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Color-magnetic interactions (one-gluon exchange) are incorporated into a semirelativistic quark
model and the spectra of ground states and orbital and radial excitations of light mesons, light

baryons, charmonium, and b-quarkonium are calculated by treating the magnetic splitting exactly

by variational methods. The n.-p splitting is fit and the N-6 splitting is predicted in excellent agree-
ment with experiment. In general, spin-spin and tensor splittings among light mesons and light

baryons are calculated in good agreement with experiment. The splittings in heavy-meson spectros-

copy are also predicted accurately, including the P-wave states of charmonium and b-quarkonium.

Some problems and limitations of the quark-model description of the light mesons and baryons are
emphasized. Spin-orbit splittings in the light mesons and P-wave baryon multiplets are calculated,
but a unified understanding of the systematics is not obtained. Radial excitations in the meson and

baryon systems are generally in error by 100—150 MeV, and the systematics are not understood.

I. INTRODUCTION:
SUMMARY OF PUZZLES AND RESULTS

We have recently proposed' (Ref. 1 is denoted
henceforth by I) a semi-relativistic quark model of mesons
and baryons based on quantum chromodynamics (QCD).
An initial investigation into the spectrum of the model
has encouraged us to pursue it in greater depth and see
whether it can predict and/or accommodate the hadron
spectrum. This paper presents the results of our efforts.
We will discuss both the spectra of light and heavy quarks
and will compute energy levels of ground states and orbi-
tal and radial excitations. The spin-spin, tensor, and
spin-orbit splittings of light mesons and baryons will be
discussed in some detail. A large number of calculations
will be presented. Our general view of the results is that
the quark model in general and the model of this paper in
particular confront the data quite well. However, it is not
the purpose of this paper to advertise the successes of the
quark model —we are just as interested in delineating its
puzzles and failures to, in the long run, better understand
the underlying theory of the strong interactions.

An important step toward placing the constituent quark
model on a more interesting, fundamental level comes
from the work of De Rujula, Georgi, and Glashow, who
proposed that the splittings within the hadronic multiplets
could be estimated on the basis of short-distance, single-
gluon-exchange graphs of SU(3) Yang-Mills gauge theory.
The long-distance features of the potential could be
abstracted from models of confinement or lattice gauge
theory, and a comprehensive study of the spectrum could
be attempted. This was initiated in Ref. 2 and was taken
up more systematically by Isgur and Karl. We will con-
tinue this line of thinking using our SU(3) interacting-
string-model potential for mesons and baryons introduced
in I. We wi11 use the spin-independent potential as given
in that article to represent the color-electric interactions,
and not fine-tune it to all the data we consider here. Our

emphasis instead will be on the splittings caused by color-
magnetic interactions.

We should summarize some of the major physics issues
of interest to us before discussing the technical details of
the model. A long-standing problem with the quark
model is its description of the pion. In QCD the pion is
believed to be a massless Goldstone boson which results
from the spontaneous breakdown of chiral symmetry. Its
mass of 140 MeV is believed to arise simply from the
small bare masses of the u and d "light" quarks which ex-
plicitly break the continuous chiral symmetry of the
model. One consequence of the symmetry breakdown is
the generation of a dynamical quark mass. This dynami-
cal mass is presumably the quark used in constituent
models of the hadron spectrum. These models are, how-
ever, very crude and do not bear a clear relationship to the
spontaneous symmetry breaking underlying them —they
typically describe the light mesons with a quark-antiquark
(qq) wave equation similar to or identical with the
Schrodinger equation. Then the Goldstone nature of the
pion is completely obscured and questions arise as to
whether a two-quark picture of the pion is fundamentally
wrong, etc. Here we shall argue that the quark-model
description of the pion is not such a disaster. The ele-
ments in our resolution of this problem are (1) the spin-
spin interaction induced by single-gluon exchange, and (2)
a nonperturbative, variational treatment of the m-p and
X-6 splittings.

The spin-spin potential induced by single-gluon ex-
change between static quarks is

Vss ———', a, oe o 5(r),
3m

a, is the strong-interaction (color) fine-structure constant,
m is the constituent quark mass, and o. is the Pauli matrix
describing the spin of the static quark. In the absence of
this spin-spin interaction the pion and p are degenerate.
The potential Vss provides a natural way of splitting the m.
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(1.3)

The exp( ——,
'

A q ) form factors remove the 1/r singular-
ity, and the resulting VT can be treated exactly in a wave
equation. We do this and find good evidence for the one-
gluon-exchange tensor interaction in meson and baryon
spectra.

And finally, one-gluon exchange also predicts the spin-
orbit interaction:

4 15 1
Vso = —,cx,

' L.S .
m r

(1.4)

The r singularity is removed by the form factors, and
Eq. (1.4) can then be used with some success to study the
spectra of heavy mesons. This interaction, however, is not
suitable for light mesons and baryons where (

~ p ~
) ) rn.

down toward zero mass and the p up to its experimental
value of 770 MeV. In first-order perturbation theory, Vss
shifts the spin-zero pion 3 times as much as it shifts the
spin-one p, so this approach has some promise. It is
equally clear, however, that first-order perturbation theory
is completely unjustified here since the induced splitting is
comparable to the energy of the zeroth-order level. To
deal with this we must treat the spin-spin forces of @CD
more accurately. To pursue this idea in a completely jus-
tifiable manner, one might simply abandon the potential
picture which motivated the problem and calculate
single-gluon exchange and its non-Abelian radiative
corrections to higher orders retaining quark-recoil effects,
etc. using the full perturbative apparatus of QCD. This is
beyond our sights and our approach will be more modest,
intuitive, and model dependent. We will carry out varia-
tional calculations and compute the effects of the Vss ex-
actly in the context of our semirelativistic wave equation.
To do this we imagine that higher-order Feynman graphs
decorating the single-gluon exchange between quarks
smear the color charges of the quarks over a small space-
time region and effectively regulate the singular 5 func-
tion in Eq. (1.1). We replace the pointlike quark-gluon
vertex with a form factor exp( ——,

' A q ), where A is the
"size of the quark" and q is the momentum transfer be-
tween them. Now the spin-spin potential can be treated
variationally and A can be fixed by the m-p splitting. In
the text we shall see that this is easy to do with sensible
values for A and the conventional value for the strong-
interaction fine-structure constant a, =0.375 and constit-
uent quark masses m =360 MeV. This exercise becomes
more interesting when we next address other spin-spin
splittings in the light-meson, light-baryon sector of the
theory. Using our baryon wave equation, we calculate the
N-b. splitting and find excellent agreement with experi-
ment. Other spin-spin splittings are also predicted suc-
cessfully. This amusing result suggests that although our
quark model does not have chiral symmetry it is not far
from the truth.

Single-gluon exchange also predicts a tensor force:

Recalling the classical derivation of spin-orbit forces, one
of the m ' factors in (1.4) comes from the replacement
v —&p/m, and the other from the Dirac magnetic mo-
ment. Clearly v —&p/m is not a sensible replacement for
light quarks. We propose instead v~p/((m +p )' )
as a natural way to treat the kinematics more relativisti-
cally. So, in our calculations of light mesons and baryons
we multiply Vso by

(( p 2+ 2)1/2 )
(1.5)

where the expectation value ( . ) is over the hadron
wave function, and x is a dimensionless parameter chosen
to fit the spectra. We obtain a reasonable description of
spin-orbit splitting in light mesons with x =0.7 (e.g., the
A2-A1-5 splitting which is caused by VT and Vso will be
accurately reproduced). However, it is well known that
the P-wave baryon spectrum has little spin-orbit splitting,
and is best explained with x =0. Our calculations confirm
this. With x =0.7, the P-wave baryon theoretical and ex-
perimental spectra would disagree significantly.

What could be the resolution of the spin-orbit debacle?
Coupling to the pion cloud has been suggested Inte. rfer-
ence of the conventional spin-orbit splitting from single-
gluon exchange at short distances with an opposite-sign
spin-orbit splitting of a long-distance scalar confining po-
tential has also been suggested. These proposals are not
very convincing in light of the strong difference between
meson and baryon splitting patterns. The second sugges-
tion would require mesons to be smaller than baryons so
that the cancellation could occur in the baryons but not
the mesons. Baryons are in fact somewhat larger than
mesons in general, but this is not a large effect so the ar-
gurnent seems quite tenuous and unnatural. Perhaps the
three-body character of the baryon wave function plays an
essential role in the resolution. We emphasize that this is
an important spectroscopic puzzle; we do not have a solu-
tion but we urge further study of it.

Although we emphasize energy levels in this article, our
calculations also yield variational wave functions for the
states One in. teresting feature of them is their small radii.
In this model the pion has a radius of R,=0.16 fm and
the nucleon has R,=0.32 fm. These are much smaller
than the experimental charge radii of these hadrons of
0.55 and 0.90 fm, respectively, measured in peripheral
scattering experiments. The calculated pion is particularly
small because of the attractive spin-spin force which is re-
sponsible for its small mass. One interpretation of the
difference between the theoretical and experimental radii
is that they refer to different features of the states —the
theoretical calculation gives the size of the valence-quark
distribution while the experimental value reflects the pion
clouds surrounding the valence quarks. It may be that the
small valence-quark radii predicted here do, in fact, have
some experimental support. The mean kinetic energy of
the valence quarks in this model's nucleon is approxirnate-
ly 600 MeV. A value of this order is preferred by the
Feynman, Field, and Fox analysis of large-transverse-
momentum hadronic scattering processes.

Our potential model is very simple to apply to the cal-
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culation of excited meson and baryon states. In this appli-
cation it is clearly superior to other models such as the
MIT bag model. In the text we consider orbital and radial
excitations in detail. The agreement with experiment is
in general quite good, although 10%%uo errors are found in
some cases. Radial excitations are particularly interesting.
The Roper resonance, the first radial excitation of the nu-
cleon, lies at 1440+40 MeV. Harmonic-oscillator quark
models have always overestimated its mass by several
hundred MeV. This can be interpreted as indicating that
the harmonic-oscillator potential increases too rapidly as
the interquark distance grows. Our linear-confinement
model also overestimates the mass of the Roper, but the
disagreement with experiment is only 130 MeV. This er-
ror would suggest that the linear confinement potential is
also too steep, but this may not be the true resolution of
this problem because the systematics of the meson radial
excitations are different.

The first radial excitation of the pion, the m lies at
1300+100 MeV and our model gives 1110 MeV. The
mass of the first radial excitation of the p, the p', is con-
troversial. It may lie at —1250 MeV in which case our
prediction of 1450 MeV is high, or it may be 1600+20
MeV. The experimental situation will have to be clarified
before we can learn more. If 1600 MeV is the correct re-
sult, then we face the curious situation of predicting radial
excitations of the mesons below their experimental values
and baryons above their experimental values. The resolu-
tion of this discrepancy is not known to us. There are
various suggestions in the literature of a speculative char-
acter to shift the Roper below its quark model value.

In summary, light-quark spectroscopy of spin-spin and
tensor splittings are well described by a single-gluon-
exchange potential in our nonperturbative potential model.
This suggests that more fundamental, short-distance QCD
calculations be attempted to obtain a fully consistent ac-
count of this area of spectroscopy. The case for spin-orbit
splitting is not so clear.

We have also applied our model to heavy-quark spec-
troscopy. The a, and the form-factor parameter A are
varied to fit the splitting of the S- and P wave states. -

Here the potential model should work better because the
quark motion is less relativistic. We expect and find that
the nonrelativistic limit of the gluon spin-orbit force [Eq.
(1.4)] is able to explain the data. A particularly satisfacto-
ry result of the model is its description of the splittings
among the P-wave states of the cc and bb mesons. If one
uses the single-gluon potential given by Eqs. (1.1)—(1.4) in
first-order perturbation theory, then one finds the splitting
parameter r,

m( P2) —m( Pi)
r = =0.8, (1.6)

m( P, ) —m( Pp)

which is in clear disagreement with the experimental char-
monium results r=0.50+0.10. In our nonperturbative
approach the shift of the Po cc state is enhanced consid-
erably beyond the perturbative estimate, and our calculat-
ed value of r=0.6 is in good agreement with the data.
Other theoretical approaches to this problem have either
failed, or have fit the data assuming a scalar confining po-

0.50
0.50
0.42

0.13
0.05
0.02

Q~d

C

b

(1.7)

The trend of a, to decrease from 0.50 to 0.42 is consistent
with asymptotic freedom. Asymptotic freedom states that
the running coupling constant at an interquark distance rb
is related to that at r, by

a (rb)=
a, (r, )

1+ a, (r, ) ln(r, /rb)
25 2

12m-

(1 8)

and that the spin-independent qq potential is 4a, (r)l3r-
at short distances. In our spectrum calculations we
proceed more crudely and siinply fit different constant a,
values to the light, cc, and bb mesons, respectively. The
relevance of asymptotic freedom can be checked by com-
puting the relative sizes of ground states of light, cc, and
bb states, substituting into Eq. (1.8) and verifying that the
variation of a, with size scale agrees with the phenomeno-
logical fit. The agreement is good. The variation of A
with quark mass m is also physically reasonable. A is ex-
pected to decrease as m increases by a Heisenberg uncer-
tainty relation argument, an inspection of Feynman
graphs, etc. The absolute sizes of the A cutoff parameters
are also reasonable as compared, say, to the sizes of the
meson bound states in each case. The only aspect of
heavy-quark spectroscopy which is very sensitive to the A
cutoff parameter is the position of the nlsj =0000
states. Since this state is not yet experimentally observed
in the bb system, our value of A for b quarks is not well
determined.

II. THE SU(3) FLUX-TUBE QUARK MODEL

In this section, we briefly review the potential model of
I and discuss the inclusion of one-gluon, short-distance
magnetic interactions into it. The basic motivation for the
model is quantum chromodynamics, with asymptotically
free perturbation theory providing a physical picture for
short-distance dynamics and lattice gauge theory as a
guide to long-distance, strong-coupling confining dynam-
ics. For example, the potential experienced by a static
quark and antiquark held a distance

~

r
~

apart is assumed
to be

tential and arguing that it contributes a "wrong-sign"
spin-orbit splitting which interferes with the first-order
perturbative single-gluon splitting to nearly accommodate
the data. The relative simplicity of our calculation of r is
very pleasing. Moreover, a similar nonperturbative shift
of the qq Pp state explains the energy of the 5 meson.
Our P-wave splittings for the n =1 and n =2 states of bb
are also successful.

It is interesting to summarize the systematic variation
of the parameters a, and A as we turn from light mesons
composed of u and d quarks (constituent mass =360
MeV) to charmonium (m, = 1.84 GeV) and to b
quarkonium (mb ——5. 17 GeV). Our fits to the spectra use
the values

3 a, A (fm) Quark
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CXc
V (r)= —— +Mcr

I
r

I

—M
qq ' (2.1)

where ~cr is the string tension and M — is a constant
which sets the zero point in the meson energy spectrum.
At short distances, the first term of V — dominates, and
its 1/r singularity should, in principle, be removed by the
vertex factors A(r). Also the QCD coupling a, has a
weak spatial dependence which we have neglected. In the
present work, which focuses on the color-magnetic split-
tings, we have used Eq. (2.1) from Ref. 1 without any fur-
ther refinements.

Qur extension of Eq. (2.1) to the baryons incorporates
the SU(3) character of the gauge fields explicitly. Each of
the three quarks in a color-singlet baryon is a source of
one unit of flux. At large distances three flux tubes can
form, and for SU(3) color they can join at a single point
(Fig. 1). Call the positions of the quarks r;, i =1,2, 3, and
let r4 be the position of the union of the three flux tubes.
r4 is determined variationally, i.e., the amount of flux is
minimized consistent with Gauss s law and the fixed posi-
tions r;. For linear confinement this condition implies
that the angles between the flux tubes at their union are
each 120'. However, if an interior angle i of the triangle
(of quarks) whose vertices (positions) are r;, rj, and rk is
greater than 120', then r& coincides with r; and the flux
configuration degenerates into two linear segments. A
natural generalization of Eq. (2.1) to the baryon sector
then reads

V + ( 2+ 2)1/2+ ( 2+ 2) 1/2
qq qq (2.3)

in the center of mass pq+p-=0, and the baryon Hamil-
tonian was

IIqqq= Vqqq+ g (Pi'+mi')'"
i =1,3

(2.4)

Q Q

4a,
Vqqq= — X 2

+v~ g I
r; —.4I —Mq,q.

r,, i =1,2, 3

(2.2)

The first term is the sum of Coulomb-type potentials
operative between quark pairs. The factor of —,

' is an
SU(3) group-theory factor, which occurs because of the
color-singlet character of the baryon, and the constant
Mqqq sets the zero-energy point in the baryon spectrum (it
is fit to experiment). The color-electric interactions, Eqs.
(2.1) and (2.2), are denoted by VE in our later discussions.

Finally, the form of the kinetic energies for the quarks
must be chosen. In I we used the meson Hamiltonian

Jq =Jr

Jf= &VcTr J dv
(

2)1/2

(2.5)

where u is the transverse velocity of a bit of rotating string
at a distance r'=ru/2c from the center, and

2J 1

Eq(J, r)=2p= —Vo.r J dv
0

V2

( 1 2)1/2

Ef (J,r ) = ,' v or f du- 1+V2

( 1 2)1/2

BV=, ~or I du(1 —v )'/
0

So finally,

(2.6)

in its center of mass g p; =0. The masses in both Ham-
iltonians are the constituent quark masses, but explicit cal-
culation showed that the spin-independent features of the
theoretical spectrum of light hadrons are not strongly
dependent on the choice of the mass.

The spectra of the Hamiltonians [Eqs. (2.3) and (2.4)]
can be obtained by variational methods. The specific
forms of the kinetic energies in Eqs. (2.3) and (2.4) were
motivated in I by considering relativistic-model field
theories of confineinent. For example, in the Schwinger
model (electrodynamics in 1+1 dimensions), Eq. (2.3) is
exact in the approximation that quark pair production is
neglected. In one spatial dimension, Eq. (2.3) is fully rela-
tivistic. This gives us confidence that the model s descrip-
tion of radial excitations is sensible.

An analysis of classical relativistic stringlike solutions
of the MIT bag model indicates that orbital excitations
may also be described with Eqs. (2.3) and (2.4) with
surprisingly good accuracy. Recall how this comes about.
Johnson and Thorn consider the motion of a classical, re-
lativistic mesonic string with light quarks at its ends. The
string is pictured as confined flux subject to bag boundary
conditions. For purely longitudinal vibrations the
system's energy as a function of the distance r between the
quarks and their relative momentum p is E(r,p )

=2p+ v or as in the (1+1)-dimensional Schwinger
model. Furthermore, the energy of the system as a func-
tion of orbital angular momentum J and interquark dis-
tance r,E(J,r), can also be computed. To do this one
must calculate the angular momentum and energy carried
by the flux tube as it rotates. The total angular momen-
tum of the rotating system is J=Jq+ Jf, where Jq (Jf ) is
carried by quarks (flux). The total mass of the system
consists of three terms E(J,r)=Eq+Ef+BV, where Eq
(Ef) is the energy of the quarks (flux) and BV is the
volume energy associated with the confining pressure B (B
is the bag constant and V is the volume of the rotating
flux tube in the center of mass). For massless quarks with
string ends rotating at the speed of light, Johnson and
Thorn find

Q

(b)

FIG. 1. The flux-tube configurations in (a) mesons and (b)
baryons.

E(J,r)= +v ur J du(1 —u )'
r 0

Since

J du(1 —u )'/ =m./4,

(2.7)
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4 1 1
Vss(qq)= i a. . . e 'o, o-

12m A v'm

~m. erf(z)
32z3

Vr(qq) = —,a,
m A

(2.8)

the coefficient of the confining potential acting in rotating
states differs from that in radially excited states by a fac-
tor of n./4=0. 79. However, if we redo this calculation
with the quarks having velocities typical of our bound-
state problems for the light mesons, 0=0.7, then the
analysis above goes through with the final replacement
ir/4~0. 92. In short, the same stnng tension, or linear
confining potential, applies to radial and orbital excitations
to 10%%uo accuracy A. lthough this estimate is model depen-
dent and uses classical notions, it indicates that a potential
model picture of the light hadrons should be very good.
(As the quark mass increases, the discrepancy 0.92 goes to
unity, as expected). Of course, there are additional rela-
tivistic (retardation) and field-theoretic (virtual-quark
pairs, open channels) effects which this analysis neglects
and they could be numerically significant in some cases.

Our light-quark masses will be m„=md ——360 MeV,
m, =1.84 GeV, and the bottom-quark mass m~ ——5. 17
GeV. These values of the light-quark masses give a good
account of the color-inagnetic interactions and they agree,
of course, with past constituent-quark-model work on
hadronic matrix elements such as the proton magnetic
moment.

Finally, for the sake of completeness, we give expres-
sions for the color-magnetic interaction obtained with the
exp( ——,'A q } vertex form factors. We define z=r/2A
and obtain

p2
2(M'+ V'}' '—2M+

is added as a relativistic correction. This correction is
quite small (Tables III and IV). The spectra of light
mesons and baryons are calculated variationally, by a
Monte Carlo method developed to treat light nuclei. The
wave functions are parametrized in the fashion described
below, and the expectation values of the semirelativistic
Hamiltonian are calculated as described in I, and Ref. 8.

The wave functions of the light mesons are taken to be

P(nLSJ) =F(r)P(nLSJ), (3.1)

y(nLSJ)=r R„(r) y„(JM
~
LmLSms )Xs~, rl. '(r),

F(r)=f (r)[1+u (r)oq'o' —+ u'f(r)(S +6L'S—)]

(3.2)

(3.3)

The R„(r),f'(r), u (r), and uf(r) are the variational func-
tions. When g has this form, the u (r) and u f(r) are only
weakly dependent on nLSJ, and the dependence of R„(r)
and f'(r) on nLSJ is predictable to some extent. Thus the
variational calculations of the numerous nLSJ states be-
come simpler.

The function R„(r) contains the radial nodes of @: it is
just 1 for n =0 states, while it is 1 azr (—1 a2r +—a4r )
for n =1(2) states. The a; in R„(r) are determined by re-
quiring that the i'(nLSJ) is orthogonal to lower energy
states having n' & n The ce.ntral correlation f'(r) is
parametrized as in I:

1 1
f'(r) =r ~expI to(r)Air —[1——co(r)]Xi sr' (3.4)

Vso (qq) =
3 a~ z

NR — 4

'yn A

Mm. erf(z)
32z3

(2.9)

e ' LS

(2.10)

Vso(qq}=x, q Vso (qq) .
( 2+p2)1 j2 (2.11)

In baryons the color-magnetic interaction is given by

[Vss(q'qj }+VT(q;qj }+Vso(q;q, }]
l (J

(2.12)

and the Vss, V~ and Vso between quarks in a baryon are
half of those given by Eqs. (2.8)—(2.10) for qq pairs.

III. CAI,CULATIONAI. METHODS

The spectra of the heavy cc and bb mesons are calculat-
ed by solving the nonrelativistic Schrodinger equation.
The difference

or hmvy quarks. The semirelativistic Vso used in light
quarks is taken as

1+ exp( ro /a)—
to(r) =

1+ exp((r —ro )/a)
(3.5)

p
—A, )pAt short distances (r «ro ) f'(r) becomes r ~e ', and

the values of P and A, i are close to those of the Coulomb
wave function. ' At large distances (r »ro), f' becomes

~1 5 1.5e "r', a form appropriate to a linear potential. P is
taken to be nonzero only for the L =0 waves. The param-
eters ro and a determine the transition from the Coulomb
to linear regions, and it is sufficient to take their values
froin Ref. 1.

The u (r) represents spin-spin correlations. These are
treated by the method suggested in Ref. 8:

—c I

—&I

u (r)=P~J, Vss(r')d3r'. (3.6)
[
r r'/—

This correlation is most important for the I.=O, S=O
states, and is necessary to obtain the experimental pion en-
ergy.

The u f(r) represents the influence of the spin-orbit and
tensor interactions. The (S -+6L.S ) represents the ma-
trix element in the LSJ state, and the coefficient 6 of the
L S operator takes into account the larger strength of Vso
[compare Eqs. (1.2) and (1.4)]. The function uf(r) is
parameirized as:
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(3.7)

This correlation is most important in I'0 states, in which
the matrix element (Szq+6L'S ) is —16. In the P& and
Pq states this matrix element is only —4 and +5.6,

respectively. The u (r) is necessary to obtain the experi-
mental values of the ratios r [Eq. (1.6)] of the energy
differences between the PJ states of charmonium, etc.

The variational wave function [Eq. (3.1)] does not take
into account the mixing between the I.SJ and I 'SJ states
with L'=2+2 due to the tensor force. Its effect on n =0
states is estimated by diagonalizing the Hamiltonian be-
tween I.SJ and I 'SJ states. It is found to be rather small
( & 15 MeV); the energy differences between states of dif-
ferent I. are larger than the matrix elements of the tensor
force.

The variational wave functions for the baryons are very
similar to those of I. We take

The P(R) are, respectively, 1, z Y& (z ), z =p or A. , and
1 —aq(p +A, ) for these three states. The a2 is deter-
mined by requiring that the breathing mode be orthogonal
to the ground states.

The eight spin, isospin states are obtained by applying
m& lowering operators to the states:

X (S=—', , ms ———,')=
~

hatt ), (3.12)

Xi'(S= —,',m, = —,')=(
~

tt& ) —
~
»t ))/~2, (3.13)

The complete P of the eleven baryon states studied in this
work are given in Table I.

The pair correlation I',J is taken as

X '(S= —,',m, = —,' )=(2
~

tent ) —
~
ttt ) —

~
~tt ))/~6 .

(3.14)

(3.8)
FJ =f '(r)[1+u (r)o; aj], (3.15)

where P determines the angular momentum, parity, and
other quantum numbers of g. The P are products of spin,
isospin, and r-space states combined to form a symmetric
wave function:

The u (r) is parametrized as in Eq. (3.6), and f '(r) is
parametrized as

f '(r)= expI —co(r)(Air+A2r ) —[1—co(r)]Xi 5r' I .

P= gg(&)X(o)X(r) . (3.9)
(3.16)

The r term in the f '(r) of mesons [Eq. (3.4)] is not im-
portant for the baryons. ' lt was possible to take all pa-
rameters other than A, i 5 of the f'(r) from I. The three-
body correlation F~k could also be taken from I.

The spin algebra required to calculate the expectation
values of color-ma netic interactions is reatl sim lified

We treat the lowest three spatial states of the qqq system,
the 0+ ground state, the 1 state, the 0+ breathing mode.
Defining the coordinates p and A, as

(3.10)p=(ri —r2)/v 2,

(3.17)

g g y p
A, =(2r3 —ri —r2)/V 6, (3.11) by noting that the symmetrized product is

I

W+ [1+u (rJ)cr; oj]=1+3u (r& ) 2u(rp3)u (P3])+ p[u (rj)+u (rk)u (rp, ) —', u (rj)u (—r~„)u (r„,)]o, oj .

The spin-spin correlations in the baryon have a significant
effect on the spectra. They are necessary to obtain experi-
mental X-b. splitting, etc. On the other hand, most of the
effects of the color tensor force on the baryon spectrum

t

seems to be obtained in first order. The analog of the
u f(r) correlation in baryons has a small effect. Shifts of
—15 MeV are obtained by mixing of the J = —,

' and —,
'

states with S= —,
' and —', by the tensor force. These shifts

TABLE I. Baryon wave functions. A sum over mL, and m~ to obtain the desired J,M state is irn-

plied.

(940)

(1230)

N2 (1520)

(1535)

(1650)

(1670)

(1650)

(1700)

(1670)
X*

2 (1440)
6*

~ (1700)

X (m~)X (mT)+X~(m~)X~(mT)

X(m )X(m )

X'(mr )[P'(mc )X'(ms)+ &'(mi )X'(ms) ]

+X"(mr)[ P"(ml. )X"(ms)+4"(mL—, )X'(ms)]

X (mr)[P (mL, )X~(ms)+P (mi )X~(ms))

X (ms)[P (mi. )X (mT)+P (mI)X (mr)].

[X"(ms)X (mT)+X~(ms)X~(mrl][1 —~i p'+A, ']
X (ms)X (mT)[1 —a(p'+A, ')] .
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2(~ 2+p 2)1/2
VL, (F2 )1/2Vss VT Vso

TABLE II. Expectation values of various terms in the Hamiltonian (MeV), and the rms radii (fm) for light mesons. The VI and
V~ denote the linear and Coulomb parts of the color-electric interaction in mesons.

nl SJ E Vc

0000
0011
0101+
0110+
0111+
0112+
1000
1011
0202
0211
0212
0213
0303+
0312+
0313+
0314+
2011
0404
0413
0414
0415
0505+
0514+
0515+
OS16+

140
751

1113
931

1180
1256
1114
1442
1560
1441
1567
1620
1892
1816
1894
1933
1957
2177
2125
2178
2207
2438
2398
2438
2462

1948
1066
1486
1502
1291
1210
1489
1375
1434
1593
1434
1337
1588
1694
1588
1495
1506
1680
1752
1680
1651
1756
1806
1756
1756

278
592
683
659
795
870
765
931

1000
882
995

1091
1148
1066
1148
1241
1294
1327
1265
1327
1355
1501
1454
1501
1501

—525
—222
—184
—182
—147
—130
—210
—186
—112
—129
—112
—100
—93

—102
—93
—86

—142
—80
—84
—80
—78
—70
—72
—70
—70

—811
65

—122
36
16
8

—180
72

—12
+8
+4
+1
—1

+1
0
0

49
0
0
0
0
0
0
0
0

0
0
0

—131
48

—8
0
0
0

—37
25

—6
0

—16
+16

0
0

—8
+10
—3

0
—5
+6
—2

0
0
0

—203
—73

56
0
0
0

—126
—29

47
0

—77
—15
+37

0
0

—50
—9
32
0

—35
—5
27

0.16
0.32
0.38
0.36
0.43
0.46
0.41
0.53
0.53
0.47
0.53
0.57
0.60
0.56
0.60
0.64
0.72
0.69
0.66
0.69
0.70
0.77
0.75
0.77
0.77

are estimated by diagonalizing the 2)&2 Hamiltonian ma-
trix for the P-wave baryons having S=—,

' and —', .

IV. RESULTS

The calculated expectation values of the kinetic energy
and central, Vss, VT, and Vs& potentials etc., are given in
Tables II—V. The calculated values of the root-mean-
square radii can also be found in these tables. In this sec-
tion we discuss some of the interesting results of these cal-
culations, and compare the energies with experiment.

The wave functions used in I do not have the spin
correlations u (r) and u (r). Using those wave functions
corresponds to treating the color-magnetic interaction in
first-order perturbation theory. In Table VI, we compare
the energies of some of the states in this first-order calcu-
lation, and in the variational calculation using the wave
functions given in the last section. We find that the first-
order calculation is not valid for the states in which the
color-magnetic interaction is very attractive. The radii of
these states change because of the increased binding, and
that effect results in even more attraction from the color-

TABLE III. Same as Table II, for baryons. VI and VL denote the two- and three-body parts of the linear potential in the
baryons as defined in I.

State

+N—
2
3 +
2
1

2

N—3
2
1

2
3
2

N—1

2

N—3
2

N—5
2

N—
2

~3+
2

940

1240

1399
1446

1566

1564

1514
1628

1661

1583

1847

g(m2+p& )

2025

1712

2080

2086

1975

1959

1936
1948

1886

2007

2047

V2B
L

761

925

989
988

1036
1043

1061

1057

1097

1179
1159

V3B

69

91

88

86

100

101

101

99
106

104

107

—404
—298
—305
—306
—269
—266
—264
—265
—248
—303
—299

Vss

68
—162
—165
—17
—15

51

51

40
—147

+91

VT

—33

+27
—6

Vso

—32

+16
—2

+1
—79
—32

+44
0

( 2 )1/2

0.32

0.39

0.42

0.42

0.43
0.44

0.44

0.44

0.44

0.51

0.51
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TABLE IV. Same as Table II, for charmonium.

nLSJ

0000
0011
0101+
0110+
0111+
0112+
1000
1011
0211
2000
2011
1211
3011

2978
3097
3513
3412
3494
3543
3615
3681
3772
4050
4100
4150
4454

t'

2, m;+ ps

2777

4158
4025
4067
4179
4084
4037
4176
4129
4161
4274
4143
4277
4351

2(~ 2+p 2)l/2

4103
3998
4041
4133
4056
4015
4114
4083
4124
4195
4178
4214
4264

301
344
556
497
545
578
664
691
709
946
967
972

1207

Vc

—466
—389
—207
—239
—212
—197
—248
—231
—155
—187
—179
—129
—152

Vss

—87
18

—3
2
1

1

—41
+11

0
—31
+9

0
7

VT

0
0
0

—24
9

—1

0
0

—3
0
0

—3
0

Vso

0
0
0

—84
—29
+22

0
0

—30
0
0

—29
0

(p 2 )1/2

0.17
0.19
0.30
0.27
0.29
0.31
0.36
0.38
0.37
0.52
0.53
0.52
0.66

magnetic interaction. A similar effect is seen in bag-
model calculations, in which the pion bag radius de-
creases because of the attractive one-gluon-exchange in-
teraction.

The spectra of isospin T=1 mesons with I.=0 and
l. & 1 is compared with experiment in Figs. 2 and 3. In
general the calculated energies are a few percent lower
than the experimental energies. We believe that better
agreement with experiment will be obtained with a little
larger value of a, . However if the p' (1250 MeV) state is
confirmed, in future experiments, it would be difficult to
simultaneously explain the large m-p splitting, and the
near degeneracy of n' and p' in the constituent quark
model.

The baryon spectra obtained with the V~ and V~+ Vss
are compared with experiment in Fig. 4. The calculated
energy of the Roper resonance is too high, and the I'-wave
baryons are a little too low. The theoretical Roper would
move higher up if the a, is increased to better reproduce
the meson spectrum. The calculated spectra of P-wave
baryons with VT and VT+ VsQ are compared with experi-
ment in Fig. 5. The observed S=—,', J = —,', and —,

'

(and 5) states are nearly degenerate, and the splitting of
the 5= —,, J = —, , —, , and —, states is well reproduced

i
%*(1530)) =0.986

i
—, —,

' ) +0.168
i

—,
'

—,
' ),

i
N*(1520) ) =0.999

i
—,
'

—,
' ) —0.04

i
—,
'

—,
' ),

(4.1)

(4.2)

where the kets are labeled with S and J. These wave func-
tions are significantly different from those obtained by
Hey, Litchfield, and Cashmore' by fitting experimental
decay rates. The wave functions of Ref. 10 are

i
X'(1530))=0.85

i
—,
'

—,
' )+0.53

i
—,
'

—,
' ),

i
%*(1520)) =0.98

i
—,—, ) —0. 18

i
—,—, ) .

(4.3)

(4.4)

It has been shown by Isgur and Karl" that the wave func-
tions of Ref. 10 can be reproduced by (i) treating color-
magnetic interactions in first-order perturbation theory,

by VT only. From Fig. 5 one would surmise that the VsQ
in qqq is almost zero and the Vss of the present model is
giving -25% too large splitting between the S= —,

' and —,
'

nucleon states.
It is interesting to consider the mixing caused by the

tensor force Eq. (1.2) between various P-wave baryon
states. The wave functions of the N'(J = —,', 1530) and
N*(J = —,', 1520) are found to be

TABLE V. Same as Table II, for b-quarkonium.

nLSJ

0000
0011
0110+
0111+
0112+
1000
1011
1110+
1111+
1112+
2011
3011

9372
9460
9837
9869
9888
9949
9983

10191
10217
10234
10320
10595

m+ ps

27K

10844
10711
10716
10667
10642
10742
10707
10770
10737
10718
10772
10843

2(~ 2+P 2 )1/2

10809
10697
10704
10659
10636
10720
10691
10752
10723
10706
10752
10818

Vl.

180
201
342
362
375
442
456
558
575
587
658
832

—677
—577
—291
—270
—258
—314
—295
—211
—199
—191
—221
—184

Vss

—65
13
0
0
0

—26
6
0
0
0
5

VT

0
0

—10
4

—1

0
0

—8
3

—1

0
0

Vso

0
0

—33
—12
+10

0
0

—27
—10
+8

0
0

(r2 )1/2

0.10
0.11
0.18
0.19
0.20
0.24
0.25
0.30
0.31
0.32
0.36
0.45
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TABLE VI. Nonperturbative effects of color-magnetic interaction.

State
Zeroth order

Z (MeV) R, (fm)
First order
E (MeV)

Variation al
E (MeV) R, (fm)

P
N

5
A)
A2

cc( Po)
cc( P1 )

cc( 'P2)

671
671

1141
1141
1202
1202
1202
3518
3518
3518

0.29
0.29
0.36
0.36
0.43
0.43
0.43
0.30
0.30
0.30

373
770

1031
1251
990

1180
1258
3450
3500
3543

140
750
940

1240
931

1179
1256
3412
3494
3543

0.16
0.32
0.32
0.39
0.36
0.43
0.46
0.27
0.29
0.31

(ii) neglecting L S interaction, and (iii) using harmonic-
oscillator wave functions.

The tensor force mixes the S=—,
' and —,

' states, and if
we take the results of Ref. 10 seriously we must conclude

—---- p'(2OI I-)

2.0-

p'( IOI I-)

that the tensor force in our model is too weak. However,
if we phenomenologically increase the strength of the ten-
sor force we will severely overestimate the splitting of P-
wave baryon energies. The true baryon states are certainly
much more complex than those suggested by Eqs.
(4.1)—(4.4). They have meson clouds which perhaps influ-
ence the mixings.

The calculated spectrum of charmonium shown in Fig.
6 is in good agreement with experiment. The splittings of
the PJ states is well reproduced, and the main problem
appears to be that the energy of n =2 S& state is too high.
The calculated bb spectrum shown in Fig. 7 is also in
reasonable agreement with experiment.

1.5-
r

1

\
\
\

\
'I

w( IOOO-)———p'(P)

2.5-

2.0-

--------—-- 8 (0516+)
.—--- p(0415-)

.——-- p(04I3-)

,~(OSIER )

'8(0314+)

0.5-

r
rrr

s
1
1
1
l

1
1
1
t
t
'I

t
I
1
l
1

1
t
l
I
t
I
1

p (OO I I-)

e (OOOO-)
I.O-

,g(021&-)

'A, (O2O2-)

Ap (0112+)

B(OIOI')

8(Olla+)

V~ Theo. Expt.

FICi. 2. The spectrum of L =0 mesons. The first two
columns give the spectra calculated with VE only and with
VE+ Vss+ V~+ Vso, respectively. The semirelativistic Vso of
Eq. (2.11) with x =0.7 is used in these calculations. The third
column gives the experimental spectrum of isospin T = 1 mesons
from Ref. 6. Uncertain levels, found only in the meson data
card, are shown by dashed lines. All known T=1J =0 and
1 levels are included in the figure; and the nLSJ assignments
are given in parentheses.

0.5-
Theo. Expt.

FIG. 3. The orbital-excitation spectrum of mesons. See cap-
tion of Fig. 1 for notation. All known T=1 J &0 and 1

states, except for the 2 m(2100) states, are shown in the figure.
The m.(2100) is an "uncertain" state, and it may be a radial exci-
tation of the A3(1680).
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2.0- 4.5-
n=3 3SI

l.8-
0+

\ n= I 3DI
n=2 3SI

l.6-

l.4-
Theo. Expt.

n=O 3DI
tt=l 3SI
n=l ISO

l.2-

l.o-

0'
1
l
1
1
I
1
I
1

1
'I

\

\
l

+
el&

VE Theo. Expt.

n= 0 3PJ

n=O 3SI

A=O ISO

FIG. 4. The baryon spectrum. The first column gives the
color-electric spectrum labeled by L, the next gives the L =0+
baryon energies calculated with VE+Vss. The third column
gives the experimental energies of these states; the large uncer-
tainties in the N*(

2 ) and 6*(
2 ) are indicated by error bars.

The calculated energies of the L = 1 baryons with V~+ Vsq in-
teraction are given in fourth column. The experimental energies
shown in the last column are the centroids of the J=

~

L —S
~

to
L +S states.

E xpt. Thea.
FIG. 6. The experimental and calculated spectrum of char-

monium with VE+ Vss+ V~+ Vso. The experimental energies
are from Ref. 6.

The values of the constants M, M,—,Mb&, and M&qz
are given in Table VII. It should be possible to make
slight changes in the assumed masses of m, and mb and
make

Mqq ™pp ™bb. (4.5)

l.7-

l.6-

\

\

/
/

/
/
I
I
I
/
/

/
/

/

I /I/
C

//
/g

I
/

/
vi

/
/

/
/

/
'i /
V
/ IL

/

Ny&

I0.5-
n=3 3SI

n=2 3SI

»= I 3PJ
J

However, there is no fundamental understanding of these

N lp

0
e IO.O- n= I 3SI

)
n=O 3PJ

n=l ISO

I.5- N'/p

Theo. + O. l Exp t. Theo. + O. l

9,5- n=O 3SI
FIG. 5. The spectra of P-wave baryons. The first column

gives the spectrum calculated with Vz+ Vss+ Vz, the second
gives the experimental spectrum with the error bars, and third
gives the spectrum calculated with VE+ Vss+ V&+ Vso. The
semirelativistic Vso with x =0.7 is used in these calculations. A
constant 0.1 GeV is added to all calculated energies to facilitate
comparison with experiment.

0=0 ISO

Expt. Theo. Theo.

FKx. 7. The experimental and calculated spectrum of bb with
VE+ Vqs+ V~+ VI.~ (nonrelativistic). The experimental energies
are taken from a compilation of Moxhay and Rosner (Ref. 12).
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TABLE VII. The energy constants in GeV.

qf
M,
M~~
M~

0.75
0.87
0.87
1.27

numbers. Curiously,
33f

qqq (4.6)

V. CONCLUSIONS

The constituent quark model, with its rather simple
Hamiitonian with very few parameters, does seem to give
a semiquantitative description of the number of spectra
considered in this work. The two main failures of the
model in the context of spect'roscopy, are (i) generally the
spacing between radial excitations is a bit larger, while
that between rotational excitations is a little smaller than
experiment, and (ii) the model predicts spin-orbit splitting

that is not observed in P-wave baryons. In light of the
Johnson and Thorn model of rotating flux tubes, one
could have expected the opposite of our problem (i). That
model would suggest that if the string tension is adjusted
to reproduce radial excitations, the splittings between rota-
tional states would be too large in a potential model which
neglects the angular momentum carried by the flux tube.

The model also fails to reproduce the experimental
charge radii of the nucleon and pion. This problem is cer-
tainly due to the neglect of pair production terms in our
Hamiltonian. Such terms would give rise to experimental-
ly observed couplings X—+X+m, 6+m, p~2m, etc.
These couplings will also affect the spectrum, and may be
necessary to obtain a more accurate description of the
hadron spectroscopy.
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