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Effects of quantum fields on singularities and particle horizons in the early universe
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The back-reaction problem for conformally invariant free quantum fields in spatially flat
homogeneous and isotropic spacetimes containing classical radiation is solved. The solu-

tions depend upon two regularization parameters which we call a and P. Only solutions
which at late times approach the appropriate solution to the field equations of general rela-

tivity are considered. For all a and P with a & 0 there are many such solutions, while for all

a and P with a &0 there is only one such solution. For P& 3a&0, there is always one solu-

tion which undergoes a "time-symmetric bounce" and which contains no singularities or
particle horizons. For a & 0 there is always at least one solution which begins with an initial
singularity and which has no particle horizons. For all a and P there is always at least one
solution which begins with an initial singularity.

I. INTRODUCTION

The classical theory of general relativity predicts
that our universe began with an initial singularity. '

This means that at very early times the density of
matter and curvature of spacetime were arbitrarily
large. For densities and curvatures on the order of
or larger than l, where l =(16m.G)'~ is the Planck
length, quantum effects cannot be ignored and gen-
eral relativity must be modified in order to take
them into account.

We are interested in applying such a modified
theory of gravity to the early universe. In order to
do so, we must have some model to work with. The
most successful classical models of the universe are
the Friedmann models. They are homogeneous and
isotropic spacetimes containing classical radiation
and/or nonrelativistic matter. These models have
been so successful in their description of the early
universe that a whole set of questions has arisen
which are mainly concerned with the explanation of
the properties they possess. A study of the effects
quantum fields have on homogeneous and isotropic
spacetimes promises to address some of these ques-
tions.

The line element for homogeneous and isotropic
spacetimes is the Robertson-Walker (RW) line ele-
ment. It has the foini

2

ds2=a (ri) —dg +
1 kr—

+ rz(d82+sin 8dg )

where a(ri) is the scale factor, k =0, +1, and the
spatial curvature (intrinsic curvature of a surface of
constant ri) equals (k/a ).

Einstein's equations can be solved to give the
behavior of the scale factor as a function of time.
One finds that in an early radiation-dominated
Friedmann universe, a ~ ri —bio, where bio is an arbi-
trary constant and the initial singularity is at g =bio.
If the causal structure of the spacetime is examined,
it is found that since the singularity is not at
g= —Oo, there are regions which are not in causal
contact with each other. Thus Friedmann universes
contain particle horizons. In general, any homo-
geneous, isotropic spacetime which does not begin at
ri = —oo has particle horizons.

There are two questions which naturally arise
concerning the properties of the Friedmann models.
The first asks whether certain initial conditions such
as homogeneity and isotropy in the early universe
are necessary in order for the universe to evolve into
its present state. The second asks whether those
properties predicted by general relativity such as the
existence of particle horizons and an initial singular-
ity, are retained when quantum effects are taken
into account.

It is possible that studies of quantum effects in
the early universe will provide negative answers to
both these questions. Already, such studies have
shown that quantum effects can dissipate anisotro-
py, "soften" singularities, remove singularities,
and remove particle horizons. In this paper we shall
undertake a more complete investigation than has
previously been done of quantum effects in spatially
flat, i.e., k=0, RW spacetimes containing classical
radiation. In the process, we will find new evidence
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for the "softening" of singularities and the removal
of both singularities and particle horizons. We will
consider quantum effects when the spatial curvature
and cosmological constant are nonzero in a subse-
quent paper.

We now discuss the assumptions of our models in
detail. We are considering the effects of conformal-
ly invariant free quantum fields. This is because the
Green's function can be found by making a confor-
mal transformation to Minkowski spacetime, find-
ing the appropriate Green's functions there, and
transforming them back to the original spacetime.

Massive fields are not conformally invariant and
neither is the gravitational field. However, massive
fields may be approximately conformally invariant
at energy scales characteristic of the very early
universe. The neglect of quantum effects due to
gravitons is a more serious matter. Nevertheless, if
there were many fields in the early universe, then a
"1/N" expansion ' of quantum gravity can be per-
formed, where N is the number of quantum fields
present. In the first order of such an expansion it is
consistent to neglect effects due to gravitons. Thus
there is reason to believe that our results will be ap-
proximately correct even if massive fields and gravi-
tons were present in the very early universe.

There is no particle production in fla, t spacetime if
the only fields present are free fields, so there can be
none in conformally flat spacetime if the only fields
present are conformally invariant free fields. Thus
there is no particle production in our models.

We include classical radiation to support the ex-
pansion of the universe in the classical epoch. We
neglect classical matter because it makes a negligible
contribution to the stress energy tensor compared
with that of the radiation when the scale factor is
small.

Because of the large amount of symmetry in our
models, only the expansion rate and spacetime cur-
vature are influenced by quantum effects. It is just
these quantities, however, which need to be changed
in order to have particle horizons and singularities
removed.

In the beginning of this section, we pointed out
that general relativity has to be modified in order to
take quantum effects into account. Our final as-
sumption is that the semiclassical theory of gravity
is an appropriate way to do this. We will now give a
brief review of this theory. 9

If an expansion in iver is performed on the full
quantum theory of gravity and if only the classical
order is kept for the gravitational field, while first
order after the classical is kept for other quantum
fields, then Einstein's equations are modified to read

2

G.,= (T.",+ (o
~

Tg"
~
o & ),b (1.2)

where G,b is the Einstein tensor, T,'b the stress ener-

gy tensor for classical fields, T, b the stress energy
tensor operator for quantum fields, and
(0

~
T, b ~

0 ) the regularized vacuum ex ectation
value of T, b . The term containing (0

~
T,

~

0) is
0 (A') while other terms are O(bio).

For conformally invariant free quantum fields,
there are no higher-order terms in fi, so (1.2) is ex-
act. In this case, one can find an explicit form for
the Green's functions and these Green's functions
can then be used to define the appropriate vacuum
states. Once these are known, the unregularized
vacuum expectation value of T,'P can be computed.
It is divergent and must be regularized.

Although the quantum theory of gravity is not a
renormalizable theory, it is not an unreasonable pro-
cedure to subtract off, in an invariant way, the
divergences in whatever order of perturbation theory
one is working. For conforinally invariant fields in
conformally fiat spacetimes, various authors find
the following expression for (0

~

T b ~

0) after regu-
larization' ".
(0

~
~gP

~

0) (g bR 4 R; b+RRgb 4 ggbR

+p( 3RRgb R~ Rb~+ 2ggbR~dR

1——,g.bR ), (1.3)

a = (Ns +6Nv+ 12Nv ) ~

1

2880m.

P= (Ns+11N, +62Nv),1

2880m

(1.4)

where Ns is the number of scalar fields, N is the
number of four-component neutrino fields, and Nv
is the number of Maxwell fields included in one' s
theory.

Because the method of regularization influences
the values of a and p and because it is as yet uncer-
tain what fields were present in the very early
universe, it is unclear what values of a and P should
be used when applying (1.2) to the early universe.
For this reason, we will consider all values of a and

Several investigations of this problem have been
undertaken. For example, Wald' investigated the
case a =0, Ruzmaikina and Ruzmaikin' and Guro-

where R,b is the Ricci tensor, R =R', is the scalar
curvature, and a and P are constants.

The constants a and p come from the regulariza-
tion process and their values depend on the number
and types of fields present as well as on the method
of regularization. For example, dimensional regu-
larization gives'
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vich and Starobinsky' began an investigation of the
case P=O, and Fischetti, Hartle, and Hu (FHH) be-
gan an investigation of the cases a &0, all values of
P and a & 0, P & 3a. Each of these was done for
spatially flat RW spacetimes containing classical ra-
diation and having no cosmological constant. Staro-
binsky' investigated the case a&0, P&0 for RW
spacetimes with no classical radiation or matter and
no cosmological constant.

In this paper, we will examine the cases
a & 0, p & 3a and find that there are significant
qualitative differences between them and those in-
vestigated by the above authors. We also complete
the investigation begun by FHH by examining those
cases in more detail.

For fixed values of a and P, there is in general a
two-parameter family of solutions to Eq. (1.2).
Equation (1.2) is a fourth-order equation, but some
truly insignificant parameters can be eliminated.
When Eqs. (1.1) and (1.3) are substituted into (1.2)
and the "00" component is taken, the result is a
third-order ordinary differential equation for the
scale factor as a function of time. This can be re-
duced to a second-order differential equation by a
change of variables. In order to single out the ap-
propriate solution for our univere, it is necessary to
know the boundary conditions. It is possible the
semiclassical theory of gravity or the full quantum
theory of gravity can supply these boundary condi-
tions, but to date no one has discovered exactly what
they are. Therefore, we take a phenomenological
approach and require that solutions to (1.2) ap-
proach the appropriate solution to Einstein*s equa-
tions at late times, i.e., times which are large com-
pared to the Planck time. We shall call solutions
which do this asymptotically classical solutions
(ACS).

This approach allows us to single out a unique
solution to Eq. (1.2) for given values of a and P if
a &0. If a&0, for each value of a and p there are
many ACS, sometimes with very different types of
initial behaviors. At present, we do not know which
if any of these actually represents the behavior of
our universe. It may be that studies of quantum ef-
fects in universes which contain conformally nonin-
variant fields or in universes which are slightly inho-
mogeneous or anisotropic will allow a solution to be
singled out. In this paper, we will attempt to dis-
cover and catalog the ACS for all values of a and P.

We find that there is always one ACS which de-
scribes a universe that begins with an initial singu-
larity. This is true for all values of a and P. For
a & 0 there is one such ACS, while for a & 0 there is
a one-parameter family of such ACS.

In addition, we find that if P & 3a & 0, one ACS
always exists which describes a universe that has no

II. THE DYNAMICAL EQUATION
OF MOTION AND ITS

ASYMPTOTICALLY CLASSICAL SOLUTIONS

The homogeneity and isotropy of RW spacetimes
imply that their dynamical behavior consists of uni-
form expansions and contractions which can be
completely described by the scale factor a(g). Our
goal is to derive an equation for a(g) for spatially
flat spacetimes, using Eqs. (1.1), (1.2), and (1.3). We
will then examine the asymptotically classical solu-
tions to this equation. The early time behavior of
these ACS is qualitatively different for different
values of a and P. For this reason our discussion of
the ACS is broken up into the eases a&0, a=O,
and a &0 as well as several subcases which depend
on the value of (P/a). All possible values of a and
p are considered and the results are summarized in
Table I.

To derive an equation for a (g), we must have ex-
pressions for the stress energy tensors on the right-
hand side of (1.2). That for (0~ T, b ~0) is givenby
(1.3). The stress energy tensor for classical radiation
has the form

cl
+ab (pr +pr )aa ab +pr gab (2.1)

where u, is the four-velocity of the radiation, p, is
its energy density, and p„ its pressure. The equation
of state is p, = —,p, and p, varies with a as

prPr= a'
where p„ is a constant.

(2.2)

singularities. It begivs at g= —oo with an infinite
scale factor and initially collapses like a collapsing
Friedmann universe. The scale factor reaches a
minimum size and then the universe begins to ex-
pand, approaching the classical solution at late
times. We call solutions which describe this
behavior "time-symmetric bounce solutions. *'

In Sec. II, Eqs. (1.1), (1.2), and (1.3) are used to
derive a differential equation which describes the
dynamical behavior of spatially flat RW spacetimes
containing classical radiation, when quantum effects
due to conformally invariant free fields are taken
into account. The solutions to this equation which
are asymptotically classical are then found and some
of their physical properties are examined. Section
III contains a discussion of these physical properties
and what they imply about the singularity and
particle-horizon issues. It also contains a brief dis-
cussion of the probability that slightly conformally
noninvariant particles will be produced in the
universe described by our solutions.
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TABLE I. Summary of the asymptotically classical solutions and their physical properties.

Number of param-
eters needed
to specify a

solution

Number of solu- Number of solu- Equations de-
tions without a tions without a scribing initial

singularity horizon behavior

a&0 P)3a

0&P &3a

P&0

P&0
a&0 P&3a

P=3a
P&3a

None
None
None
None

Family

Family

None

None
None
None
None

Family

1

None
1

1

(2.16), (2.19),
(2.20)

(2.16), (2.21),
(2.22)

(2.21), (2.22),
(2.23), (2.24)

(2.25a), (2.2Sb),
(2.26a), (2.26b)
(2.2Sc), (2.26c)

(2.32)
(2.31)

Because we are considering spatially flat space-
times, the equation we derive for a(21) must be in-
variant under scale transformations of a and
which preserve the metric. These transformations
have the foiin a~A, a, q~A, 'g, r~A, 'r Equati. on
(2.2) implies that under such a transformation
p, ~A, p„, since scale changes in the coordinates can-
not change the density. It is useful, therefore, to de-
fine two dimensionless quantities which are invari-
ant under the above transformations. They are

f =
I

b'13/2

In terms of f and y, Eq. (2.4) becomes

(2.5)

d f P f a 1 1
2 12a 2 ~a~ 23 f /

1

f 5/3

be reduced to a second-order differential equation.
One way to do this' ' is to define the new variables

I —1——1/4
r

6—i/2- 1/4
(2.3) (2.6)

Since the only variable is a (g), all of the nontrivi-
al components of (1.2) must be linearly dependent.
For convenience we choose the "00" component,
which, combined with Eqs. (1.1), (1.3), (2.1), (2.2),
and (2.3), gives the following equation for the scale
factor:

blllb I

b' =1+-
2b

b "b 1 b"
4 b

2

12 (2.4)

where b'=db/'dX. This is a third-order ordinary
differential equation which does not explicitly de-
pend on the independent variable X. This implies
that its solutions will be invariant under translations
in X. It is also easy to check that Eq. (2.4) is invari-
ant under the transformations X—+ —X, although its
solutions in general are not.

Because (2.4) is explicitly independent of X, it can

Both (2.4) and (2.6) are independent of p„. This
comes from the fact that b is invariant under
changes of scale, while p„ is not. Once b is known,
the scale can be set by p„and a (g) can be deter-
mined.

In terms of b and X, the classical solution to
Einstein s equations is b =X, while in terms off and
y it is f=1. Therefore, the ACS approach b =X
and f=1 at large values of X.

The rest of this section consists of solving (24)
and (2.6) for the ACS and discussing their early time
behaviors and physical properties. Only for a=0
were we able to find general analytic solutions to
Eqs. (2.4) and (2.6). In this case there exists for each
P one ACS. These solutions are displayed in Eq.
(2.25) and their physical properties are discussed in
Sec. II B.

For a )0, FHH found a one-parameter family of
ACS. In order to discover their early time behavior,
we numerically integrated the ACS backward in
time. Figures 1—5 show the results for
a=(2880m. ) ' and (P/a)=6, 3,1,0,—1, respectively.
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FIG. 3. This figure shows selected ACS for
P=a=(2880m ) '. The dashed line is the classical solu-
tion b =P. There are two types of ACS plotted. The
upper curves are a family of solutions which begin with
b = m at a finite value of P. At early times they behave
like contracting de Sitter universes with effective cosmo-
logical constants equal to 17280~ I . They bounce once
and have particle horizons but no singularities. Their ini-
tial behavior is given by Eq. (2.16). The lower curves are
a family of solutions which begin with b =0 at a finite
value of P and do not bounce. They have particle ho-
rizons and initial singularities. Their early time behaviors
are given by Eq. (2.21). A third type of ACS is hinted at
and actually exists. It begins with b =0 at g= —oo and
does not bounce. It has an initial singularity but no parti-
cle horizons. Its early time behavior is given by Eq.
(2.22).

+c2y'/ exp(v 3y / ), y oo, (2.8)

1

2/3f 5/3

where ci and c2 are arbitrary constants. The solu-
tions which approach f=1, i.e., those with c2 ——0,
forint| a one-parameter family which has the same
form as (2.7b) at large y. From counting and form it
is plausible that for a) 0, all ACS are enumerated
in Eq. (2.7a). Having discussed the late time
behavior of the ACS, we now turn to their early
time behavior. Before examining the numerical in-
tegrations it is useful to discuss the small-f
behaviors of all solutions to (2.6) because many of
the ACS approach f =0 at small values of y.

In the limit f~0, Eq. (2.6) reduces to

d'f P f (2.9)
dy2 12a y2

FIG. 4. This figure shows selected ACS for
P=O, a=(2880m') '. There are two types of ACS plot-
ted. The upper curves are a family of solutions which be-
gin with b = oo at a finite value of P. They bounce once
and have initial singularities and particie horizons. Their
early time behavior by Eq. (2.23). The lower curves are a
family of solutions which begin with b =0 at finite value
of g and do not bounce. They have initial singularities
and particle horizons. Their early time behavior is given
by Eq. (2.21). The classical solution b =X, is one of these
ACS. A third type of ACS is hinted at and actually ex-
ists. It begins with b =0 at J'= —oo and does not bounce.
It has an initial singularity but no particle horizons. Its
early time behavior is given by Eq. (2.22).

With the change of variables f=y' iu i, y=e
this can be integrated once with the result that

dv . 2=+ (o'v'+cu+ 3)'/',
dw 3u

(2.10)

where o =
4 (1—P/3a) and c is an arbitrary con-

stant.
The qualitative behavior of solutions which ap-

proach w = —oo depends on the value of o and is
discussed in the subcases below. The qualitative
behavior of solutions for which v =0 at w =wo,
where wo is some constant, is independent of o. , and
we discuss it next.

In terms of f and y and b' and b, the point
u =-O, w =wo corresponds to the points f =0,
y =yo=lnwo, and b'=0, b =bo ——a' yo', respec-1/4 1/3

tively. Thus at b =bo the scale factor reaches an ex-
tremum. If this is a minimum, then we call the
solution a "bounce" solution. Near an extremum,
(2.4) and (2.6) can be solved without neglecting any
terms. The result is

+31/2a —1/2b (y y )2+2—1/235/8 —21/16b D(g g )3+ ... (2.11a)
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FIG. 5. This figure shows selected ACS for
P= —a= —(2880m. ) '. The dashed line is the classical
solution b =P. There are two types of ACS plotted. The
upper curves are a family of solutions which begin with
b = oo at a finite value of P. They bounce once and have
initial singularities and particle horizons. Their initial
behavior is given by Eq. (2.24). The lower curves are a
family of solutions which begin with b =0 at a finite
value of P and do not bounce. They have initial singulari-
ties and particle horizons. Their early time behavior is
given by Eq. (2.21). A third type of ACS is hinted at and
actually exists. It begins with b =0 at P= —ao and does
not bounce. It has an initial singularity but no particle
horizons. Its early time behavior is given by (2.22).

FIG. 6. This figure shows selected ACS for
a= —(2880m. ) '. From top to bottom they are the ACS
for P=6a, P=3a, @=a, and P=O. There is only one
ACS for each value of a and P if a &0. Each of the ACS
plotted begins with b =0 and has an initial singularity.
For P=6a, the ACS begins at X= —oo and has no parti-
cle horizons. For P=3a, the ACS also begins at X= —oo

and has no particle horizons. Its early time behavior is
given by Eq. (2.31). For P=a, the ACS begins at a finite
value of P and has particle horizons. Its early time
behavior is given by Eq. (2.32). For P=O, the ACS is the
classical solution, b =g, and it has particle horizons.

16 —»gn(X —Xo)D I3' —3'o I

+'" 3'o '13' —3'o I « 1 ~ (2.11b)

where D is an arbitrary constant and the plus
(minus) sign corresponds to b reaching a minimum
(maximum) value of bo at time X=Xo.

When D=0, all of the terriis containing odd
powers of (X—Xo) in (2.11a) vanish, so these solu-
tions are symmetric about the extremum and we call
them "time-symmetric bounce solutions" if they
reach a minimum. When D&0, the second terna on
the right-hand side of (2.11b) changes sign at the ex-
tremum.

We next discuss the subcases P&3a, P=3a,
0&P&3a, P=O, and P&0. Each of the plots in
Figs. 1—5 corresponds to one of these subcases. The
plots were obtained by numerically integrating (2 4)
backward in time, using (2.7) to find starting values
for b' and b". It should be noted that since (2.6) de-
pends only on the sign of a and on the value of
(P/a), solutions to (2.6) with the same value of
(P/a) but different values of a will correspond to
the same solution of (2.6). Thus the behaviors for

different values of a and the same ratio of (p/a) can
be found by scaling.

Since the subcases (p/a) &3 have not been dis-
cussed by any authors, we begin with them.

1. P&3a

Figure 1 shows ACS for P=6a=6(2880m )

There are three types of solutions shown in this fig-
ure. Those which bounce many times and originate
at b =0, we call "multiple-bounce" solutions. The
others begin at b = oo and bounce only once. One of
these has b =

~

X
~

initially and it undergoes a time-
symmetric bounce. The others collapse exponential-
ly as a function of proper time, at early times, and
do not undergo time-symmetric bounces. We shall
discuss each of these types of solutions separately.

The ACS which are multiple-bounce solutions be-
gin at b =0, so their initial behavior can be
discovered by examining solutions to (2.6) in the
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singularity is given by

t = 6'i'I f 5 dX . (2.14)

-2.0-

FICx. 7. This figure shows part of a solution to Eq.
(2.10), for cr = —0.25,c = 1. The solution "spirals"
around the w axis, beginning at w = —oo and ending at
w = oo. Each crossing of the w axis corresponds to b'=0
and therefore to an extremum in the (X,b) plane. That
implies that this is a multiple-bounce solution.

limit y~O. It is not hard to show that for P& 3a,
solutions to (2.6) approach f=0 in the limit y~O,
so (2.10) is a good approximation in this limit. It
should be noted that all solutions for which f~0 as
y~O have some value of c. Since o &0, du/dw is
imaginary at large values of

I
u I. A phase-plane

analysis shows that solutions spiral around the "w"
axis if c&Q, see Fig. 7. Since f =exp(w/2)

I
u I,

each intersection of the "u" axis corresponds to an
extremum in the (X,b) plane. Thus these solutions
are multiple-bounce solutions. If (2.10) is integrated
near a bounce, it can be seen that solutions with
c =0 are time-symmetric bounce solutions.

Multiple-bounce solutions begin with an initial
singularity in the sense that the curvature becomes
infinite in the limit w~ —ao. This can be seen
directly from the equation for the scalar curvature,

Substitution of (2.13) into (2.14) shows that the
singularity occurs at a finite proper time in the past.

The second type of ACS in Fig. 1 is the one
which undergoes a time-symmetric bounce. We ver-
ified this by using Eq. (2.11b) to obtain starting
values of f and df/dy for time-symmetric bounce
solutions and by then numerically integrating (2.6)
for several values of (P/a). Our results for
(P/a) =6 are plotted in Fig. 8. The time-symmetric
bounces form a continuous family of solutions to
(2.6) parametrized by yp. For yp (8.92&(10 the
solutions reach f=0 at large y, while for
yp&8. 92X10 they approach f=oo in the limit
y~ oo. The theorem in the Appendix tells us there-
fore, that one solution with yp=8. 92&&10 is an
ACS. We found similar evidence for the existence
of an ACS which undergoes a time-symmetric
bounce for every (P/a) &3 which we examined.
Table II lists for each of these (P/a), the value of yp
for the time-symmetric bounce ACS. This solution
has no singularities or particle horizons, since it be-
gins at X=—oo. It is the most attractive type of
single-bounce solution we have found because it ap-
proaches the classical solution b = IX I, whenever
the scale factor is large.

The third type of ACS in Fig. 1, begin at
b = ao,X=Xp where Xp is an arbitrary constant. In
the (y,f ) plane this corresponds to y = oo, f= oo.
In the large-f limit, the teria' containing f 3/ in
(2.6) can be neglected. With the change of variables

f =ry, y =e",s =dr/dw we find the following equa-
tion for s:

2
I I

i —i/3f 1/3 f
y

= l
I
a

I
'exp( —2w /3) u'+ 3u

dv

dw

(2.12)

—i /3

12a
(2.15)

A phase-plane analysis of this equation shows
that for P&0, its solutions spiral into the point
r = (12a/P) /, s =0. This corresponds to the
behavior

f=(12a/P)' y, y~a&, (2.16a)

X=a + constant .
U

(2.13)

Since u is bounded, this integral diverges in the limit
b~O. Thus the multiple-bounce solutions do not
have particle horizons. The proper time from the

Clearly, R —mao in the limit w~ —oo if u is bound-
ed, as it is for the multiple-bounce solutions.

The singularity is located at X= —00 because the
equation b'=f / can be integrated once with the
result that

b =(P/12)' (X—Xp) ', X~Xp, (2.16b)

where X, is an arbitrary constant.
Substituting (2.16a) into (2.12), we find in the lim-

it y~ao
R ~24l P (2.17)

Although these solutions do not have an initial
singularity, they do begin with curvatures which are
of the order of l, so it is not surprising that quan-
tum effects are important even though the scale fac-
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FIG. 8. This figure shows selected time-symmetric bounce solutions for P=6a. The bounces occur when the scale fac-
tor reaches a minimum at bo a'/yo'——/' For y.o(8.92X10 ' the solutions approach f=0 at large y, while for
yo) 8.92)&10 they approach f= ec as y~ co. Thus the theorem in the Appendix implies that a time-symmetric bounce
solution exists which is an ACS. It bounces at y0-8. 92)& 10

tor is large. Since they begin at X=Xo, they contain
particle horizons.

If (2.16b) is written in terrtts of the proper time in
(2.14) it is apparent that these solutions appear like
contracting de Sitter universes at early times. Their
effective cosmological constants are

—2 —1
+effective ~ P (2.18)

This concludes our discussion of the ACS for
(P/a) )3.

2. P=3a

Figure 2 shows some ACS for P=3a
=3(2880m. ) '. There are two types of solutions
shown. The first type begins at b = cc, X=Xt1, and

XO

TABLE II. Asymptotically classical time-symmetric
bounce solutions.

bounce once. Their initial behavior is given by Eqs.
(2.16). They have particle horizons but no singulari-
ties.

The second type begin at b =0 and do not bounce.
To discover their physical properties, we must ex-
amine (2.6) in the limit y~O. As before, f~0 for
solutions in this limit and (2.6) reduces to (2.10).
Since rr =0, (2.10) can be integrated with the result
that for c&0

f I
c

I

3/2y I /2q
I [1+(127q2)1/2]2/3

+ [ 1 —( 1 —27 —2)1/2]2/3

—2/3
I

3/2
y 0

(2.19a)

b =const)&exp[3 ' a / (X—Xt) ], X =ac,
(2.19b)

I
where q =(c1——,c lny) and c1 and X, are arbitrary
constants. For c =0

r
', 3/4

4
6

12
120

2.22 X 10-4
8.92 X 10-'
0.115

10.03

f =y cl—1/2 lny y~P, (2.20a)

b =const)&exp[ —a '/ (g —g, )2],

(2.20b)
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FIG. 9. The solid curves in this figure are selected
solutions of Eq. (2.9). Their behavior is given by Eq.
(2.19a) with c =1. The dashed curve is an exact solution
to Eq. (2.6). Its small-y behavior is given by Eq. (2.19a)
with c =1, c~ ——5. Note that for all y &0, the dashed
curve lies above the solid curve labeled c~ ——5.

These solutions begin at X= —Oo, so they have no
particle horizons. Substitution of (2.19) and (2.20)
into (2.12) and (2.14) shows that they begin with an
initial singularity at a finite proper time in the past.

Next, we must determine which of these are ACS.
Equation (2.19a) is a two-parameter family of solu-
tions, while equation (2.20a) is a one-parameter fam-
ily of solutions. The ACS condition gives one con-
dition between the two parameters in (2.19a) and the
one parameter in (2.20a). Thus we expect one ACS
will have its early time behavior given by (2.20a) and
the rest which approach b =0, will have their early
time behavior given by (2.19a).

We can in fact prove that for each value of c, in-
cluding c =0, there is at least one ACS. The above
counting argument then implies that there is exactly
one ACS for each value of c.

Our proof is accomplished by showing first that
for large values of c~, for a given value of c, solu-
tions to (2.6) whose small-y behavior is given by
(2.19a) and (2.20a), approach f= Oo at large y.
Second, it is shown that for large negative values of
c&, solutions approach f=0 at large y. Then the
theorem in the Appendix tells us that for at least
one value of c &, the solution is an ACS.

We begin our proof with the case c»&0. First
note that (2.19a) and (2.20a) are exact solutions of
(2.9). We shall label solutions of (2.9) with the sub-
script T in order to distinguish them from solutions
to (2.6). As y~0, (2.19a) and (2.20a) approach the
exact solutions of (2.6), so that fT(y, c&)—+f(y, c~)
for all c, . It follows from the fact that
d f/dy &d fT/dy for all y and f, that near y =0,
df/dy(y, c~ ) &dfT/dy(y, c, ) and that f (y, c, )

c+( 2 —9 + 5~3' 2 s /3+
16

y~O, (2.21a)

&fT(y, ci).
Let us choose some specific value of c ~ and

denote it by g. Then if we plotted the solutions in
(2.19a) or (2.20a) in the (fz,y) plane for various
values of ct, those curves with c~ &g would lie
above the curve fT(y, g) for all y &0, see Fig. 9. If
we also plotted the curve f(y, g), the exact solution
to (2.6), then near y =0, it too must lie above the
fr(y, g) curve and have a larger slope than it. At
larger values of y, the f (y, g) curve must continue to
stay above the fz-(y, g) curve. To see this, suppose
the f(y, g) curve were to cross the fT(y, g) curve.
Then the f(y, g) curve must first become tangent to
some fT(y, c~) curve with c»g'. If it did become
tangent to such a curve, then d f/dy (y, g)
&d fT/dy (y, c&) so that the f(y, g) curve would
have to stay above the fT(y, c&) curve. This is a con-
tradiction, since the fz(y, c~) curve lies above the
fz (y, g) curve. So the f (y, g) curve always lies above
the fT(y, g) curve.

The fT(y, g') curve reaches a maximum height
which increases as g increases. Thus by choosing g
large enough, we can force the f(y, g) curve to have
positive slope at arbitrarily large values of f and y.
The phase-plane analysis of solutions with positive
slope at large f and y [see discussion above Eq.
(2.15)] shows that they must approach f= Oo,y = Oo.
Therefore for large enough g', f(y, g)~ oo as y ~ Oo.

The case c~ &&0 is much simpler. For large
enough negative values of c ~, dfT /dy & 0 at arbi-
trarily small values of y. But at small y,
f(y, c&)=fT(y, c&) so df/dy(y, c, )=dfT/dy(y, c&).
Thus df /dy(y, c~ ) &0. Also, at small y, f (y, c& ) & 1.
Thus there exist values of c

&
such that f (y, c & ) & 1

and df/dy(y, c, ) &0 for small values of y. Inspec-
tion of (2.6) shows that d f/dy &0 whenever f & 1.
This forces f(y, c~) to approach zero at some value
of y, for large negative values of c~.

This ends our proof and completes the discussion
of the subcase P= 3a.

3. 0&P&3a
Figure 3 shows some ACS for P=a = (2880m.z)

There again are two types of solutions, those which
begin at b = ~ and bounce once and those which be-
gin at b =0 and do not bounce. The initial behavior
of the former is given by (2.16). They have particle
horizons but no initial singularities.

To find the physical properties of the solutions
which begin at b =0, we must examine the small-y
behavior of (2.6). FHH did this and found the fol-
lowing two-parameter family of solutions for o &0:
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b =const(X —Xo)' +", X~XO, (2.21b)

where c2 is an arbitrary constant. These solutions
begin at X= —oo, so they do not have particle ho-
rizons. Substituting (2.22) into (2.12) and (2.14), we
see that they begin with an initial singularity at a
finite proper time in the past.

In terms of Eq. (2.1Q), these solutions correspond
to the case c = —4o''/. A phase-plane analysis
shows that for large positive values of c2, U~ m in
the limit tc~ oo. Thus solutions to (2.9) with initial
behavior given by (2.22a) have f~ oo in the limit
y~ oo. By a similar proof to the one given in Sec.
IIA2, it can be shown that at least one ACS exists
whose initial behavior is given by (2.22a).

It is clear from Fig. 3 that a one-parameter family
of ACS have their initial behavior given by (2.21).
This completes our discussion of the subcase
0(P (3(x.

4. P=O

This subcase was originally examined by
Ruzmaikina and Ruzmaikin' and was later exam-
ined by FHH. Figure 4 shows some of the ACS.
There are again two types of solutions, those which
begin at b = oo and bounce once and those which be-
gin at b =0 and do not bounce.

In terins of f and y, those solutions which begin
at b = oo, begin at f= ao, y= ao. A phase-plane
analysis of (2.15) with P=O shows that all solutions
must approach the curve s=r '/3 at large r. This
corresponds to the behavior

where C, C', and Xo are arbitrary constants with the
restriction C & 0. Substituting these expressions into
(2.12), we see that these solutions begin with an ini-
tial singularity at X=Xo. Therefore, they contain
particle horizons.

FHH also found a one-parameter family of solu-
tions with the following small-y behavior for o & Q:

~—3/4y 1/2(1+c y2cr/3+. .. ) y ()

(2.22a)

b =const X exp(cr ' a '/ X), X~ ao,

(2.22b)

surprising that quantum effects are important when

the scale factor is large.
The analysis of the solutions which begin at b =0

is exactly the same as in Sec. II A 3. Thus there is a
one-parameter family of ACS with particle horizons
and an initial singularity whose early time behavior
is given by (2.21). There is at least one ACS with an
initial singularity and no particle horizons whose
early time behavior is given by (2.22). The classical
solution f =1 is also an exact solution of (2.6) in
this subcase. This completes our discussion of the
subcase P=0.

Figure 5 shows some ACS for this subcase. There
are two types of solutions, those which begin at
b= cn and bounce once and those which begin at
b =0 and do not bounce. In terms of f and y, those
solutions which begin at b = oo and bounce once, be-
gin at f= ao, y = oo. A phase-plane analysis
of (2.15) shows that solutions approach
s =( ——, +o)r as r~oo. So the initial behavior of
the solutions which bounce once is given by

b =const(X —Xo) ', X~Xo,

(2.24a)

(2.24b)

B. a=O

In this case, it is useful to define the variables f
and x so that b'=f / as before and b =x'/. Sub-
stituting these variables into Eq. (2.4) with a =0 and
solving for f, one finds the ACS are given by

where c~ and Xo are arbitrary constants. Substitu-
tion of (2.24) into (2.12) shows that these solutions
begin with an initial singularity at X=Xo. Thus
they contain particle horizons.

The analysis of solutions which begin at b =0, is
exactly the same as in Sec. II A 3. Thus there is a
one-parameter family of ACS with particle horizons
and an initial singularity whose early time behavior
is given by (2.21). There is also at least one ACS
with an initial singularity and no particle horizons
whose early time behavior is given by (2.22). This
completes our discussion of the subcase P & 0.

f=( —, )' "y(lny)'/, y~~,
b(»b)' '=[2(X—Xo)]

(2.23a)

(2.23b)

(6/P)3/4x [1 ( 1 (P/3)x —4/3)1/2]3/4

P & 0, (2.25a)

where Xo is an arbitrary constant. Since they begin
at X—Xo, these solutions contain particle horizons.
Substitution of (2.23) into (2.12) shows that there is
an initial singularity at X=XO. Because these solu-
tions start out with infinite curvature, it is not

P=O,

f=.(6jiP~ ) xI[1+ iPi /(3x )]' —lj

(2.25b)

P &0 . (2.25c)

The subcase P& 0 was first discussed by Wald'
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b =X—Xo, (2.26b)

where Xo is an arbitrary constant. As discussed in
the Introduction, this solution has an initial singu-
larity at X=Xo and contains particle horizons.

For P & 0, evaluation of the scalar curvature 8,
shows that the solution begins at x =f=0 with an
initial singularity. Near the singularity it has the
orm

b =const)&exp[(12/~ P
~

)' X], X~—oo .

and later by FHH. Evaluation of the scalar curva-
ture R shows that the solution begins with an initial
singularity at x =(P/3)3~ . Near the singularity, it
has the form

b = (13/3) ' [1—(12/P) ' (X—Xo) ]

X~XD, (2.26a)

where Xo is an arbitrary constant. Thus this solu-
tion contains particle horizons.

For P=O, there are no quantum effects and the
solution is the classical solution

dV 2 —1[ 2U4+c 3]1/2
dlD

(2.29)

where c is an arbitrary constant and
cr = —,(1—P/3a) as before. To go farther, we must
examine the subcases o & O, cr =0 and o & 0
separately. Since the subcases o &0, i.e., P&3a,
have not been examined by other authors, we begin
with them.

1. P&3a

In this subcase, the initial behavior of all solutions
including the ACS, is given by (2.29). Inspection of
(2.29) shows that du/dw is imaginary at both large
and small values of U if o. & 0. A phase-plane
analysis shows that solutions oscillate between two
positive values of U which correspond to roots of
du/dw. The solutions begin with an initial singular-
ity at w = —oo as can be seen by substituting (2.29)
into (2.12). The singularity is located at X= —ao

because the equation b'=f ~ can be integrated with
the result that

(2.26c) b
X= —

~

a
~

'~~ J +const .
U

(2.30)

Since this solution begins at X= —oo, it has no par-
ticle horizons. Substitutions of (2.26c) into (2.14)
shows that the singularity occurs at a finite amount
of proper time in the past. This ends our discussion
of the case a=0.

So these solutions do not have particle horizons.
Substitution of (2.30) into (2.14) shows that the
singularity occurs at a finite proper time in the past.
In Fig. 6 we show a plot of the ACS for
P=6a= —6(2880m )

C. a&0

In this case, FHH found a single ACS whose late
time behavior is given by

f(y»)=1+ y '"+"
16

[ a f

b(X)=X+(P/72)X '+"., X

(2.27a)

(2.27b)

By an argument similar to that in the a &0 case, we
find it very likely that there are no other ACS.

Having exhibited the late time behavior of the
ACS, we now turn to their early time behavior. It
was pointed out by FHH that there are no bounce
solutions for a &0. This is because at a bounce (2.4)
reduces to

b"=(12/a) 'i b, b' =0 . (2.28)

Thus all solutions begin at b =y =0.
Many solutions to (2.6) also begin at f =Q. In

fact for P&0, it is not hard to show that all solu-
tions to (2.6) begin at f=0. With the change of
variable f =y'~ U ~,y =e", (2.6) can be integrated
once in the limit f~0, with the result that

2. P=3a

In this subcase, the initial behavior of all solu-
tions, including the ACS is again given by (2.29).
Inspection of (2.29) shows that since cr2=0, du/dw
is imaginary for c &0. For c &0, (2.29) can be in-
tegrated with the result that

f=y'~ (c& —c'~ lny), y 0, (2.31a)

3. P&3a

The particular subcase P=O, has been examined
in some detail by Ruzmaikina and Ruzmaikin' and
by Gurovich and Starobinsky. ' For P & 3a, Eq. (2.6)

b =co st Xe p[ —,
~

~
~

'~'(X —X, )'], X

(2.31b)

where c& and X& are arbitrary constants. Since they
begin at X=—ao, these solutions have no particle
horizons. Substitution of (2.31b) into (2.12) and
(2.14) shows that they begin with an initial singulari-
ty at a finite proper time in the past. The ACS for
P=3a=3(2880m )

' is shown in Fig. 6.
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can be solved exactly near y =0 and the result is

f=y'" «+C'y' +".), y

b =const(X —XQ)', X~X0,
(2.32a)

(2.32b)

where C, C', and +0 are arbitrary constants with the
restriction that C & 0. Since these solutions begin at
X=X0, they contain particle horizons. Substitution
of (2.32) into (2.12) shows that they begin with an
initial singularity at X=70 if P&0. If P=O, evalua-
tion of the Ricci tensor R,b in some orthonormal
frame will give the same result. Equation (2.32)
gives the initial behavior of all solutions to (2.6) in-
cluding the ACS. The ACS for P=a
= —(2880~ )

' and P=0, a = —(2880vr )
' are

plotted in Fig. 6. Note that the ACS for P=O is the
classical solution b =X. This concludes our discus-
sion of the case a &0.

III. SOME PHYSICAL PROPERTIES
OF THE ACS

In the previous section we found a large variety of
possible behaviors for the early universe. They are
summarized in Table I. To know which is ours, we
would need to know a and P. This in turn requires
that we know which regularization procedure is the
correct one and what fundamental fields were
present in the early universe. Even then, if a&0,
there are many solutions and further boundary con-
ditions must be extracted from somewhere.

Since we cannot, at present, determine which be-
havior if any our universe underwent, we are left
with a variety of predictions for two important is-
sues in cosmology: particle horizons and singulari-
ties. We find that the ACS have no particle ho-
rizons if a=O and P&0 or a&0 and P&3a. The
ACS do have particle horizons if a=O and P & 0 or
a &0 and P& 3a. For a &0, there is always at least
one ACS with no particle horizons and at least one
family of ACS with particle horizons.

It has been suggested by Davies' that the trace
anomaly may be able to remove singularities. We
find that this is the case and that for P & 3a &0,
there is one time-symmetric bounce ACS with no
singularities or particle horizons. For a&0, P&0,
there is a family of ACS which bounce once, have
no singularities, and which do have particle ho-
rizons. These are the only ACS we have found
which do not begin with an initial singularity.

Although most of the ACS begin with an initial
singularity, it is possible that the strength of the
singularity may be different for different solutions.
One measure of the strength is the divergence of the
Riemann tensor as a function of proper time t,
where dt =adg. For the solutions to (2.4) and (2.6)

p„=(&b)

"'b' 2b "b' 1 b"
pv 6'(Ib——) a 6 b' b' 2 b

4

(3.2a)

(3.2b)

In terins off and y these are

p. = lal
(f4/3 1)

(3.2c)

(3.2d)

For solutions with an initial singularity at b =0, we
can compare the strength of the singularity with the
strength of the classical singularity by computing p
and comparing it with (3.2a) and (3.2c). The result
is that for those solutions without particle horizons,
the singularity is always weaker than the classical
singularity. This is just what one would expect,
since to remove particle horizons the expansion rate
near the singularity must be slowed. For solutions
with particle horizons, the singularity is weaker
(stronger) than the classical singularity if
(p/a) &0 [(p/a) &0]. If p=O, the solutions with
particle horizons have singularities with the same
strength as the classical singularity.

One of our main approximations has been to
neglect the effects of conformally nonin variant
fields on the dynamical equation of motion. Now
that the early time behaviors of the ACS are known,
one way to check whether this is a good approxima-
tion is to compute the probability that conformally
noninvariant particles will be produced in the
universes described by the ACS. If the probability is
finite, then the solutions pass this test of self-
consistency, while if it is infinite they do not.

We shall consider only the probability for produc-
ing a pair of slightly confol lllally noninvariant
massless scalar particles in a finite volume of space-

which begin with an initial singularity and for
which b =0 initially, it can be shown that in an
orthonormal frame the nonvanishing components of
the Riemann tensor diverge as (1/t ). So by this
measure, the singularities have the same strength.

For homogeneous universes, another measure of
the strength of a singularity is the divergence of the
energy density as a function of proper volume. The
total energy density for our models is

P=P. +Pv

where p, = —r0 ' is the contribution from the classi-
cal radiation and pi ———(0

l
TP

l
0) is the contri-

bution from the quantum fields. In terms of b and
X these are
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time. Hartle' has calculated this probability for
homogeneous and isotropic spacetimes. He finds

p J drab (X)R (3.3)
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PHY-81-07384.

APPENDIX

In this appendix, we prove the following theorem
for the existence of asymptotically classical solu-
tions in the case a & 0. Cxiven a one-parameter fami-
ly of solutions, f (y, A, ), to Eq. (2.6) which is
parametrized by A. and which has the following
PI'OPCItleS:

1. f(yq, A, ) and df/dy(yi, A, ) are continuous func-
tions of A, for some yJ.

2. There exists a A, i such that for A, &A, i all solu-

For a Friedmann universe containing classical ra-
diation, R =0 and no particles are produced. How-
ever, if any dust is present, Hartle showed that the
particle production is infinite. If P=O, the behavior
of the scale factor near the singularity for those
ACS whose early time behaviors are given by (2.21)
and (2.32), is the same as for a Friedmann universe.

It is not hard to show that for all ACS with no
particle horizons, the probability in (3.3) is finite. It
is also finite for ACS with particle horizons if
(P/a) &0. The production probability is infinite for
ACS with particle horizons if (P/a) &0. Finally,
the production probability is infinite for those ACS
which begin with b = oo and have particle horizons,
if a &0 and P=O. Thus for (P/a) &0 there is a fi-
nite production probability for all ACS while for
(P/a) & 0, the results are mixed.

We have investigated the back-reaction problem
for spatially flat, homogeneous, isotropic spacetimes
containing classical radiation when quantum effects
due to conform-ixially invariant free fields are taken
into account. For all values of the regularization
parameters a and P we find at least one ACS. We
cannot at present say which ACS, if any, is the
correct one for our universe. Nevertheless, we can
say that one is no longer constrained to consider
models of the early universe which have initial
singularities, particle horizons, and scale factors
which only increase with time.
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(A 1)

Similarly, continuity of df /dy(y, A, ) implies that

df df
(y, A, ) — (y, A, +ez) & 6 .

y y

(A2)

Because of continuity and the fact that some solu-
tions approach f=0 for A, & kz and f= oo for

there must be a least upper bound, A,»&,
where A,»& is the smallest A, such that for
A, & A,~„q) A, q, no solutions approach f =0.

One can now ask whether the solution with k»i,
can approach f=0 for y &yz. Suppose that it does
so. Then from (2.11b) it is clear that df/dy~ —oo

in that limit. Now consider a solution with
A, =A»h+E where e & 0. For arbitrarily small E,
these solutions must remain arbitrarily close to the
A,»q solution. Thus for some y&yz and for some
e&0, f (y, k~„&+@)& 1 and dfldy(y, i»i,+F) &0.
However, from (2.6) it can be seen that for all f & 1,
d fldy &0. Thus the solution corresponding to
A,] g+E' must approach f=0 if the solution corre-
sponding to A,»i, does. This is a contradiction, so the
A,»b solution does not approach f=0 for y &yi.

A similar argument making use of the fact that
for arbitrarily small e, a solution with A, =A,&„q

—e
must approach f=0 at large y (because of the defi-
nition of A,»t,), shows that the solution corresponding
to A,»i, does not approach f= oo lii the limit y ~ oo.

tions in the limit y~ oo approach f= oo.
3. There exists a A,z & A, i such that for

—oo &A. &A,z some solutions approach f=0 at a
finite value of y.

Then, there exists at least one solution which ap-
proaches f=1 in the limit yahoo. Since the ACS
are defined by this property, the above solution is an
ACS.

Proof: There are two parts to the proof of this
theorem. The first consists of showing that a solu-
tion with A, =Aq„&& A,z exists which approaches nei-
ther f=0 nor f= oo at large y. The second part
consists of showing that solutions to (2.6) which do
not approach f=0 or f= oo at large y approachf=1.

Existence theorems for ordinary differential equa-
tions guarantee that if f(yJ, A, ) and df /dy(yJ, A, ) are
continuous functions of A. , then f (y, A, ) and
df/dy(y, A, ) are also continuous functions of A, , for
all y. Continuity of f(y, A, ) means that there exist
some e» 0 and ez & 0 such that for any 5 & 0,
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We now show that solutions which do not ap-
proach f=0 for y &yt and do not approach f= oo

as yahoo, approach f=1 as yahoo. Clearly if
f= co and f =0 are not approached by a solution,
then f=C with 0&C & co is approached by that
solution in the limit yahoo. To see if this is con-
sistent, substitute f=C into the right-hand side of
(2.6) and take the limit y~ oo. Then

2Qf ~ —2/3(C —1/3 C —5/3) (A3y'

For C&1, this has the solution

9
(C —1/3 C —5/3) 4/3 (A4)

which clearly does not approach f=C at large y.
For C= 1, (A3) has the solution f=1. Therefore
solutions which do not approach f= ao or f=0 at
large y must approach f= 1
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