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Transverse-momentum spectrum of inclusive reactions in the geometrical picture
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The geometrical model of hadron elastic scattering is generalized to encompass the transverse-
momentum spectrum of inclusive reactions. The model is capable of explaining the rapidly rising
cross section at large momentum transfer squared as a result of the rising total cross section. %'e fit
all data from Ws =5 to 540 GeV and from P, =0 to 25 GeV .

I. INTRODUCTION

Chou and Yang in 1980 investigated the dip and kink
structures in hadron-nucleus and hadron-hadron diffrac-
tion dissociation. ' They found that the position of dips or
shoulders discovered in the processes

2i5()( —m,z), 2i50(z, ~ ~ )
(2.1)

2i50 ~ ~ ~

where e is the 5 matrix for incoming hadrons, and e '

is the S matrix for outgoing hadrons

the diffraction association may take place at any point P
as shown in Fig. 1. The equation becomes

A ~(m~m. )A, for A =Cu or Pb,

pp~p (nm. +),
pp~(pm+a. )(per+sr ),
np ~(p~ )p,

pn ~(pvr+tr )(ptr ),
nn ~(pm )(pm. )

by experiments can be explained by a simple extension of
the Chou-Yang model in the geometrical picture. For
elastic scattering in the Chou-Yang model, the scattering
amplitude is given to be

2i 5()( —0(), ao ) = —LIo,

2i 5() ( ca, + oo ) = —III) .
(2.2)

1 —e" . (1.2)

For the first-order process such as those depicted in (1.1)
the scattering amplitude for diffraction scattering is found
to be correctly given by

ft( b )e Q(b)— (1.3)

Chou and Yang' regarded the hadrons inside
parentheses in (1.1) as one object in the final states. In
other words they treated the reactions (1.1) as pp~pp+,
where p+ is some excited state of proton which subse-
quently decays into p+~n~+, pm. +m, etc.

It is most interesting to investigate the higher-order
terms beyond that of Eq. (1.3). We suggest that they man-
ifest themselves in inclusive reactions such as

pp ~m. +anything, (1.4)

where it is assumed that the pion arises from a sum total
of all pions in the decay of p+. We find that a good fit
can be obtained with data ranging from low energy to ex-
tremely high energy.

II. PHYSICAL PICTURE

The physical picture is that while one hadron trans-
verses through another hadron at an impact parameter b,

FIG. 1. Schematic diagram for inclusive reactions in geome-
trical picture; (a) first-order transition at I'; (b) higher-order tran-
sitions at Pl, l'2 . . I'„.
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Qo ——Qo ——0)——0, (2.4)

from which Eq. (1.3) can be easily derived. We argue that
this means that in diffractive association of the type

ss s ++a (2.5)

the transition p~p+ occurs locally at one single point,
and the shape of p+ effectively remains the same during
the transversal through the target hadron. It expands later
and decays, e.g., p+~p(err) when the two hadrons no
longer overlap. To be more concrete, say, hadrons are
made up of quarks, quark-antiquark pairs, and gluons.
Only the overlapping parts from two hadrons are excited
at point P with exchange of energy and momentum and
nowhere else. The sharing of energy-momentum
throughout the hadron cannot take place faster than the
speed of light. If the excitation travels back and forth a
few times, the hadrons have already passed through one
another. In such a way one can argue that in diffractive
dissociation the form factors which produce the overlap-
ping function Qp Qp are similar to those used in elastic
scatterings.

The transition expressed in Eqs. (1.3) and (2.1) is for
first order. The second-order transition is

2ISp( —oc,z& ), , 2iSO(z&, z2 ) ~+O(z, , )dz)e P)(z&)e
'

P2(z2)e ' ' dzz

The probability of diffractive dissociation occurs all over
the target hadron. Hence one has

Qt ——f P) (b,z)dz . (2.3)

In general Qo, QI) could all be different. The work of
Chou and Yang assumes

a(k)= J(1—S)e'"'
(2m. )

with

(2.9)

S =exp( —Qo —Q)), (2.10)

(X) = ' fe '" '-X(b)d b
2~

(2.11)

Then the total cross section rrT and elastic differential
cross section are given by

ti2

1

10

where Qo(b) is responsible for the absorption of incoming
and outgoing hadrons, and Q)(b) is responsible for the all
nonelastic transitions. It is convenient to denote a two-
dimensional Fourier transform by

and the nth-order transition is, in general,

1 2(So( —~z, )
dz) . . dz„e ' ' P&(z, )

nf

2is(z), z2) 2i50(z„—ao )

)&e
' . . P„z„e

(2.6)

(2.7)

Using the same simplification as Eq. (2.2) one reduces
(2.6) and (2.7) to

~ ~
z % ~

4 ~
8 ~

—Q)e2 -n
2!

~ ne —0
n!

(2.8)

The excited cluster p+ in general would be different for
first order, second order, or the nth order. Since p+ even-
tually decays into p+ —+p+m+ . m, the inclusive reac-
tion p —+++X can then be regarded as an incoherent sum
of all these transitions. For inclusive reactions it is neces-
sary to include other inelastic transitions in the intermedi-
ate state other than purely diffractive dissociation. There-
fore we would in general have Q)&Qo, and Q) includes all
nonelastic channels that would produce a pion final state.

The above expressions can be derived conveniently from
a single formula. We generalize the scattering amplitude
to be

2 3 4 5

FIG. 2. The inclusive differential cross section of
p (p )+p —+++anything as a function of transverse momentum
P, . Solid lines are theoretical predictions. The experimental
points (Ref. 7) are + and ~ for pp at Ws =540 GeV,
~y ~

&2.5 and 1.6& ~y ~
&2.5, respectively; E for pp at Ms=53

GeV, and at 90'; Q', O, and for pp at Vs =63 GeV.



S. Y. LO AND LI YANG-GUG 28

dG m
dII, 6eV/,

'

FICx. 3. The inclusive differential cross section of pp ~++anything as a function of transverse momentum I', . The experimental
points (Ref. 7) are solid circle 0, open circle O, solid triangle 4, open triangle 6, and square for V s =23.5, 30.6, 44.8, 52.7, and
62.7 GeV, respectively. The various lines are theoretical curves for these respective energies.

crT=2 Jd b(1 —e 0) (2.12)

(2.13)

III. CGMPARISON WITH DATA

In proton-proton elastic scattering at small momentum
transfer t (2 GeV /c we can use the simple assumption

dQ' Q)"
=const Xg e

dk n! (2.14)

The transverse-momentum distribution of an inclusive re-
action is where I'ts(q ) is the isoscalar form factor of the nucleon.

However if we want to take into energy-dependent varia-
tion of elastic pp at t &2 GeV /c it is necessary to in-
clude the isovector form factor of the nucleon. Similarly
we find that in inclusive reactions, it is necessary to in-
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TABLE I. Values of parameters. r~ ——real . (3.3)

Total
cross

section
o.g (mb)

43.11
63.73

178.73
100.75
39.0
40.45
42.05
43.11
44.0

Center
of mass

V s (GeV)

63
54.0
10
3 0& 10'

23.5
30.6
44.8
52.7
62.7

11.5
19
26
36
9.8

10.3
10.8
11.2
11.5

rs

5.39
5.39
5.39
5.39
5.39
5.39
5.39
5.39
5.39

3.478
3.478
3.478
3.478
3.478
3.478
3.478
2.478
3.478

170'
167'
165'
160
178
174'
172
171'
170

elude the contribution of both isoscalar and isovector form
factor in the inelastic transition to explain the larger-
rnomentum-transfer-squared behavior. The assumption is

+1(b) P lP~s(F1 s(t})F+rv(+1v (t))Fl (3.2)

da mba'
/'(GeVc }

10

10 q
(I

st .———1~ inelastic scattering
——--—-2 ~ J Pl

fCI

3 tl Jl
th————4 J J J J

Inclusive reaction

where r~, rv is the ratio of inelastic transition to elastic
transition. The coupling strength pp is determined from
the total-cross-section measurement by Eq. (2.4}. The
rq, rv are in general complex, and we let their relative
phase be 0:

~v=
I
rv

I

e'e,

There are no other parameters. Substituting (3.1), (3.2),
and (3.3) into (2.7), we obtain the transverse-momentum
distribution for pp —+++anything. It is shown in Fig. 2.
We fit data of pp —+m+anything at v s =63 GeV at 90',
and pp —+m. +anything at v s =540 GeV. We note the en-

ergy dependence comes entirely from the change of values
of pp due to the increase of total cross section. The other
parameters remain fairly constant. They are listed in
Table I. Since there is considerable data on
pp~n. +anything from ~s=23.5 to 62.7 GeV, we have
plotted our fit to these variations in Fig. 3. The parame-
ters used are also listed in Table I. The equation of (2.6)
can reproduce all data that span nine decades in magni-
tude, in the range of Vs =20 to 540 GeV.

In order to understand the various features of our calcu-
lation, we have displayed in Fig. 4 the various terms of
Qi" exp( —Qp)/n! for n =1,2, 3,4 and show how they add
up to produce the curve at ~s =63 GeV. It is clear from
the figure that at k (0.8 GeV /c the first term (n =1)
dominates. The term itself oscillates just like any diffrac-
tion pattern. But as k gets larger, it drops off faster
while the n =2 term drops off a bit less, and it becomes
the dominating term. As one goes to larger and larger k
higher and the higher-order term dominates. Since the
higher-order term is proportional to pp, it increases like
(crz. )", hence one observes that at larger k the rise of dif-
ferential cross section is much larger than at smaller k .

In Fig. 4 we plot the differential cross section as a func-
tion of k, the change in slope is more obvious this way.
We can roughly see by eye there are three regions k =0 to
0.3 QeV, 0.4 to 2 CzeV, and 2 to 9 GeV with significant
different slopes. We can understand these slope variations
as due to the three diffraction peaks coming from the first
three terms in the expansion of

Qi" Q "Qp
exp( —Qp}= Qi"—Qi "Qp+

nt nt 2!

10

—510—

The diffraction pattern, although less obvious than the
elastic-scattering case, is still significant. It does not have
zeroes because the many terms of different n add up in-
coherently, but it can explain the flattening off of the
slope.

In fact it may be possible to observe clearly such a pat-
tern at higher energy. The terms Q&"O,p become larger,
and the kink structure may show up more predominently
as we have shown in Fig. 2.

IV. DISCUSSION

I I I I I

2 3 4 5 6
10

0 1 7 8 9
t (Gev }

FIG. 4. The composition of inclusive spectrum from various
term. The dash-dot curve is for first-order inelastic scattering
and the dashed, dash —double-dot, and dashed curves are for
second-, third-, and fourth-order inelastic scattering, respective-
ly. The solid curve is the sum total of all the inelastic scattering.

is"
exp( —np)n!

and the isovector contribution

&i v"
exp( —Qp)

nl

(4.1)

(4.2)

(1) It is perhaps instructive to see the actual shape of the
isoscalar contribution
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1 1.5
FIG. 5. Isoscalar contribution in the impact-parameter space.—oo(b)

We plot [[Q~(b)] /K!Ie for K=1,2, 3,4. The larger K
is, the more central it is.

in the impact-parameter space, where

(&is, v)r =PoF is, v (k ) . (4.3)

FIG. 6. Isovector contribution in the impact-parameter space.
We plot [(5Q~ v) /K!]exp[ —Qo(b)] for K =1,2, 3,4.

These curves are plotted in Figs. 5 and 6 for n = 1,2, 3,4.
We notice that qualitatively the isoscalar and isovector
contributions are very similar. They differ however nu-
merically. Qualitatively the isovectorial part is smaller at
larger b and bigger at smaller b than the isoscalar part. In
the momentum space it means the isovector part dom-
inates at larger k, and the isoscalar part dominates at
smaller k . For higher-order terms n =2 term peaks more
in smaller b than n =1 term and n =3 term peaks more
than n =2, etc. Translating to momentum space,
smaller-b behavior controls the large-momentum transfer
region, just as we have discussed above. Single scattering
(n = 1) cannot dominate at large k at all.

(2) The invariant cross section of the inclusive reaction

0E =f(x)g(k )
dp

(4.4)

is assumed to factorize to a function f(x) dependent only
on the parallel momentum (x =p~&/p ), and a function
g(k ) dependent on transverse-momentum transfer. Our
model here only treats the g(k ) function. The x depen-
dence must be treated separately.

(3) The original formulation of eikonal model generally
requires small-angle scattering. Here we extend it some-
times to 90', and still find it is close to experimental data.
A plausible explanation is that factorization of Eq. (4.4)
approximately holds. Therefore it is not critical whether
we are concerned with small- or large-angle scattering.

(4) There is always a problem of which form factor to

choose in the Chou- Yang model. We have tried all possi-
ble combinations in our investigation. Using only Sacks
form factor GM(q ) or isoscalar form factor alone one
cannot fit large-p, data. One can fit large-p„data with
isovector form factor by itself, but one cannot fit the
small-p, data as well. By trial and error the present fit is
the only linear combination that seems to fit all data
reasonably well.

(5) We only discuss the pion inclusive spectrum. To dis-
cuss the inclusive spectrum of other particles such as E
meson, A baryon, etc., one needs perhaps to study the par-
ticle ratios of these hadrons from the decay of the cluster
p +

(6) As energy increases the total cross section increases,
and the value of po becomes larger. At any given momen-
tum transfer squared k, multiple scattering of higher or-
der becomes more important as energy increases because
the nth term increases like (p~)". For the k dependence,
if the form factor in a single gaussian exp( —ak ), the
(0&") has a dependence of exp[ (a/n)k ]. H—ence as
n ~ ao the slope parameter of the drr/dk becomes flatter
and flatter and approaches zero as a limit. In the limiting
case n~ op we have a complete flat distribution in k of
the differential cross section. We would like to contrast
this with the usual argument of QCD where they argue
that for large k the result is from single scattering among
two quarks, and the differential cross section should
behave like (1/k ) for large enough k . The geometrical
picture here does not necessarily contradict QCD. In fact
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the eikonal picture can often be obtained from field
theory. The difference is on whether for large k the
scattering is dominated by single scattering or multiple
scattering. If it is dominated by single scattering the dif-

ferential cross section probably would eventually have a
definite fixed slope at given k . However if it is dominat-
ed by multiple scatterings, the slope would be continually
decreasing as the trend of present data shows.
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