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The annihilation contribution to the masses of the J7=0~" isoscalars is calculated in the bag
model. The resultant mass shift for the %’ is large and positive. For a;=1.15 we obtain m,=0.53
GeV and m,;=0.965 GeV, leading to a good description of pseudoscalar masses within the model.

I. INTRODUCTION

A decent understanding of the masses of the ground-
state mesons and baryons has emerged from the quark
model when one incorporates certain features of quantum
chromodynamics.»? In the MIT bag model even the light
mass of the pion, and its expansion about the chiral limit,
can be accounted for.!> However, two states whose masses
are not understood in the quark model are the n and 7’.
It is the purpose of this paper to calculate the lowest-order
diagrams which are needed to explain these masses. We
will show that this calculation has several interesting
features, and that the result gives a reasonable description
of the mass spectrum and of 7-7’ mixing.

It was long thought that both the n and the ' should
be Goldstone bosons in the chiral limit (i.e., all quark
masses being zero). Expansion about this limit then pro-
duces 7 and 7’ masses which are much too light.* This
was known as the U(1) problem, and is seen in the quark-
model context by the models predicting an isoscalar state
degenerate with the pion when all diagrams to O(a,) are
included. The general resolution to this problem has come
through a better understanding of the axial-vector anoma-
ly.> In the chiral limit only an octet of Goldstone bosons
exists, with the singlet (~7') being massive. It is only in
the dual limit of all quarks being massless and the number
of colors tending to infinity (with g2N, fixed) that the n’
becomes massless.® In quark models, these features are
thought to be contained in the diagram of Fig. 1, plus
similar but higher-order processes with more gluons.!’
This diagram shifts only the mass of the SU(3) singlet [if
SU(3) breaking is small], and can make the singlet heavy,
and also vanishes in the large-N, limit.

FIG. 1. The annihilation diagram which is responsible for the
large mass of the n’.

This diagram, which we will refer to as the annihilation
process, is clearly of order a,2. However, to explore the
effect of it, it is not necessary to compute all O(a,?)
corrections. Rather, the annihilation diagram, which
occurs only in the isosinglet channel, can be separated
from all others by comparison with nonisosinglet states
such as the 7 and K. What one calculates is then a shift
of the 17’ mass relative to the pion and kaon masses. This
procedure is gauge invariant.

There is one feature which, on the surface, appears puz-
zling about the use of Fig. 1 to generate a large 7’ mass.
If one looks at the intermediate state, it appears as if this
diagram represents the mixing of a gg state with a two-
gluon glueball. However, we know from second-order
perturbation theory that such mixing always lowers the
mass of the ground state. This would push the 7’ mass
down instead of up. It is of general interest then to see
what mechanism leads to positive sign for the mass shift.
We will see that the dominant effect is not mixing with a
glueball. In Coulomb gauge, which we will adopt in this
paper, it arises from the replacement of one of the gluons
with the instantaneous Coulomb interaction. In a covari-
ant gauge, such a result would correspond to one of the
gluons being an (unphysical) timelike component, which
has an opposite sign, due to the metric, in its coupling.

This subject has also been considered in the bag context
by Maciel and Monaghan.® Their conclusion on the sign
of the amplitude is the same as ours, but we strongly
disagree with the magnitude. Note that these authors also
disagree with the magnitude of two published calculations
on 7’-glueball mixing.

The plan of the paper is as follows. In the next section
we set up the general outline of the calculation. In Sec.
I11, one of the diagrams is presented in detail in order to
display our methods. The results are given in Sec. IV and
we calculate the mass spectrum and 7-7’ mixing with en-
couraging results. Finally Sec. V presents a brief sum-
mary.

II. THE METHOD OF CALCULATION

As mentioned in the Introduction, we will use the
Coulomb gauge. To the order which we need it, the
Coulomb-gauge Hamiltonian is given by
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As pointed out by Friedberg and Lee,’ the Green’s func-
tion G(x,y) is modified from its free-field value
(1/47 | X—¥|) by boundary terms required by confine-
ment
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Higher-order terms, and interactions involving only
gluons, do not enter our calculations and are not
displayed. There are then two types of interactions in this
gauge. One involves the interaction of quarks with physi-
cal transverse gluons at order g, denoted as in Fig. 2(a).
The other is the instantaneous Coulomb interaction at or-
der g2, as in Fig. 2(b). This is a conceptual advantage of
Coulomb gauge as it explicitly separates out the physical
gluonic degrees of freedom, the transverse gluons, from
other gluonic effects such as the Coulomb potential.

We will also use old-fashioned time-ordered perturba-
tion theory, with the propagators being expressed as a sum
over bag-model eigenmodes. This leads to considerable
algebraic complexity for the resulting expressions; how-
ever, we do not know of any easier method for the present
calculation. Note that the annihilation diagram is finite,
so that we need not worry about separating out divergent
contributions, such as has proved troublesome in the
mode-sum method.

To describe the effect of the annihilation diagram, we
form the effective Hamiltonian for ¢gg—¢q'q’' by a con-
sideration of the S matrix:

(b)

FIG. 2. (a) The coupling of a transverse gluon to quarks. (b)
The instantaneous Coulomb interaction.
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The interaction Hamiltonian contains transverse and
Coulombic terms

H;(x)=HT(x)+Hx) , )

which can be read off from Eq. (1). The perturbative ex-
pansion of the S matrix leads to the diagrams of Fig. 3.
In particular Fig. 3(a) is obtained from

5 [ d*xd*yd*zd* THTOHTp)H 2)H(r), (5
while
= [ dtxdty d'z THTOHTWH ) (6)

generates Fig. 3(b). A diagram with two factors of H “(x)
would only contribute to positive-parity states. An effec-
tive Hamiltonian can be defined by

Sfi=—27Ti8(Ei—Ef)<o_+|Heff|0—+> . (7)

Expansion of (0~ | H |0~ ") reproduces term by term
the corrections to the energy in time-independent pertur-
bation theory.

III. CALCULATION

To illustrate the necessary computations we will expli-
citly calculate one of the time-ordered diagrams as given
in Fig. 3(a). We will first give the solutions for the quark
and gluon eigenmodes needed for the internal propagators,
and then proceed to evaluate the diagram.

Solving the Dirac equation of motion in the bag leads to
the quark wave functions

/ LR
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(a)

(b)

FIG. 3. The types of contributions which emerge from Fig. 1
when studied in the Coulomb gauge. There are many time or-
derings implied by each of these diagrams. These are found by
permuting the vertices in all possible ways.
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Quark and antiquark wave functions are related by charge conjugation
gc=iv:q*
and the eigenvalues for / + 5 quarks are fixed by the solutions of
aji(x)=xa'ji+(x) . 9)

For gluons there are two families of wave functions in the free-field limit:

—TE
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The eigenvalues are given by
xj; _1(x)—1lj;(x) for TE gluons, j;(x)=0 for TM gluons . (12)

In evaluating the diagram, we use the notation o 1,2 s=¢s; and gk 1,2, =4k, and obtain (sums over magnetic quantum
numbers are implied)

(0™+ |Her |0~ +>~z—f dyof dzof dro( @A @) (X) (G Ao VPN T A s B )2 G A2 Mg )(r)

AC AP Ac 2P 3
><tr2 2tr2 2dxdydzd (13)

The time integrations yield
—i 1 1
Wo— O —Bp 200— O —WDpy Wg— D' —DF

The product of the color traces gives a factor of 2. The spatial integrals are
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are calculated simultaneously. Since the system has spherical symmetry, one integral can be evaluated at an arbitrary
point, e.g., £ can be chosen in the z direction. Yj(£)=25,0[(2k +1)!/%47] and f dQ, is replaced by a factor of 477. The
only nonvanishing contributions come from
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The use of the relations
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where k=m —1. This result was multiplied by the two other integrals, which gave a similar factor, and divided by
2r +1 to symmetrize the intermediate state. The result is
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The results of the calculation can be summarized as fol-
lows: For a given angular momentum of the intermediate
gluons the time ordering of the interaction vertices deter-
mines uniquely the value of the angular momentum for
the intermediate quark, once the choice for j=I++ or
j=I—+ quarks is made.

Other diagrams are calculated in a similar way. Owing
to the complexity of the procedures we will not repeat the
above presentation for each diagram but just give numeri-
cal results in the next section.

IV. RESULTS

In Table I several of the intermediate results are
displayed. The light-quark mass was taken as
m, =mgy=0, and these results, in units of a;2/R, are in-
dependent of R. The strange-quark mass was m; =300
MeV, and in this case we used m;R =1. One can see from
these results that diagrams with two physical gluons do
give a negative-energy shift, as expected. However, those
diagrams which involve the Coulomb interaction are posi-
tive and much larger. As might be expected, the largest
single diagram is that which has the smallest energy
denominators, involving 1S;,, quarks and the lowest TE
gluon mode. Diagrams involving first radial excited states
contribute typically less than 1% of the ground-state
value in the Coulomb case and about 5% in the two-gluon
fusion process. It is the dominance of the Coulomb in-
teraction which allows the mass shift to be positive.

Summing all contributions the results are

(itu | H o | Tu ) =0.39a,%/R ,
(@tu | Hg |55 ) =0.29,*/R ,
(55| Ho |55 ) =0.18a,%/R .

(24)

These numbers are relatively large and are capable of
shifting the %' mass to its observed position. Note also
that SU(3) breaking is considerable. It turns out that be-
cause of the approximately linear dependence on the num-
ber of strange quarks, the effect of the SU(3) breaking on
the 1,7’ masses is not as large as one would think. In or-
der to assess the effect of these results, we have used them
to calculate the 77 and %’ masses. Following the procedure
of Donoghue and Johnson,® the bag energy is identified
with the energy of the wave packet which describes the
bag state
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(p2+m?) ) =Ep,, . (25

In this manner an octet of massless pseudoscalars can be
found when the quark masses are zero, if the bag-model
parameters are suitably adjusted. The pion and kaon
masses can then be understood by turning on the quark
masses to shift these states to their physical values. This
has been performed at order ag, with the resulting value
as;~2. Other estimates of a, in the bag model? produce a
range a;=1-—2.2. Use of the a;=2 would put the 7’
mass too high. However, this value of a; would be modi-
fied if the calculation of the pion and kaon masses were
carried out to O(a,?). Our procedure will be to set the
pion and kaon masses at their physical values, and from
these calculate what the base (4 +dd) and s5 masses are
without the annihilation diagram. The annihilation dia-
gram will then be added, the bag energy diagonalized, and
a, adjusted in order to reproduce the particle masses as
closely as possible. This procedure will be counted as suc-
cessful if we can reproduce the masses using a value of «
reasonably close to the lowest-order value. In the basis
(1/V2)uit+dd) and s5, the isoscalar bag energy matrix
is

E, 0 a,? [0.78 0.41
E=10 2B,—E,|T R |0.41 0.18]" (26)
where
E,.={(p?>+m,?)1"?)=0.616 GeV , 27

Ex={(p*+mgH'?)=0.778 GeV ,

and the second term is the effect of the annihilation dia-

gram. We will use a common value of R in the diagonali-

zation, as the overlaps are well defined only in this case.

However, the physical states most likely have different

values of R. This would lead to some changes in the de-

tailed results, but the overall feature should be unchanged.
With a value a; =1.15, the masses are

my, =530 MeV, m, =965 MeV (28)

and the mixing angle is 8=37°. As this was a one-
parameter fit, we feel that the agreement on the masses is
excellent, and that the value of a; is reasonable. As a
check on the consistency of this result we have looked at
the vector mesons to see if the same type of diagram
would produce too large a w-¢ mixing. The annihilation

TABLE 1. Second-order energy corrections in units of a,2/R for pseudoscalars due to quark-gluon

fusion for m, =0, m,; =300 MeV, R =3.3 GeV— .

Coulomb interaction

Two-gluon-fusion diagrams

L Giuon tu du u 33 55 55 wu du tu 33 55 55
1 0.306 10 0.25007 0.18248 —0.01826 —0.03069 —0.05055
2 0.059 96 0.049 38 0.03873 —0.00339 —0.00511 —0.00720
3 0.01977 0.01608 0.01275 —0.00101 —0.001 46 —0.00142
4 0.008 44 0.006 77 0.005 34 —0.00038 —0.000 54 —0.000 68
5 0.004 22 0.00333 0.00261 —0.00017 —0.00024 —0.00029
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diagram in the vector mesons must proceed through three
gluons. We have not performed a complete calculation
but have only included those diagrams which are similar
to the dominant ones from the pseudoscalar case. We es-
timate that the energy corrections are 4—8 % of those in
77m’ systems and that the mass shifts involved are less than
30 MeV (the direction improves the agreement with the
physical values).

V. SUMMARY

We have calculated the contributions of the annihilation
diagrams to the 77’ masses at O(a,?). The resulting ener-
gy shift is large and positive. The Coulomb interaction
plays an important role in making this number positive.
In particular, it is not appropriate to consider the Feyn-
man diagram of Fig. 1 as mixing with a glueball, as is
done in many phenomenological analyses.'® Since the
dominant contribution does not contain two physical
gluons, and since mixing generates the incorrect sign, such
approaches would not be expected to be reasonable.

The spectroscopy which results from this calculation is
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very encouraging. The pion and kaon masses can always
be fit by adjustment of the quark masses. With a reason-
able value of a;=1.15, we then would find m, =530
MeV, m,'=965 MeV. The precise values of our results
may have considerable uncertainty as they come from a
one-loop process, the study of which is rather new in the
bag model. In addition, this is the first bag-model calcu-
lation which has been done to O(a,2). However, even sub-
stantial changes in our results could be accommodated
phenomenologically without modifying the quality of the
spectrum by readjustment of a;. What is clear is that the
annihilation-diagram mechanism for generating the mass
of the %’ in quark models does appear to work, and that
the JP€=0—" masses in the bag model can easily repro-
duce the observed spectrum.
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