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We write equations for a new set of leading-logarithmic parton "propagators. " These differ from
past "color-connecting" propagators in that they keep explicit track of the momentum of the gluons
associated with the quarks in the colorless cluster. Because of this, the new functions lead in a sim-
ple and natural way to computation of the x distribution and mass distribution of colorless clusters
in jets. Hence they should prove more useful for phenomenological calculations.

I. INTRODUCTION

Over the past few years, a great deal of attention has
been given to the predictions possible using perturbative
quantum chromodynamics (QCD). In addition to succes-
sively more complex calculations involving complete
evaluation of all diagrams in some low order, there have
been quite a large number of applications involving sum-
ming to all orders of the leading-logarithm terms. In this
approximation, Konishi, Ukawa, and Veneziano (KUV)
showed how to create a "jet calculus" which allows one,
given sufficient computational strength, to evaluate the in-
clusive distributions in x (fraction of longitudinal momen-
tum) of any number of partons contained in the evolution
of a quark or gluon jet.

Although the KUV jet calculus is useful for certain
types of phenomenological work, it suffers from the de-
fect that the pair (or triplet) of partons selected may come
from widely separated places in the jet spray. Because
QCD has the property of "preconfinement, " i.e., that
colorless clusters of finite mass can be detected already in
the perturbative evolution, the perturbation series can be
reordered so that colorless clusters (containing one quark,
one antiquark, and multiple gluons) may be studied.

Bassetto, Ciafaloni, and Marchesini (BCM) defined
"color-connected" parton propagators I; and I z by
studying planar graphs and keeping track of the "first"
quark, j, emitted from the incident line after multiple
gluon emissions. They then were able to write the distri-
bution do/dx idx2 for the quark and antiquark in a color-
less cluster emitted by a jet. This allowed an estimate of
various properties of the colorless clusters, and a calcula-
tion of the upper bounds of the size of the mass of these
clusters.

While these estimates are enough to prove the theoreti-
cal properties of leading-logarithm QCD, they are not as
useful for phenomenology as one might wish. For com-
parison with experiment, we need an explicit formula for
the x distribution of the clusters, including the momentum
carried by the gluons in the cluster. Also we would like

an explicit formula for der/dM (the mass distribution of
the clusters), not just an upper bound.

In this paper we show how to write equations for some
new distributions Hz and H~. These are inspired by the
BCM I"s, but they have the property that the momentum
fraction x which appears in them is the sum of the
momentum carried by the first quark and that of all the
gluons emitted (on the "side of the first quark" in the pla-
nar graphs) prior to the emission of the first quark. Using
the H's, we can write explicit expressions for the mass of
the colorless clusters and for their distribution in x.

In Sec II, we review the BCM equations for the I"s, and
then write the equations for the H's as a function of longi-
tudinal momentum fraction x and Q . We show that the
zeroth moment of these obeys an expected sum rule for
probabilities; and that the first moment obeys the
momentum-conservation condition found by BCM (i.e., as
Q becomes infinite, the fraction of the jet momentum go-
ing into colorless clusters approaches 1).

In Sec. III, we consider what happens when the equa-
tions are generalized to include transverse momentum.
The formula for the mass distribution of colorless clusters
is then given.

II. BASIC EQUATIONS

BCM equations; definition of terms

%'e begin by reviewing the BCM equations. The two
basic points of interest here are as follows.

(i) The graphs are all written in planar form. Then one
counts "clockwise" around the tree until the first quark
(or antiquark) is reached. This is the parton whose
momentum fraction x is being selected from the spray in
I J. Since only gluons are emitted on the upper half of the
diagram between the incident and the measured parton,
these propagators are represented as shown in Fig. 1(a) by
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FIG. 2. Graphical depiction of Eq. (1), rate. of change of og
with momentum.
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FIG. 1. Notation: (a. l) KUV symbol for DIi,(g, gpss, x), the
probability to find parton P with momentum fraction x at Qp~ if
one starts with parton a at Q . (a.2) and (a.3) BCM symbols for
I s(g, gp, x) and I J(g, gp, x). (b. l) Representation of the
virtual potential for gluons,

277

(b.2) Representation of the virtual potential for quarks,

2&

(c.1) Representation of the probability that gluons go only to
gluons, crs(k, gp ) (c.2) T. he probability that a quark decays in
some (any) way =1. (c.3) The probability that a gluon decays in
any way =1~

lines with half-open circles, as contrasted with the ordi-
nary Altarelli-Parisi or KUV propagators D~, which are
conventionally represented by lines with solid circles.

(2) Because of the "semiexclusive" nature of the propa-
gators, there is extra damping at large Q compared with
the KUV case. This is due to the fact that infrared singu-
larities from real and virtual emission terms do not com-
pletely cancel. This shows up in the equations as a virtual
potential, represented by an open box on the line as shown
in Fig l(b).

A third point, discovered by Amati et a/. , is that the
infrared singularities of the theory are handled better if
the scale of the running coupling constant a, is given by
the transverse inomentum kr of the branching (instead of
the mass k of the decaying parton). As shown in Ref. 5,
this is necessary to get proper mass damping for the color-
less clusters. In practice, this means that various factors
of a, need to be tucked inside integrals compared with
BCM. We implement this throughout.

Because the gluons play a special role in this form of
counting, the probability that gluons go only to gluons,
o., is important. This obeys the equation

1 — kk cr(sk, Q p)=crs(k, Qp ) Vg(k )+ —,
' dz P g«(z)erg(A(z)k, Qp )os(A(1 —z)k, Qp ), (1)

depicted in Fig. 2. We use the notation of Altarelli and Parisi for the splitting functions P, '(z); as in KUV the func-
tions P are the P's with the 5 functions at z = 1 removed.

We now are in a position to write the equations for the BCM color-connected distributions I . These relations are
shown in Figs. 3(a) and 3(b), which translate to

k I" (k Q x)=V (k )I'(k Q x)+ I g I' A(x)k Q

'dz a(z(l —z)k ) «( ),. &( )k2 Q
2 x

x Z 4m z

P«(z)cr (A,(z)k, Qp )I' k(1 —z)k Q
1 —z 4~ g (2a)

'd 1 — kI'(k'Q 'x)=V(k')r'(k'Q 'x)+ ' ' P«(z)r' X(z)k'Q '—

1 —z 2' 1 —z
(2b)

Because of the form of the equations, they can be resolved into moments; there is no linkage between the equations for
the different moments. These moment equations are given in Ref. 4.
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In manipulating these quantities, it is useful to remember that because of the planar nature of the graphs, in I'; i and j
may both be quarks (or we may write them as i and j, in which both are antiquarks), but it is impossible to have one be a
quark and the other an antiquark. In I s, we may have either a quark or an antiquark coming out; the two quantities are
of course identical in size.

BCM then consider the colorless [color-singlet (CS)] clusters shown in Fig. 4, where the symbol g' means that only
the vertices qgq, qgq and —,ggg are included in the summation. (The vertices gqq do not lead to colorless clusters with
this construction. ) The differential cross section

k do

cJ+k dx)dxz

=g' f D~(g, k x)
PyS

(x]+Z2) ~2

z(1 —z) 2m
' xz ' 'x(1 —z)

(3)

then contains information about the x; of the quark and antiquark.

New equations

The problem with Eq. (3) is that it does not contain explicit information about the x of the entire cluster, including the
gluons. Clearly, therefore, one would like to substitute for the "half circle" propagators similar ones in which the x vari-
able includes not only the momentum of the quark but also the momentum of all the gluons emitted on the open side of
the circle.

We depict such propagators H by half-open squares. Following the lead of Fig. 3, we write the equations in Fig. 5.
To convert these to a form for computation, it is only necessary to keep track of the momentum. We then arrive at

F

'dz a(z(1 —z)k ) ass( )H, &( )k2 x
Z 4~ 8 8 Z

az 1 —zk+ P g~(z)os(A, (z)k, go )Hs A, (1—z)k,01—z 4~ 1 —z
(4a)

'dzaz 1 —zkH!(k2 x) y (k&)H!(k2 x)+ P P(z)H

1 — k+ P ( ) (A(z)k', go )H,' A,(1—)k,+01—z 27K 1 —z
(4b)

1+
2

(a)

(j ~ '
I' ~ r

q (x2)

(b)

FIG. 3. graphical depiction of Eqs. (2a) and (2b).

FICr. 4. We can select colorless clusters in the a jet by using
the I"s together with those vertices which can produce discon-
nected qq (multigluon) clusters.
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crux, dxi g ' k "i+"2x

a(z(1 —z)k ) rs g,
P y

1 —x2/x
X z(1 —z

XHs A,(1—z)k,
x 1 —z

f

to multiply Eq. (6) by x, and integrate over x. By use of
the equations for H and a, this can be cast into the form
of a total derivative in k; integration over k then leads
us to

the momentum distribution of the colorless clusters can
now be computed exactly as

6fO~

JEST~

cs= fdxidxz cs5(x —xi —xi) .
cT x cT x idx2

6fOq
Sg(Q, 1)=f csx dx

= 1 QHJ'(Q—, 1),

dog
Sg(Q, 1)=f csx dxBy taking the integral of Eq. (4) over all x, we arrive at

the sum rules

f dx+HJ'(Q, x)=1,
l (7)

f dx+IIg(Q, x)=1—og(Q, Qo ),

=1—erg(Q ~Qo )—2+Hg(Q ~1) . (8b)

To see the variation of this explicitly, we compute the
first moment of Eq. (4) and solve these simultaneously
with Eq. (1). The solution is shown in Fig. 6.

Another approach to this momentum question is to
tackle the gluon momentum explicitly. This is basically
the approach taken by BCM in their original paper. One
begins with the double distributions I,~ and the auxiliary
function Pggdefined by the equations

the same as the sum rules for the I"s.
The interesting question related to momentum (the first

moment) then is to ascertain that the fraction of ino-
mentum in the jet going into colorless clusters approaches
1 as Q becomes infinite. There are two ways to accom-
plish this. The first, and most straightforward, is simply

')x
I

X
Ir

(a I

X
I I I I
I I

FIG. 5. Graphical depiction of Eqs. (4a) and (4b).

These equations no longer decouple moment by moment. However, the equations for the nth moment involve only the
nth and lower moinents, so solution using moments can be used if necessary.

In the equation corresponding to Eq. (3),
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—Vq(k ) I qqg(k, Qo, xq, xg)
d ink

d 1 — k X XgPq( ) (A,(1—)k Q )I A, ( )k QZ2 2~ Z Z

dz a(z(1 —z)k ) qg( )rqg ~(l )k2 Q
2 q g

(1—z)2 2m 1 —z 1 —z

) Pqg( )~ g(1 )k2 Q
2 g rq g( )k2 Q

2 (9a)

, —V, (k') r«(k', Q, ',x„x,)
d ink

dz a(z(1 —z)k ) pqq( )rqg &( )k2 Q
2 q g

Z2 2~ Z Z

1 — k P g«(z)@g A(1 —z)k, Qo, —I gq X(z)k, Qo,z (1—z) 4' (9b)

'd 1 — k'—Vg(k ) @gg(k,Qo,xg)= f Pg (z)@g A(z)k, Qo, og(A(1 —z)k, Qo ),
d ink' g Z 2' Z

(9c)

shown in Fig. 7. Note that C&gg(k, 1)=og(k, Qo ).
The first moment of Eq. (6), the total momentum in the

colorless clusters, of course can be written in the form

l
cs+&x &

l
cs+&x &

les�

.

Following BCM [Eqs. (4.16)—(4.18) of the Nucl. Phys. pa-
per in Ref. 4], we can write

I

so the momentum in the colorless clusters assumes the
form

s, (Q', 1)=1—rq(Q', Q, ',0, 1)—r«(Q', Q, ', o, 1),
(1 la)

&x'&.
I cs=D.'(O' Qo' 1)—r'(O' Qo' 1»

&
xg

& l
=Dg(Q', Q ', 1)—rqg(Q', Q ',0, 1),
=D;(Q' Q.'1)—r,'(Q Q 01)

—rg'(O' Qo' o 1)—~g(Q', Qo', 1),

(1Oa)

(loc)

l I I I I I l & & I

quark jets
---- gluon jets

1.0—
1

+
2

0.8—

0.6—
(b)

0.4—

P I I I I I 1 I

10 ]02 103
Q
A

10
(c)

FICx. 6. Q dependence of the momentum fraction found in
colorless clusters. We have used u(Q&P) =m. .

FICx. 7. Equations for the additional gluon-related distribu-
tions of BCM. (a) I ~. (b) I g . (c) 4 g. This function is related
to o' (solution of Fig. 2) by C&gg(k, 1)=as(k, Qo ).
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Sg(Q, 1)=1—2I gg(Q, Q0, 1) —2I ggg( Q, Q0, 0, 1)
—'I'g(Q' Qo' 1) (1 lb)

Hqg(k, 1)=QHJ(k, 1)

The quantities in Eq. (11) now obey differential equa-
tions in k which can be compared with the differential
equation obeyed by the first moment of Eq. (6). We find
that the differential equations agree if the first moments
of the double distributions are related to the H functions
as follows:

III. TRANSVERSE MOMENTUM

In order to be able to compute the mass of the colorless
cluster, we must know the complete four-momentum vec-
tor coming from each leg. The equations in the previous
section determine only the longitudinal-m. omentum frac-
tion. We need three other degrees of freedom, which we
choose to be the mass p of the system whose longitudinal
momentum is specified in H, and its traverse momentum
pT.

We therefore define distributions

=I qg(k, Qc, 1)+I qgg(k, QO, 0, 1),

Hgg(k, 1)=QHg(k, 1)

(12a) ,'(k,p,x,pi —xki),

which, when integrated over the variables p and pT, give
our previous functions

=I gg(k, QO, 1)+Igag(k, QO, 0, 1) . (12b) Hg(k, x); HJ(k, x) .

Looking back, we check that these substitutions in fact
make Eqs. (11) and (8) identical.

In terms of these functions, the formula for the color-
singlet mass distribution (see Fig. 8) becomes

S,(Q,m )= g' f dkiD,'(Q, k,x,ki)
k

f dz a(z(1 —z)k ) c,c,
z 1 —z 2m

X f 5(z(1—z)k' —qg')

2 2 Xi +X2 Xi +X2fdp) dp2 dxidx2dpiJ. dp2J. 5 pi- P2—
X2

X2 X)
P 1l P2l

X) X2

X) X) X)
XA c~ &(z)k,p~ »ply — qi—C) XZ XZ X

xp x2
XA ~

A,(1—z)k,p, p„+ qi — k,'x 1 —z x 1 —z x (13)

where qT is given by

qq ——k )q —zkq

(k, T is defined in Fig. 8).

We are now ready to write the generalized equations
corresponding to Fig. 5. This is chiefly an exercise in
careful kinematics. Consider, for instance, contributions
of the form shown in Fig. 9. The appropriate H function
will have the form

C C1CP

K2, X,k K, 1,kg
~ p, X, p~

, X2, p2

FICx. 8. Labeling of kinematics for calculation of the mass of
the colorless clusters.

FICx. 9. Labeling of kinematics for sample graph in the equa-
tion for the generalized distributions.
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2 X —Z — X —Z
A qqk2, (p —k ) ), ,pg —k )g — k2g'1—z' 1 —z

Since we wish to use at the splitting vertex the transverse
momentum relative to the incoming k line qT =k1T—kT
the arguments become

(p —k)= p+ k)
X —Z 2 Z —X 2

X z

—[o'x/zqj +~xzky —v'z/xpy]

x —z — — 1 —x
k2j. =xi —xk~—

1 —z 1 —z

We see that there is a residual dependence on k1 . Since
we are trying to determine the variation of H with
(p —k&), we must be a little careful and use the basic
equation for discontinuities ' rather than the "integrated"
version used above. Hence the graph of Fig. 9 is written
as

dz a(z(1 —z)k ) pgq

&& 5(z (1—z)k —(1—z)k i
—zkz —qg ) —o (k i,gp )

dk, '

2 x —z — 1 —xk~, (p —k, ),—,pj —xkg — qg
dk2

'
1 —z 1 —z

We thus can write the generalized equations for Fig. 5 as

2
—Vg(k ) A gq(k, p,x,pz —xkz)

d ink

~~z ~ z ~ ~~ k 2

~

~
2

q
~
I

z ~z ~~
~

~ ~

~

2 t~ 7
~~ ~

7p I ~x
~
I ~ ~~ ~~Idzaz 1 —zk p gqq(z)

"5(z(l —z)k2 —qi2)A qq A(z)k2, p2, —,pl —xkl ——qlz 2'

+2

dz a(z(1 —z)k ) p~( ) dk 2dk 2dqx x —z+2 g Z 1 2
1 ~ 2.

&&5(z(1 z)k zk2 ——(1—z)—k, —qi ) o (ki, gp )
dk, '

q 2 x —z — 1 —x
&( ~ k2, (p —k, ), ,p j —xkj — q„, (15a)

dk, ' '1—z' 1 —z

—&q(k ) ~q(k ~p ~x~pj.
d ink

t

dz a(z(1 —z)k ) P gqq(z) 5(z(1 z)k qg )A gq A(z)k—,p2, ——,p~ —xk~ ——
q~z 2m

T

dz A z 1 —zk ~gq 2 2 9l x —z
1 —z

X5(z(1 z)k zk2 (1 z—)k, —q~ ) — c—r (k, 2, g—)
dk 1

q 2 x —z — 1 —x
p ~q k2 ~(p kl )& pi xk~ — qj ~ (15b)

dk, ' ' ' '
1 —z' 1 —z
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with the boundary conditions

g(Qp, p,x,pi —xkg)

= 5q5(p —Qo )5(1—x)5(pi —ki) .

If Eqs. (15) are integrated over the variables dprdp,
one recovers Eqs. (4).

IV. CONCLUSIONS AND OUTLOOK

derivative in k, and the moments of this in X=x, +x2
are then solved simultaneously with the moments of Eq.
(4). These moments may then be inverted using
Yndurain's technique to obtain an x distribution.

Results of these calculations have been reported in Refs.
8 and 9, where comparison with other authors and other
approaches is made. Solution of the more complicated
Eq. (15) is currently under study; results will be reported
later.

As we mentioned in Sec. II, when inoments of Eq. (4)
are calculated, the nth moment is coupled to all the lower
moments. However, in practice there are only three in-
dependent functions for each n (Hs, H~', and H/ for i,j
different). Thus, the coupled equations involving i' and
the moments can be solved numerically by Runge-Kutta
techniques if one is not overly ambitious in the number of
moments requested. Moments of Eq. (6) can also be com-
puted. To be specific, Eq. (5) is written in the form of a
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