for confined systems. The
question of how to boost bags is addressed more carefully
in Ref. 9. However, the approach used there seems limit-
ed to the calculation of electromagnetic form factors in
the MIT bag model.

In this study, we construct the relativistic boost opera-
tor in the mean-field approximation (MFA) to the soliton
bag model and use it to obtain recoil corrections to mag-
netic moments, charge radii, and axial-vector form fac-
tors. This development sheds light on the connection be-
tween the last three approaches and improves upon each
of them. Also, the use of the soliton model allows us to
present calculations of form factors for different types of
bags. We study the effect of surface versus volume con-
finement and of bag-surface diffuseness. It should be em-
phasized that our calculations are based on the assump-
tion that the usual static-bag wave function can be identi-
fied with the zero-momentum eigenstate. Although this
provides a basis for numerical calculations, it is clearly
not correct. Thus the average momentum associated with
our boosted states is correctly related to their mass, but
these states are not eigenstates of the momentum operator.
The question of constructing such eigenstates is not ad-
dressed here but is left for a future publication. There-
fore, no obvious comparison with the first approach men-
tioned above is possible at this stage.
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This paper is organized as follows. In Sec. II, we intro-
duce the boost operator and remind the reader of some of
its general properties. The MFA for a soliton bag at rest
is summarized in Sec. III. In Sec. IV, we construct the
MFA boost and use it to obtain quark wave functions cor-
responding to a moving bag. This section also contains a
brief discussion of some properties of moving bag states.
The general form of the recoil-corrected quark-current
matrix elements in MFA is discussed in Sec. V. In Sec.
VI, we give explicit formulas for the electromagnetic and
axial-vector form factors in terms of quark bag wave
functions. The large-q? behavior of these form factors is
compared to that obtained in the static approximation and
to QCD predictions. Numerical calculations of these
form factors for a variety of bag types are presented in
Sec. VII; charge radii and magnetic moments are dis-
cussed. Finally, in Sec. VIII, we summarize our results
and compare them to those obtained using other ap-
proaches.

II. THE BOOST TRANSFORMATION

Given any Lorentz-covariant local field theory, it is al-
ways possible to construct the boost operator,'? i.e., the
generator of pure Lorentz transformations. With applica-
tions to the soliton bag in mind, we shall restrict our con-
siderations to spin-1/2 fermions (quarks) interacting with
a scalar field. The Lagrangian has then the general form

where ¥ and o refer to the quark and boson fields, respec-
tively. If .# is a function of the fields and their first
derivatives only, the stress-energy tensor is given by
9.7 0.7
— av
33,0 ° 7 3(3,9)

It follows from invariance under space-time translations
that the momentum operator

Pi= [ d% T%x) (3)

™

MY—gh L . )

and the Hamiltonian
H=[dior(x), #(x)=T"x), @

are conserved quantities. Similarly, from invariance under
rotations in space-time, it follows that the generalized an-
gular momentum tensor

i 3.7

ny_ 2 vOA __ AgpOv__ 2 92 WA (5)
M fdxxT x*T 26(801/1)01/} s
where
o=y ©)

is also a constant of the motion. The components of this
symmetric second-rank tensor form two three-vectors, the
familiar angular momentum

Ji= el Mk (7

and the Lorentz-boost operator
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Ki=M'° (8)
which is central to our considerations. Since we are deal-
ing with states and operators in the Heisenberg representa-
tion and since

dK
. 9)

we may set z =0 in the expression for K. Then,

K= [dx |20(E)— 9 @)ay) | . (10)
Under the infinitesimal (active) Lorentz transformation

characterized by a velocity dV, a state transforms accord-
ing to

|9y =(1+idV-K) |¢) . (11)

Remembering that two successive Lorentz transforma-
tions along the same direction result in a Lorentz transfor-
mation whose rapidity (o= artanhv) is the sum of the ra-
pidities of each transformation, it is straightforward to in-

tegrate (11) to obtain
[¢)=U)[4) (12)

with

<)

U(V)=eior K (13)
for a finite Lorentz boost. Of course, U is unitary and K
is Hermitian. We remind the reader that Lorentz invari-
ance of the quantum theory demands that

—

UTHU =coshw H +sinhw 7P , (14a)
U'$-PU =sinhw H +coshew 5P , (14b)
U'P—-6PO)U=P—5-P¢ . (14c)

These relations simply express the fact that (H,i5)
transforms like a Lorentz four-vector.

III. THE SOLITON BAG MODEL

For the purpose of discussing corrections to bag model
properties that arise from relativistic recoil, it is con-
venient to consider the soliton bag model.> This model
has the advantage of being derived from a standard local
Lagrangian field theory, avoiding the awkward surfaces
and boundary conditions that characterize the MIT bag
model.> Contact with the latter can be made at the end of
a calculation by letting the model parameters [see Eq. (16)
below] assume appropriate limiting values. The Hamil-
tonian density of the soliton bag model is

#x) =9 (x) a*-%+ga<x)/3 Wx)

+ 7+ (Vo) ]+ Ulo) (15)

02+—a3+ia4+p (16)
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and a, b, ¢, and g are model parameters.

In order to simplify the notation, flavor and color labels
are suppressed in (15), as in much of what follows. The
parameters a, b, ¢, and g are subject to the constraints
b%>3ac, b <0. The potential (16) has two minima, at

o=0 and
172
bZ_E ] ]

3 (17)

—b+

Ovac= Z

A suitable approximation scheme is arrived at by writ-
ing

o=0p+0, (18)

where o, is a c-number field and o, describes quantum
fluctuations about o,. The quark field may be expanded
as

WX )=, ¥H(X) (19)
k

where {¢*}] is a complete, orthonormal set of Dirac spinor
functions. The mean-field approximation is obtained by
neglecting o, altogether. Furthermore, the c-number field
oo corresponding to a hadron at rest is assumed to be
time-independent (my=0). We shall use the phrase “rest
frame” to indicate the corresponding Lorentz frame. This
is somewhat inaccurate since the total momentum of the
bag state in that frame is zero in expectation value only, as
we shall see below. To keep the discussion simple, we
shall restrict our considerations to a spherically symmetric
0o. The extension to a nonspherical oo, should pose no
fundamental problem. The functions ¢0,00 then satisfy
the coupled equations*>

[—ia@ V +goBlvk=eyk, (20a)
—Voo+U'(gg)=—g 3, ¥k - (20b)
kocc

The sum in (20b) is over occupied states only; sea quark
contributions are dropped. In the absence of quarks,
00=0,. Parameters can be chosen’ such that for a non-
vanishing quark density, the lowest-energy configuration
corresponds to o, near zero. The above equations there-
fore admit localized solutions such that the quark mass is
nearly zero in the inside region and is go,. at infinity. In
the limit of very large go,., confinement is achieved. For
a spherically symmetric o, the requirement that the
quark scalar density also be spherically symmetric re-
stricts the allowed quark single-particle states to
j =+ (k=11 in the standard classification of Dirac wave
functions; see Appendix A). For an N-quark system built
up from these states, the total MFA energy is
N
Ey= 3 €+Ef, 1)

i=1
where
E§= [d%

Such a localized state is of course not an eigenstate of the
momentum operator. However, the expectation value of

T Voo |2+ Uloy) | . (22)
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the momentum vanishes since
—i [d% 9 Vyh=0

and the o field carries no momentum in the rest frame.

(23)

IV. BOOSTED MFA STATES

Using (18) and (19), the boost operator (10) may be
rewritten in terms of og, 0y, and {cx,¥*}. Applying the
exact boost transformation (13) thus obtained to the MFA
states described in Sec. III would generate complicated
states containing an infinite number of ¢g excitations and
o-field quanta. In order to reduce the problem to manage-
able size, we shall approximate the boost operator in a
way consistent with the MFA, i.e.,, we shall treat the o
field as purely classical. The Lorentz transformation laws
for the o field, and the energy and momentum associated
with it are then those of classical field theory. Only the
quark degrees of freedom are treated quantum mechani-
cally, and only the quark part of the boost operator (with
the o field acting as a classical source) is needed. We shall
show that this MFA treatment actually maintains exact
Lorentz covariance.

In this approximation, the boost operator reduces to a
single-particle operator in the quark variables, and the use
of a second-quantized notation becomes pedantic. Switch-
ing to first-quantized notation, the boost operator per-
forming an infinitesimal Lorentz transformation on the
rest-frame MFA state has the form

. N
Ko= 3 [R#(%; )—; a@l, (24)
i=1
where
LV -
(X )=a-—i—+gao(x B . (25)

The sum in (24) is over particle labels. Using (24) in (11),
one obtains a state describing a system moving with vel-
ocity dV. However, some care must be exercised to con-
struct a state describing the system moving with a finite
velocity V. To an observer at rest the o field correspond-
ing to a system moving with velocity V appears Lorentz
contracted. Therefore, the MFA boost generator used by
this observer to boost the system from V to V+dV is

z X%, )—éa,. , (26)
where
N =
(X )=a-—i—+gav(x B, 27

0'7(5(’ )an(coshw ?H-f—il) , i’“=3('l’)\v, ii=i—i|| .
The state describing the system moving with velocity v
can then be constructed using (11), which reads now (for

each quark)
Vo L av(X)=[1+idwt" K_.]1/1_.(x ). (28)

Because the MFA boost operator is velocity dependent,
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one cannot integrate (28) straightforwardly to put it in the
forms (12) and (13). However, the result of performing a
finite boost may in fact be written in closed form:

iex”sinhw

1,07(3;’ )=S(V Jo(coshw X||+X})e (29)
where
S(V )=coshw /24 (sinhw /2)0-a . (30)

In order to verify this, it is sufficient to show that ¢ de-
fined by (29) satisfies

iRy (F)=-Ty_(%) . 31)
do

S=UF DK ,S(V )=ix || {# (X ") +tanho[6(5X V ') —goo(X )5-aBl} + 36-@ .

v

It is then straightforward to verify (32) by using the equa-
tion for ¥y(X ),

Ho( X Mo(X ) =exho(X ') (34)

as well as

[—iVjj—8(&X V") +goo(X )5 &Bho(X )
=eb-ayy(x’), (35

which follows from (34) after multiplication by 9 &.

In order to demonstrate that our boosted wave func-
tions are sensible we consider the energy and momentum
of the moving system in the MFA. They are given by

N . . —
S WEH e+ T 1 | Vo, |2

i=1

E,=[dx

+ U(U_v.)] ; (36)

N . g . -
—i 3 YLV Vo,

i=1

P,=[dx

(37)

where 7, is canonically conjugate to o_. The time

dependence of the o field associated with the moving bag
is dictated by the assumption that the o field is time in-
dependent for a bag at rest:

o (X,t)=0¢(coshw X || —sinhw 7'+ X)) (38)

so that

-

7 (X)=[3,04(Z,0], =0

= —tanhw §- Vo (%) . (39)

By using (21)—(23), (27), (29), and (39), expressions (36)
and (37) may be rewritten in terms of the static solutions
¥, and 0. After some algebra, one finds

E_, =coshw E(+sinhw 5 ( P o+tanho &) , (40)
l’J‘-isvzsinha) Eo+sinhw §+( & y+tanhw Z ) , 41)
=tanhw ?Ol N (42)

PVJ.
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This amounts to proving
e\ T cror g (s sy dex] tanh
S=UT)iV-K SV (X e 1
_ A=, i s — -, iexiltanhw
= | |70 -d +iex| +tanhw x ||V} [#o(X') |e
(32)

where
X '=coshw 2“4—_)21 .

From (26), (27), and (30) one finds, after some algebra,

A

(33)

'where
Po=[dx 3 eyl avh, (43)
i=1
b — ita — 6 i A o - AT
$0=fdx z¢0v'aT¢O+U'VaoVao —DE] .
i=1

(44)

The energy and momentum of the boosted system will be
correctly related to those of the system at rest [see (14)]
provided the solutions of (20) satisfy

P o=&y=0. 45)

That this is indeed the case is proved in Appendix A.
Thus, even though they are not momentum eigenstates,
the hadronic states constructed from the boosted quark
wave functions (29) correspond to an average momentum
and a mean-field energy correctly related to the hadron
mass, if by the latter one means the mean-field energy cal-
culated in the frame in which the o field is time indepen-
dent.

—(I-3a)5/2! 1-3a)G/2

FIG. 1. Nucleon-current interaction in the soliton mean-field
model. The solid lines represent quarks, the dashed line
represents the soliton mean field. The boxes stand for the MFA
quark wave functions. In the average, each quark carries a frac-
tion a of the nucleon momentum (a=€/m); the soliton field
carries the rest. Note that even though the soliton field carries
momentum and energy, it is not treated here as a quantum-
mechanical degree of freedom and there is no probability ampli-
tude associated with it in Eq. (53). Its role is akin to that of a
potential in nonrelativistic theory.
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We note that the conclusions of this section could have
been reached by considering the Lorentz-transformation
properties of the time-dependent mean-field equations and
of the associated energy-momentum stress tensor. This al-
ternate and equivalent viewpoint is briefly discussed in
Appendix B.

V. RECOIL CORRECTIONS TO CURRENT
MATRIX ELEMENTS

The calculation of hadronic form factors requires the
consideration of current matrix elements of the form'°

(p'|Ju(x) | p)=(p"|J,(0)|pre 4%, (46)

1 =

<p'|Jp(0)|p>=( [o(P

27)38%(0)

where |m ) denotes a state with four-momentum (m,0).
The unitary transformation U (V) was introduced in Sec.
II (V=P/E,). The factor [p(B ')p(P )]'/? is necessary to
maintain the conventional normalization (47).

The standard expression used to calculate form factors
in the static approximation can be obtained by (i) letting
p(B)V2U(V )—1 and (ii) making the following identifica-
tion between the zero-momentum eigenstate | m ) and the
static localized bag state | By ):

|m)—[(27)%8%0)]'? | By) ,

where the proportionality factor guarantees the normaliza-
tion (47) if | By ) is normalized to unity. In this work, we
shall keep the identification (49), but shall improve upon
the static approximation by taking into account the
transformation p(P )!/2U(V). This amounts to identify-
ing (up to an appropriate normalization) the momentum
eigenstate |p) with a moving bag state for which the ex-
pectation value of the momentum is correctly given by P,
rather than with a static bag. We note that identification
(49) only guarantees that the states used in the calculation
of current matrix elements are correctly normalized.
Moving MFA states corresponding to different momenta
are not in general orthogonal to each other, as required in
principle by (47). This shortcoming could be remedied by
projecting these states onto states of good momentum.
Thus, boosting is not an alternative for projecting. The
situation here is analogous to that encountered in nonrela-
tivistic nuclear physics, where simple projection!? leads to
states which are momentum eigenstates but have unphysi-
cal properties (e.g., the intrinsic state is not independent of

(49)

(B2 [dxe™ T (m | UNTWL,EIUGT) m),
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where spin, isospin, and other labels are suppressed for
simplicity and |p) denotes a four-momentum eigenstate
of the composite hadron. The conventional normalization
is

(p'|pY=02m)*(B'—P )p(B) 47)
with p(P )=E,/m for fermions and p(p )=1 for bosons.
Equation (46), where ¢ =p'—p, follows in general from
space-time translation invariance. The transition from
plane-wave states to localized states can be made formally
as follows.!! Set # =0 in (46) and integrate both sides over
space to get

(48)

'the total momentum). These problems can be cured by
taking into account the transformation properties of states
under Galilean transformation,'® the nonrelativistic analog
of the Lorentz boost. This suggests that projection ap-
proaches to bag recoil, as discussed so far in the litera-
ture,® could be significantly improved by combining pro-
jection and boost. This technically complex program is
left for future work.

In practice, we shall perform calculations in the Breit
frame, for which P’'=-—p=¢q/2. Then, using (49) in
(48), one gets

(Fhol-3)

=p % Jdxe (B I (X)[B_,), (50
where the moving bag state
[B,)=U(V)|By) (51

is constructed using the boosted quark wave functions
(29). In a first quantized notation, a quark current opera-
tor may be written

N
J,(X)= 3 T8X-X;),

i=1

(52)

where I‘L is a Dirac matrix and an operator in flavor
space. For simplicity, we shall assume'* from now on
that all quarks are in the ls (k= —1) orbit with energy e,.
Then, using (29), (51), (52), and (A2), it is straightforward
to derive

(% IJ,‘(O) [ _ -}) =< S [ dx expli(g —2egsinho)x ) 16](X 1S, (@)TLS (—0)g(X '>>

i=1

N -1
X {fdi’exp(—2ieosinha)x||)¢T(Y')¢(f') R (53)
where
$(X=—io | #&x) X'=coshw ||+ %,, o=artanh—Z (54)
! Viar |ig;£'1(x") | = E,
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and the bracket indicates that the spin-flavor matrix element is to be taken using the appropriate SU(6) wave function.
Formula (53) is our main result; it is used in the next two sections to calculate the electromagnetic and axial-vector form
factors of the nucleon. The physical content of (53) is easily understood and is illustrated in Fig. 1. The first term
represents the amplitude for the quark which absorbs the current to make the appropriate transition from a bag state
moving with velocity —V to one moving with velocity V. The second term represents the probability amplitude for the
N —1 spectator quarks to follow along. The assumption underlying this picture is that the soliton mean field provides
the interaction required for this to happen, since initial- and final-state wave functions are generated from that interac-
tion only.

VI. RECOIL-CORRECTED NUCLEON FORM FACTORS
The proton electromagnetic and axial-vector form factors can be calculated using formula (53) with
r,=el( ++7 )YoYu=AYo¥, (electromagnetic) (55)
and
I'y=1zvovuys (axial vector) . (56)

Here 7 (i =1,2,3) stands for a quark isospin Pauli matrix and A is the quark electric charge. The form factors
Gg, Gy, G4, and Gp are conventionally defined by!°

(p's’ |J“I'"(0)|ps) iy (p’) y,‘Fl(q )+—0,“,q YF,(q*) |us(p) , (57)
Gr(gY)=F,(q 2)+ Fz(q (58)
GM(qZ)EFl(q2)+F2(q2) ’ (59)

s'| 400 | ps) =(F | zn | 3)TAP N ¥uGa(g®) +9,Gr(g)]ysus(p) , (60)

where u;(p) denotes a nucleon Dirac spinor. Specializing to the Breit frame, one gets

<§-s’ Je""(m}—i >=XZIXSGE(q2), (61)
a —elm i X
(%s' j (o>]— ) x*a’zv—qx Gy (g?) , (62)
— — == = 2
qolz8 l_& >= Ly Et e o0 dOnd 2y, Gald)
(L' |80 |—Ls) =4 120 15 Bl {owGaan - 252 | Grigh+ 5 | K, - (63)

Using (55) and (56) in (53), and referring to (61)—(63), it is straightforward to derive expressions for the recoil-corrected
form factors. We simply quote the final formulas:

GE(qz)—e{ rQ(um’z(v) (64)
2
Gulg?=2¢ |2 [%R(v)-f-P(v }ﬁz(w, (65)
2 5 |m ’ _‘12_
Galgh)=7 {75 R+ PW) o), (66)
Grlg) =5 '% [P(0)—F ()] O? —z%%—%, (67)
with
&’(v):fowdxxzjo(Zeoux)[uZ(x)—f—lz(x)], (68)
QW)= [ "dx x%jo(2(m —eohox)[uX(x)+12(x)] , (69)

P)= [ "dx x7j)(2m —eghux u ()1 (x) (70)



2854 M. BETZ AND R. GOLDFLAM 28

re 5. _ 2oy g2 J1(2(m —e€plvx) 2
R)=["dxx [jo(Z(M €o)ox )[u*(x) l(x)]+2————~—————2(m_ e AC) (71)
=fwdxx2%[jo(2(m —e)vx (V' 1—v2—1u*(x)]
Y 2v
. — _ — J1(2(m —€olvx) | 7
+ [jo(2(m —epvx (V' 1—v*+1)—2(2V'1 v+1)__—2(m—eo)vx I*(x), (72)
where
, 112
= Im2+ 4 =9
E=|m"+ 4 , U= 2E ’

and j, and j, are the usual spherical Bessel functions. For comparison, we also quote the corresponding static approxi-
mation results, obtained by disregarding the unitary transformation U (V) [see (48)] and neglecting g2/4 compared to m:

GrlgD)=e [ dx x%jolgn)[u*(x)+1*x)] , (73)
3jl(qx) u
gx

Gu(gt)=4m [ “dxx x)(x), (74)

o (gx)
GA(q2)=%fo dx x? tjo(qx)[uz(x)—l ]+211qi (x)] ,
(75)

1(x) . (76)

G,(g) =41 5[ dx x2 | jolgx)—

j1(gx)
311 q.
gx

Another quantity of interest is the 7NN vertex which corresponds to a hybrid chiral bag version'” of the soliton bag.
To lowest order in the pion field, the mNN vertex is generated by a pseudovector quark-pion coupling:

Him=517fdw(f’)7ysz¢<i)-W_(i), (77)

where 9 and ¢ denote the quark and pion field, respectively; f is the pion decay constant. For a 7N — N transition, the
relevant operator is therefore, in the Breit frame,

2 2 . 2 2
L oly (g ’_g_ I S .<‘I_~l—>."5 ‘_ﬂ_ >
<2st H,(q) 2st> 2f(21r)3/2\/2—a)qg(q) st |d A(0) 5t
i .
= a(q ) (¢’ ) (s'| N YGan(g?) (78)
2f(277')3/2’\/_2_(;;gq < |_7:N| s |0N q|s ~NNq

a(q) the pion destruction operator, ¢ the nucleon isospin, and

where q is the pion momentum, w, the pion energy,

q° 5 |m ?

G,,NN(q2):GA<q2)—EGPW):? & 7 (0)Ov) , (79)

with
N 2} 2 2001 J12(m —€hvx) ,

V(v)—fo dx x []0(2(m —epvx )u(x)+1%(x)]—4 2m ey I“(x) | . (80)

The static-approximation result is
® Ji(gx)
GerN(qz):%fo dx x? ljo(qx)[uz(x)+l (x)]—4——— qqx x)]. (81)

Before turning to numerical results in the next section,  all expressions above are even functions of g, we consider

we briefly comment on some general features of these them as functions of the complex variable t =—q . As
form factors. First we consider their analytic structure.  pointed out in Ref. 16, form factors for systems of abso-
Mathematical proofs of the statements made below paral-  lutely confined quarks, calculated in the static approxima-

lel those of Ref. 16 and are left to the reader. Noting that  tion, generally possess an essential singularity at infinity
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in the t plane. This is readily checked on expressions
(73)—(76) for the MIT bag limit (#,/ =0 for x >R). In
the soliton model, the quark mass at an infinite distance
from the bag center is m,=go,,, and the quark wave
functions fall off at large distance as e ¢. Then, it is
easy to see that all form factors possess an isolated singu-
larity for ¢ =4mq2, corresponding to the possibility of ion-
ization. Of course, for reasonable values of the parame-
ters, m, is very large and this singularity is very far from
the physical region. If relativistic recoil is taken into ac-
count, it is easy to see, by comparing (64)—(72) to
(73)—(76), that the singularity structure of the form fac-
tors!” is now as follows. First, there is a purely kinemati-
cal singularity at t =4m?, due to the factors m /E. In the
absolutely confining case, the essential singularity at infin-
ity is in the variable v2. In the variable ¢, this also
translates into a singularity at ¢ =4m?2. In the finite bind-

ing case, singularities occur for'® v?=—m,*/e,> and
vi= —qu/ (m —€,)?, which translates into
2
)
t=4m? |1— 3
mg
and
(m —60)2
t=dm? [1——"—
my

if my >>m. In the limit m;— oo, the singularity structure
of the absolute confinement case is smoothly recovered.
The presence of an essential singularity at infinity in the
form factors has been invoked!® to criticize quark models
with absolute confinement and/or sharp surfaces. The
above discussion shows that, even though the singularity
remains if recoil is taken into account, its location be-
comes more compatible with dispersion theory argu-
ments. '°

It is also of some interest to compare the large-g>
behavior of the static and recoil-corrected form factors.
Static form factors typically behave as F(g?)g ™" fgjr

a;q-
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g*— o, with F(g?) a bounded oscillating function of q°.
They therefore possess an infinite number of zeros. In
contrast, because the integrands of (68)—(72) are functions
only of v2, which tends to the finite value 1 as g— o, the
recoil-corrected form factors behave as Cq~", with C a
constant.’® These form factors have only a finite (and in
fact small) number of zeros before falling off monoto-
nously to zero. Of course these considerations are some-
what academic since the bag model is not expected to be a
good description of reality for very large momentum
transfers. In particular, the above properties miust be con-
trasted with the predictions of perturbative QCD, which
yields an O (¢ —*) behavior for the electromagnetic nucleon
form factors.?°

VII. NUMERICAL RESULTS

In this section, we present numerical results for recoil-
corrected nucleon form factors. We consider first the
magnetic moment and the charge radius. They can be de-
rived by expanding expressions (64) and (65) and (73) and
(74) in powers of g2. Alternatively, one may go back to
the formulas of Sec. IV and notice that, since recoil
corrections are O(q) at least, the Lorentz-contraction ef-
fect in the boost operator is O(g>) and can be neglected in
an expansion to O(g?). Then one may use (24), (25), and
(20a) to write (for each quark):

Rovo(% )= {i’eo—;—.&’ Yo(X) (82a)
o X ) Ko=¢o(X) |€0X + > a (82b)
Noting that
(Yol @ | o) =(tho| X | o) =0 (83)
and using (50)—(52), (28), and (55), one gets to O (g):
- 1 .
Ri+ 500X | [Bol)) +0(g) (34)

where the matrix elements are to be taken using static bag wave functions. The recoil-corrected magnetic moment is

§_ 1| T elm ’__Zi_ —i ’ 3 . _59_ —
<2s J €™(0) 2s> z<Bo(s ) iglk, [ [1 -
therefore
€o
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where ,u(pS) is the static-approximation value
,u.;S)=e% fo dx x3u (x)l (x)
and

Bty =5 [ 5720~ $12000]

(85)

(87)

The charge radius can be obtained in a similar fashion. Noting that the boost operator commutes with the electric

charge, one gets
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The first term in (88) arises from the expansion of the nor-
malization factor p(q/2). The recoil-corrected charge ra-
dius is

260 3e 3
23(R)_ 50 0 2)(8)
(r) M= [1— m T [T, (89)
where (r,2)'S is the static-approximation value
(2= [ “dx x¥[u’(x)+1%x)] . (90)

J

<J;_ ‘J'u(()) \_—‘21—>=p(%)fd3{(30 | i (¥—K >/2JM(3(» )i d(X—K ’/2|Bo>

from which one gets

3
4 = (B

N —
3 A% —R )2

i=1

Bo) (92)
which is precisely the expression used by Dethier et al.
We note in passing that the commutation properties of the
different components of R, which, as discussed in Ref. 7,
do not quite befit a particle localization operator, are ex-
actly those required of a boost operator, as a consequence
of the structure of the Poincaré group. The close connec-
tion between relativistic center-of-mass and boost comes
as no surprise if one remembers that the boost transforma-
tion reduces in the nonrelativistic limit to the Galilean
transformation, which is generated by the usual center-
of-mass operator.

Relativistic recoil corrections to magnetic moments
have been calculated by some authors® using a free Dirac
particle boost for each quark. As a result of this approxi-
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qZ(rc )2
6

1— +0(g* | . (88)

Bo(s)>+0(q4)Ee

Before discussing numerical results, we briefly compare
the above formulas to those derived by other authors. Re-
sult (89) for the charge radius is identical to that obtained
by Dethier et al.” using the concept of relativistic center-
of-mass operator. This operator is related to our boost by
R=K/m. Here and in what follows, we identify the had-
ron mass m with the MFA energy in the rest frame. As
discussed in Sec. IV, this is consistent with the Lorentz-
transformation properties of the mean-field theory. It fol-
lows that, to O(g?), formula (5) may be written

-

(91)

lmation, the factor 1—e€y/m multiplying the first term of
(85) does not appear in their work. As we shall see short-
ly, a large amount of cancellation occurs between this
correction and the second term of (85). Therefore, the
recoil corrections of Ref. 8 are overestimated and the nice
agreement with measured magnetic moments quoted by
Ref. 8 appears spurious.

Despite rather large conceptual differences,”’ our for-
mulas for electromagnetic form factors are identical to
those of Barnhill® in the MIT bag limit. In this limit

21

u(x)=Ngojolegx), l(x)=Ngj(€px),

€0=C()0/R, ﬂ)0=2.04,

172

20)
, m :4€0 N

N =
O | 2>wo—1)joHwe)R?

TABLE 1. Recoil corrections to magnetic moment and charge radius in the soliton bag model. The static (u'*) and recoil-

corrected (u'®)

magnetic moments are given in Bohr magnetons (e /2m,). The parameter b = —V 3ac. In the soliton bag, the large-

¢ entries correspond to a sharp surface transition in o(r) while the small-c entries correspond to a very diffuse bag (0.2R). Entries
with G4(0)~1 correspond to MIT-type bags while entries with smaller G,(0) correspond to SLAC-type bags. The last line gives the

exact MIT-bag results using the formulas in the text.

—1‘(’)—2 (fm~?) # (fm°) go, (GeV) ({r.2)Y 172 (fm) ' uR G4(0) m (GeV) € (GeV)
26.2 320 3.88 0.953 2.92 2.68 0.780 1.081 0.238
28.0 320 2.41 0.958 2.82 2.63 0.906 1.182 0.259
29.5 320 1.65 0.963 2.73 2.57 0.993 1.251 0.277
323 320 0.86 0.967 2.62 2.49 1.078 1.301 0.297

0.426 0.625 4.49 0.944 2.99 2.71 0.641 1.081 0.220
0.419 0.625 221 0.949 2.93 2.70 0.743 1.134 0.233
0.529 0.625 0.63 0.967 2.61 2.48 1.095 1.325 0.300
MIT 0.968 2.57 2.44 1.09 1.210 0.303
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where R is the bag radius. Formulas (85) and (89) then
give

p=0.192R, (r.2)®=0.39R?, (94)

compared to the static-approximation values

p¥'=0.202R, (r.2)9=0.53R?. (95)

Recoil effects significantly lower the charge radius but af-
fect the magnetic moment only slightly (5% decrease). In
deriving formulas (94), we have used the simple MIT bag
mass, m =4€,. If one uses instead the physical nucleon
mass or the centroid mass of the NA isomultiplet (as done
in Ref. 9), one obtains a slight increase in the magnetic
moment due to recoil. However, the effect is still small
(less than 10%).

The recoil-corrected charge radii and magnetic mo-
ments for a variety of soliton bag parameters are com-
pared to static approximation values in Table I. In all
cases, the parameters are adjusted to give the experimental
charge radium (with recoil). The mass used in the calcula-
tions is the total soliton bag energy. The trends described
above for the MIT bag are present in all cases. The recoil
effect on (r.2) is roughly independent of bag type. The
effect on u, is a decrease varying with bag type from
negligible (for MIT type) to roughly 15% (for SLAC
type). The results are quite insensitive to surface diffuse-
ness. This is a consequence of the fact that the quark
wave functions are very similar for entries in Table I with
similar values of G,(0). We note that the soliton bags
considered here are rather far from absolutely confining
(see the values of go,,., the quark mass at infinity). Our
motivation for considering models with approximate con-
finement is purely technical; it is difficult to obtain nu-
merical solutions to Eqs. (20) for nearly discontinuous
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FIG. 2. Static and recoil-corrected electric form factors
Gg(g? and comparison with experiment. The different curves
are solid =MIT bag without recoil; long stroke =MIT bag with
recoil; dash-dot =SLAC-type soliton bag without recoil; dash
=SLAC-type soliton bag with recoil. The experimental data are
denoted by the solid circles. The experimental errors quoted are
smaller or equal to the size of these circles. The form factor is
normalized to one at g2=0.
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FIG. 3. The same as Fig. 2 for the magnetic form factor

quark wave functions. We emphasize that the parameters
are kept unchanged for each type in the comparison of
Table I. Of course, as discussed in Ref. 7, fitting the
recoil corrected charge radius requires a larger bag size
than would be inferred by fitting the static-approximation
(r.2)S. This led to a scaling up of all magnetic moments
compared to the usually quoted bag model values.

The electromagnetic form factors calculated using for-
mulas (64)—(72) are compared to the static-approximation
results in Figs. 2 and 3. Again, parameters are con-
strained to give (r.2)®=0.69 fm?. The form factors for
the MIT and SLAC bags are quite similar. In both cases,
recoil corrections push the first zero to larger values of ¢2.
This effect was already pointed out in Ref. 9. For the
magnetic form factor, a rather good agreement with exper-
iment?? is achieved, once recoil corrections are included.
In contrast, bag-model electric form factors fall off too
fast as g2 increases.

The axial-vector form factor G,(g?) is also hardened by
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FIG. 4. The same as Fig. 2 for the axial-vector form factor
G4(g?. The experimental results (dipole fit) are denoted by the
diagonal-line band. The length of the lines is approximately the
uncertainty of the fit.
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FIG. 5. The same as Fig. 2 for the pion-nucleon form factor
G.wvv(g?. The phenomenological monopole form factor with
m =0.8 GeV cutoff is indicated by the solid circles.

recoil corrections, as shown in Fig. 4. Phenomenological
analyses?? of neutrino reactions and pion photoproduction
and electroproduction yield dipole fits
G,(g?) <(g®*—my?)~! with m, in the range (0.9—1.4)
GeV. The recoil-corrected bag-model form factors are
quite compatible with these values. Rather than showing
the induced pseudoscalar form factor Gp(g?), about which
no direct experimental information is available, we show
in Fig. 5 the 7NN form factor, which is a combination of
G4 and Gp [see Eq. (79)]. Again recoil hardens the form
factor and pushes the first zero to larger g2. We note that
this form factor is quite different for the SLAC and MIT
bags. This is because G,(0) is strongly suppressed for the
SLAC bag (see Table I), so that the cancellation between
the two terms of (79) occurs at much smaller g? in that
case. Chiral bag model NN form factors are typically
much softer than standard semiphenomenological mono-
pole fits.>* Recoil corrections are not so drastic as to
change this state of affairs. An attempt at determining
the bag radius by fitting peripheral nucleon-nucleon phase
shifts in a pion-exchange model with the static form fac-
tor®® (81) was made in Ref. 26. The result is R =0.8+0.1
fm, in agreement with the value obtained from pion-
nucleon scattering.?’ If these analyses were redone using
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our recoil-corrected form factor, one may estimate from
Fig. 5 and the scaling properties of the form factors that
R =1.1+0.1 fm would obtain.

It is important to realize that the present results will be
somewhat modified by the inclusion of pionic and gluonic
corrections. Pionic corrections can be included in a
chiral-bag-model approach. Assuming that recoil and
pionic corrections are independent in first approximation,
an estimate of (r.2) and K, can be made using results tab-
ulated in Ref. 28. There, charge radii and magnetic mo-
ments were corrected for recoil using the approach of
Donoghue and Johnson.® If instead,?® we use formulas (94)
to obtain recoil-corrected quark core contributions, Tables
1 and 2 of Ref. 28 are replaced by Tables II and III. Al-
though pionic corrections do not have the desirable effect
of increasing the charge radius and the magnetic moment
for a given bag radius, the effects are insufficient to bring
a chiral bag model with relatively small radius (1 fm or
less) into agreement with experiment.

Gluonic corrections have been considered in Ref. 30,
where they were found to produce a 10% decrease in .
However, the calculation was performed in a severely
truncated space of quark orbitals (1s;,, only). An alterna-
tive calculation has recently been performed,’! with vastly
different results. In the latter work, free quark and gluon
propagators with cutoff masses, treated as parameters, are
used in place of bag-model propagators. It is found that a
large increase in u, is possible, though the results are
quite sensitive to the values of the cutoff masses. Since it
is apparent that the values for gluonic corrections to the
magnetic moment and the charge radius are not establish-
ed, an analysis of their effects on our results cannot be
carried out at this time. A more careful study of these
corrections, in conjunction with those discussed above, is
clearly needed.

VIII. CONCLUSIONS

We have developed a method for boosting soliton-bag-
model states in the mean-field approximation which,
within the assumption that the zero-momentum eigenstate
is well approximated by the static-bag-model wave func-
tions, provides a prescription for calculating bag-model
form factors. The effect of the boost on the electromag-
netic and axial-vector form factors is quite significant, af-
fecting both the slope at g>=0 and the large-g2 behavior
of the form factors. If the bag radius is adjusted to repro-
duce the experimental proton charge radius, the agreement
with experiment for the directly measurable form factors

TABLE II. Pionic and recoil corrections to proton charge radius. Experimentally {7?)!/2=0.83 fm.

Here R is the bag radius, {r.2)¥S

are the quark contributions with and without recoil to the chiral bag

charge radius, {r.2)=(r.2), is the pionic correction, and (r.2)=(r.2)® + (r.?),. The last column is
the MIT recoil-corrected charge radius for the same R.

R <rcz>§§?) ("c2>(BR) <r62>ﬂ <r02)1/2 <rc2>MlT1/z
(fm) (fm?) (fm?) (fm?) (fm) (fm)
0.8 0.273 0.201 0.228 0.655 0.499
0.9 0.365 0.269 0.207 0.690 0.562
1.0 0.468 0.344 0.190 0.731 0.624
1.1 0.582 0.428 0.173 0.775 0.687
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TABLE III. Pionic and recoil correctlons to proton magnetic moment (in Bohr magnetons).

(S)
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Experi-

ment =2.79. R is the bag radius, 1, ui%, and p., are the quark static, recoil- corrected and pionic con-
tributions to the magnetic moment. The calculated magnetic moment is u=p,+pu’; the MIT value is

given in the last column.

R
(fm) ng ng’ 7 M [zt
0.8 1.36 1.28 0.83 2.11 1.46
0.9 1.56 1.48 0.70 2.18 1.65
1.0 1.76 1.67 0.57 2.24 1.83
1.1 1.96 1.86 0.46 2.32 2.01

Gi(g?), Guy(g?, and G,(g?) is food in the low-g2 region,
even though only the simple MIT bag model (with
R =1.3 fm) is used. The magnetic moment comes within
10% of the experimental value.

The wNN vertex corresponding to the hybrid chiral bag
model is hardened by recoil corrections, but is still much
softer than standard phenomenological monopole fits. If
our recoil corrections are applied to the quark core contri-
butions, the charge radii and magnetic moment predicted
by the chiral bag model are smaller than the experimental
values for bag radii consistent with analyses of #N and
NN scattering (R =~1.1 fm). The large bag size favored by
our analysis is somewhat contrary to the beliefs which led
to the development of chiral bags and their application to
nuclear phenomena. This may be indicative of the need
for developing better models for bag-bag interactions, bag
nuclear physics, and related problems.

Our results are nevertheless quite encouraging and sug-
gest that a global investigation combining all known
corrections to bag models is in order. Applications of our
boost procedure to problems of practical interest, such as
the 77N system®? and NN annihilation® are in progress
and will be reported in future publications. Our treatment
of the Lorentz boost improves upon earlier work regard-
ing covariances”® in bag models. However, the question
of constructing translationally invariant (i.e., momentum)
eigenstates consistent with the boost transformation still
remains unanswered.
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APPENDIX A
In this appendix, we sketch the proof of

Po=&,=0, (A1)
where 2 and & are defined by (43) and (44). For sim-
plicity, we consider the case of a spherically symmetric o
field only. Then the solutions'* of (20a) take the form

|
1/’0()‘)_‘/4—77‘_

u,-(x) My

r,, (A2)

i&")/c\li(x)

where k and p stand for the eigenvalues of B(&* 1 + 1) and
J,, respectively. For j=+, k=+1, and T* =X, (Pauli
spinor); Tf=—&"%X,. The functions u;, /;, and o, are
solutions of the coupled equations

l Kil[
(€ ——gao) =1 +—————x R (A3)
. , u; Kiu;
(€'+goo)i=—uj ————, (A4)
x x
g &
—V200+U'(og)=——=- 3 (u;2—1%) . (AS)
4 2

Using the explicit form of the quark wave functions (A2),
it is straightforward to verify that &2 ;=0 and to derive

The right-hand side of (A6) can be

rewritten in terms of the quark single-particle energies and the o, field as follows. Multiply (A3) by u; and (A4) by [;;
add the resulting equations and sum over i. Integrate over space and use (AS5) to eliminate the scalar fermion density.

The result is

i=1

15y dm T [ dx x 200 — Voo + Utag)]

(A7)
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The quark single-particle energies can be eliminated from
this expression with the use of a virial theorem first de-
rived by Rafelski®*:

N =
21 el=4r [ “dx xXx0y+00)[Vioo—U'lap)] . (A8)
i=
Substituting this in (A7), and using the resulting expres-
sion together with expression (22) for E, it is easy to veri-
fy that &, defined by (44), vanishes identically.

APPENDIX B

In this appendix, we discuss briefly how the results of
Sec. IV can be obtained by considering the Lorentz-
transformation properties of the time-independent equa-
tions of motion. The time-dependent MFA equations
read

(iy*d,—go)¥ =0,
03,0+ U'(0)=—g 3 Phyk

kocc

(B1)
(B2)

In the “rest frame,” the solutions are oy(X’) (time in-
dependent) and
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Rest-frame variables are primed for consistency with the
notation of Sec. IV. The Lorentz-transformation proper-
ties of the solutions follow from the requirement that the
equations of motion take the same form in any frame.
This demands'®

VE(X,0=8 (V)WL ~(X,0], (B4)
o (X,t)=00[L -%,0], (B5)

where S(V) is given by (30) and the active Lorentz
transformation (X,#)=L (X,t’) reads explicitly

x||=coshw x| +sinhw t',

t =coshw t'+sinho x|, , (B6)

’
X=X, .

For a system moving with velocity V, a quark wave func-
tion at # =0 is therefore

WA (%,0)=S (V )yf(coshw X||+ X Jexp(ie*sinhw x||)  (B7)

which is precisely (29).

WA 1) =yE(X e —iekt (B3) The MFA energy-momentum stress tensor is
|
T{ea(x)=i 3 KWk L 3030 —gh” | 1870k —Ulo)+ 3, Wk(iy,ua#)—ga)\ll"] (B8)
koce koce i
equations of motion (B1) and (B2), it follows that
Therefore the MFA energy and momentum,
- 00 - k| V koL 2 1T, |2
Evra(t)= [dX Tpa(x)= [dX | S ¥ @ —+goB [Vt 37+ 5 | Vo |+ U) |, (B10)
k
(B11)

Plpa(= [ d% Thipa(x)= [dX

satisfy

iEMFA(f)_—'%P;\AFA(”:O . (B12)

ot

The Lorentz-transformation properties (B4) and (B5) en-
sure that T{frs transforms like a second-rank tensor.

i .
Z\I/HVI—,\I/"-—%VI,] :
k

lThis, together with (B9) guarantees that (Eppa,Pyra)
form a Lorentz four-vector. The proof, based on the use
of Green’s theorem in four-dimensional space-time, is
standard.®® The explicit verification of this result in the
case of a spherically symmetric o, was presented in Ap-
pendix A.
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