
PHYSICAL REVIEW D VOLUME 28, NUMBER 10 15 NOVEMBER 1983

Morse-potential Green's function with path integrals
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An integral representation for the Green s function of the one-dimensional Morse potential is obtained

by solving path integrals. To test the method employed, the correct bound-state energy spectrum and the
wave functions are derived.

I. INTRODUCTION

In spite of conceptual beauty and useful applications in
field theories, so far very few quantum-mechanical prob-
lems have been treated by Feynman's path integrals. Since
only the quadratic potentials can be solved exactly, one has
to look for appropriate transformations to express the prob-
lem in hand in terms of the oscillator or free-particle
Green's functions. For these transformations, although
there are complications and lack of rigor, ' one has to em-
ploy canonical transformations. For example, to solve the
path integral for the three-dimensional H atom, one
transforms to the four-dimensional harmonic-oscillator po-
tential. In this Brief Report we solve the path integral for
the one-dimensional Morse-potential Green's function. It is
well known that the Morse potential is a very useful ap-
proximation for the molecular-vibration problem and its
Schrodinger equation is exactly soluble. Thus, to test the

I

validity of our transformations in dealing with path in-
tegrals, we can compare our results with the known wave
functions and the energy spectrum. On the other hand,
since the calculation of the transition amplitudes in molec-
ular physics is very important, although it is one dimension-
al, the formula derived in this paper for the Morse potential
may be useful by itself too.

II. PATH INTEGRAL FOR ONE-DIMENSIONAL
MORSE POTENTIAL

The probability amplitude for a particle of mass m travel-
ing from a position x, at time t, =—0 to xb at time tb

—= T, in
the Morse potential

U(x) = Vo(e 2 —2e )
can be written as a phase-space path integral in Cartesian
coordinates:

K(xb, T;x„0)= p exp — dt px — p —Vo(e —2e ™)
2m h 2m

(2)

The above kernel is understood as the limit of the usual time-graded form:

n n+1 dp . n+1 .2
K(xb, T;x„0)= lim J Qdx; Q '

exp —g p;(x; —x; t)—
a~0

—U(x;) (3)

where

e=t; —t; t, (n+l)e=tb —t, —= T

I

the new coordinate g C (0, ~) with the point canonical
transformation

and

X0 = Xg, Xn +] = Xb
x = ——in/, p = ——

gp&
2 a
0

(4)

Since the canonical transformations we are going to employ
are of the "point" type, we can as well work with the
Lagrangian path integral. We prefer to use the phase-space
form of Eq. (2) simply for keeping track of the normaliza-
tion.

Having in mind the variable change used in solving the
Schrodinger equation for the Morse potential, we introduce

I

generated by the function

F2(x,pt) =e t'pt

Since there is an extra integration over the momentum,
compared to the coordinates in integral (3), we get a contri-
bution ( —agb/2) to the Jacobian from dp„+~ dpt„+~.
Then the path integral (3) becomes

1

K(xb, T;x„0)= ——gb 0 ( 2m4/ )a
exp —

J~ dt p&g
—

p&
—Vog +2 Vog'

Now, to get rid of the g2 factor of the kinetic energy term
with p&, we introduce an auxiliary time variable s by

Ps
dt=ds/g or t= J ds'/g (s') (6)

Note that the parameter s is a monotonically increasing
function of t (A similar type . of time-variable change has

I

been used previously for solving the H-atom path integral.
Recently, Ho and Inomata4 explicitly worked out the point
canonical transformation in each short-time interval using a
midpoint expansion. ) Together with the constraint

T= ds/6 (s), S=s& —s
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Eq. (5) takes the form

&exp — ds p~
' —

2 p& +2V0 —V0
2 (4m/«22)

Here the factor (1/gb ) is the normalization of the 5 function and a prime denotes the derivative with respect to s. With
the introduction of the Fourier representation of the 5 function, the Green's function can be written as

K(xb, T;x„0)=
OO

where

1

dE «bT 2«VpS/A' 1 ~~~pb « i I 2 & 2 2

2m
e' dS e

gb 2n t o 2M
exp — ds pgg pb —M«p g, (7)

, I

M =4m/a2—, «p =g2 Vp/M =
2

«2+2 Vp/M

If we integrate over &pb(s), we obtain
1

« 't

K(xb, T;x„0)= — e' dSe J~ &gexp —
J~ ds —g' ——M«p p-a " dE,~, " 2&0s« f' M .2 r 22 fE

2 — 2m h o 2 (2

In Eqs. (7) and (8) we observe that the Jacobian resulting from the coordinate and the time transformations has the factor
Since the Green s function K is expressible in terms of the wave functions «i«„(x, ) and p„(xb) as

K(xb, T;x„o)= ge " y„(xb)y„'(x.)

we would like to have equal contributions from g, and gb to the Jacobian. To have a symmetric Jacobian in terms of points
«2 and b, we rewrite the factor I/gb as

«

1 1 & 4 1
exp ——ln

(&.Cb) '", ' F. , Jg. gb

With the above form of I/gb, the Green's function (9) becomes

K(xb, T;x„0)= —J) e'Er Jf dSe
' p

t
s it('

exp —
I dst o 2g

« '1

X t&g exp —
) ds —g'+ + ——M«p g—M i &k h & 2 2 IE

t o 2 2M/ 8M $2 g2

If we look at the path integral in this last equation,

K (gb, S;$„0)—= Ji 6'&exp — ds —('+1 & [i M v it
t p 2 2M'

«

2 2 2M« -t'/4 1

2M/2

or its phase-space form

2MtE t'/4—
K(gb, S;$„0)= exp — ds p~ g' — ——M«p2$2- +

22r t o 2M

we see that the symmetrization of the Jacobian (from I/gb to I/Qg, gb) introduces purely quantum-mechanical contribu-
tions to the action:

t2/8M/2 +itpr/2M/ (13)
S

Note that the Jacobian I/gb was the result of dp„+~ dpi'„+« transformation and of the normalization of 8(T —f ds/g2)
s

at point b. However, we could write the path integral (3) as well, by starting the time division of the momentum variables
at i =0 and ending at i = n, as

«

n n dp. . n p2K(,, T; ., 0)= I J ad+ '
p —' g p(, —,, ) — ' —U(;, )

i 1 i 0 ~ . i 0,«~0
(14)

Thus if we would start with the above path integral, instead of (3) we would get a contribution —ag, /2 to the Jacobian
S

from dpp dp«& transformation. Then after normalizing the 8 function 8(T —f ds/g ) at point a, the resulting Jacobian
s

would be —(«2/2) g, (, 2= —(a/2)/g, . When we symmetrize this factor, we obtain
«

1 1
exp ——

( ds
i I

s it/'
(15)t o 2g
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instead of (10), which gives for K(gb, S;(«„0)
e

1 ~g~Pb, s pe, » 2MtE ii2/4
K (gb, S;$„0)= exp — ds pe g' — ———Mo)'g'—

2 ir o 2M 2 2M/2

I@pe

2M/

This form of K, which has the quantum-mechanical contribution

A2/SM$' —itpe/2M/ (17)

in its action, must be equal to the one given by (12). If we write for K the geometrical average of the two integrands of
(12) and (16), we obtain the expression

r

K (gb, S;$„0)= Jl exp —
Jl ds pbg'—«kb'

2MtE t2/4—
2M/~

whose effective Hamiltonian is Hermitian:

Pe ) 2 2 2MtE t /4—
2M 2 2M('

This effective Hamiltonian is the same as the "ordered"
Hamiltonians written in two-dimensional polar coordi-
nates. 5 6 Note that if we do not get a contribution to the
Jacobian from point a (or b), we do not have a symmetriza-

I

I

tion problem. Thus, we do not get an ordering contribution
to the Hamiltonian. For example, when we transform the
three-dimensional H-atom path integral to the four-
dimensional harmonic-oscillator Green's function, the Jaco-
bian is free of end-point coordinates, and we are not faced
with an ordering contribution. 2

After having the form given by Eq. (18) for K, the
Morse-potential Green's function of (7) becomes (from
now on we put t = 1)

K(xb, T;x„0)= —— J e'e" dS e K(gb, S;(„0)

12ME —
4U(g(s) ) = —Mo)2/2+

2M/2
(21)

To demonstrate that the expression (20) is correct, we write
K as

Here, K((b,S;$„0) is the kernel for the particle of mass
M, moving in (s, g) space with g )0, under the potential

I

and the "wave function" Q„ is

(g) ~p™e /2(Mos/2) SF( n 2s + (
Mosg )

with

l2(Mos)' 'I (n +2s+ ,
' )/n!]—'i', (25)

r(2s +-,' )

n 0

where the "energy" 8'„ is given by

@'„=(0(2n + I +42ME ) (23)

s= —„+2J2ME &0, n=0, 1, 2, . . .

and F is the confluent hypergeometric function. 7 If we in-
sert (22) into (20), the Morse-potential Green's function
becomes

( , SOxe) =Tx— f e' Z f dse S( S)e'S( S)"
2 g«gb 2~ «-o

or, after integrating over dS and dE, we obtain

K(xb, T;x„0)=
n-0

n & Vp/re 1/2

1/'2 ' 1/2
dE —Ie' a a
2sr I'„—2 V() 2$b

y. (gb)
2g, y. (g.) (27)

n-p,
n & Vp/co —1/2

1 2*

exp —i —Vo 1 — (n + —,) Tt@«(fb) 4:(4'«)
0

(2&)

which displays the correct bound-state energy spectrum,
s 2

~o 1E„=—Vo 1 — (n +
2 ), n =0, 1, . . . (

0 OJ
(29)

and the correctly normalized wave functions of the Morse potential,

(t)„(g) =l2a(S —4)I (n+2S+ )/n!]'—, e "e i (Ms))g )' 'i F( —n, 2S + ',Mosg )—
I'(2s +—)
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which, with definitions (Mco) f2 =—q and s —
4

—= 1, takes the usual form'.

X„(7I)= [2a/I'(n +2l+ I)/n!]'~' e ~~2q'F( —n, 2l +1, rt)
I (2l + I) (30)

To obtain the scattering states one performs a Sommerfeld-Watson transformation on (27).2 Since the term I/g2 already ap-
pears as the centrifugal contribution in polar coordinates in the two-dimensional harmonic-oscillator Hamiltonian, the kernel
K(gb, S;$„0)can be calculated explicitly:

K(g~, S;$„0)= ([Mcu(g, gq)' ']/(i sincoS))I~2~z .
' —exp ™(&, +gb ) cotcuS

i sincos
(31)

where

lg2~E (Mo)g (b/i sincuS)

is the modified Bessel function. Introducing (31) into (20), we have an integral formula for the Morse-potential Green s
function:

1 1

K(xq, T;x„0)= — e' dS e . 1~2' . exp ((, +gq ) cotcuSa dE;~r 2~vos Mo) M~/~ gt IMo)
2 — 2m i sin~S i sincoS

t

(32)

III. DISCUSSIONS

Making use of canonical transformations, we have con-
verted the path integral for a Morse potential into the path
integral for a harmonic-oscillator potential with an additional
centrifugal potential I/g2. The type of canonical transfor-
mation employed in this example is

I

Hamiltonian, we obtain a quantum-mechanical contribution
to the action which is of the h order. The resulting path in-
tegral, with the effective Hamiltonian, has exactly the same
corrections as the path integrals written in terms of the or-
dered Hamiltonians. In fact, with our procedure, we can get
the ordered formulas for the path integrals written in polar
coordinates. ' On the other hand, if the end-point Jacobian
is constant, we conclude that the effective Hamiltonian
coincides with the classical one.

i.e, , it is a point transformation. Thus, the Jacobian result-
ing from this transformation does not have a momentum
dependence. By symmetrizing the Jacobian in a rather
heuristic fashion, and taking only the Hermitian part of the
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