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The problem of a relativistically covariant description of unstable particles is reexamined. We fol-
low the approach which associates a unitary reducible representation of the Poincare group with a
larger isolated system, and compare it with the one ascribing a nonunitary irreducible representation
to the unstable particle alone. It is shown that the problem originates in the choice of the subspace
A „of the state Hilbert space which could be related to the unstable particle. Translational invari-
ance of A „ is proved to be incompatible with unitarity of the boosts. Further, we propose a concrete
choice of A „and argue that in most cases of the actual experimental arrangements this subspace is
effectively one dimensional. A correct slow-down for decay of the moving particles is obtained.

INTRODUCTION

The Poincare group 8 of special-relativistic space-time
transformations plays undoubtedly a central role in high-
energy physics. In particular, its unitary irreducible repre-
sentations may be used for classification of the (stable) ele-
mentary particles according to their mass and spin. ' A
relativistically covariant description is needed for unstable
particles too. For practical purposes, it is frequently suffi-
cient to describe them as classical point particles which
decay exponentially in their proper time. Maybe this is
the reason why some quantum aspects of the problem are
not yet fully understood.

One is naturally tempted to generalize the idea of
stable-particle classification and associate suitable nonuni-
tary irreducible representations of H with the unstable
particles. Such representations were actually constructed
and used by many authors. Typically the homogene-
ous Lorentz transformations are represented by unitary
operators, while the space-time translations are nonunitary
and characterized by some complex four-momentum vec-
tor. The generalization from stable to unstable particles
should not be taken too literally, otherwise one is faced
with interpretative difficulties like growing norms for neg-
ative times. It seems reasonable to associate the direct
physical meaning with the operators representing the sub-
set H+ C:H which consists of the homogeneous Lorentz
group and translations to the forward light cone; it is
called sometimes the Poincare semigroup. ' Other authors
tried to bypass the difficulty by modifying basic postulates
of the quantum theory. '"

In fact, there is no a priori reason why there should be
nonunitary representations of H associated with unstable
particles. Explained in a standard way, the principle of re-
lativistic invariance means that the state Hilbert space of
any isolated quantum system is the carrier space of some
unitary (strongly continuous) representation of H, under
which dynamical variables of the system transform in a
specific way. In particular, some important observables
are identified directly with generators of the correspond-
ing representation of L~, the Lie algebra of H: the total
Hamiltonian H=PO with the generator of time transla-
tions, components PJ of the momentum with the genera-
tors of space translations, etc.

Hence one should start with a larger isolated system
which contains the unstable particle under consideration
as well as its decay products, and to choose on its state
Hilbert space A a suitable unitary representation U:
H~ A(A ). This representation is presumably reducible
but it should be characterized by a sharp value of spin; ex-
amples of such representations are known. ' ' Having
determined U, one may return to the subspace A „C:A
which belongs to the unstable particle alone, and study the
operator-valued function V: H ~ A (A „)defined by

V(A, a ) =pr„U(A, a )

for all elements (A, a) H H. The following questions arise
naturally:

(i) Do the operators V(A, a ) fulfill the composition law
of H, at least for some subgroup or subset of elements?

(ii) If so, what can be said about the relations between
such a representation and the corresponding restriction of
the above-mentioned nonunitary representations?

The only serious attempt to find an answer, and to
reconcile thereby the two approaches, was undertaken by
Williams'"; but he failed on the well-known difficulty of
an energy spectrum unbounded from below. Our aim in
this paper is to clarify the matter.

II. THE BOOSTS SHOULD NOT BE REPRESENTED
UNITARILY

To begin with, let us recall a few basic facts about the
Hilbert-space kinematics of decay processes. ' ' Assume
that the Hilbert spaces A „, and A referring to the un-
stable particle and a larger isolated system, respectively,
and a strongly continuous unitary representation U of H
on A are given. Let U, denote the operators which
represent the one-parameters subgroup of time transla-
tions, U, =exp( —iHt). A natural requirement implied by
the nonstability is

UA „QA „, t&0,
or more explicitly, there is no t &0 for which A „ is in-
variant under U, .

The reduced propagator is defined by V, =pr„U,
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E—„U, ~

A „,where E„ is the projection referring to A „.
It is easy to see' that the function i~ V, is positive
definite a,nd continuous (weakly or strongly, it amounts to
the same here), and fulfills Vo I„——. On the other hand, it
appears that these properties of ( V, j are sufficient to en-
sure existence of solution to the inUerse decay problem, i.e.,
to reconstruct a triple [A, U„E„J such that V, =pr„U,
for all t, and moreover, that this solution is essentially
unique under a natural minimality condition. ' Technical-
ly these results are achieved by means of the unitary-
dilations theory.

Experience suggests that the operators V, might fulfill
the semigroup condition V, V, = V, +, for all t,s &O. Un-
fortunately, in such a case the Hamiltonian H referring to
the solution of the inverse decay problem contains the en-
tire real axis in its spectrum. ' Nonetheless, the semi-
group reduced propagators represent a very useful approx-
imation. The unphysical character of the energy spectrum
causes no harm, since it has no observable consequences';
it may be removed when preparation of the unstable parti-
cle is completed by an energy-filtering procedure. ' In
fact, the inevitable deviations from the semigroup
behavior are likely to be unobservable even if they are am-
plified by repeated measurements performed on the parti-
cle and an artifical energy filtering.

Let us finally mention the definition of the decay laws.
For an unstable particle which is described initially by a
density matrix p, Ran p| A „, the nondecay probability
equals P&(t) =Tr(pV, V, ). In particular, if the initial state
is pure and described by a unit vector 1( HA „, its decay
law is

The situation is especially simple in the case of a one-
dimensional A „(spanned by g) when

U(A, a)U(A', a') = U(AA', a+Aa') (5)

for all (A, a), (A', a') H H. Unitarity of U together with
the definition (1) yields the relation

V(A, a)*=V(A ', —A 'a)

for all {A,a)e&. Suppose that V fulfills the group law
analogous to (5), then V(A, a )' V(A, a ) = V(A, a )
X V(A, )*a=I„s Vo(A, a) is unitary. However, this is
equivalent to the fact that U(A, a) commutes with E„;
particularly for the time translations, it would mean that
the condition (2) was violated. Thus the operators V(A, a )
cannot fulfill the group composition law for all

the semigroup condition imposed on j V, j now requires
the decay law (3b) to be exponential.

Now we shall return to the Poincare group. Its space-
time transformations are given by

xp =-Ap x +ap
where A belongs to SO(3, 1) and a is a four-vector. For
simplicity, we shall consider the connected component of
H only avoiding discussion of the space and time inver-
sions. The composition law of the transformation (4) im-
plies

Let A=A(P) be a boost with a velocity P and a ={O,a),
where a is parallel to P. In such a case, one has

Aa —A 'a=( —2$'~ a
~

sinh
~ P ~, 0), g'=. sgnP a .

We have pointed out that V(A, a) is unitary for some
(A,a) if and only if the corresponding U(A, a) commutes
with E„. Thus if the boosts were represented unitarily, the
same would be true for the right-hand side of (7). Since
g',

~
P ~, ~

a
~

may be chosen arbitrarily, the relation (8)
shows that E„must commute with the operators
representing time translations. Of course, this contradicts
(2), so the conclusion is proved.

Notice fina11y that up to now no requirement specific
for unstable particles was used. The above considerations
apply therefore by the same right to free unstable nuclei
and other decaying objects for which a relativistically co-
variant description is appropriate.

III. THE REPRESENTATIONS U RELATED
TO UNSTABLE PARTICLES

Since the unstable particles may be characterized by
spin quantum numbers, the most natural choice for U is a
direct integral ouer mass of the unitary irreducible repre
sentations U' "+'.' The carrier space of such a repre-
sentation is given by

A =L [ me) X,R3dm p @Czs+i
2(m'+ p ')'~'

where mo is a threshold mass. It is useful sometimes to
separate fully the kinematical variables from the mass. To
this end, one has to employ the four-velocity k =p/m, i.e.,
to introduce the Hilbert space

(A, a) E'H, i.e., V cannot be a (nonunitary) representation
of' H.

This conclusion is not yet disastrous. Motivated by the
above-sketched description of the time evolution, we are
ready to accept the following possibility: there is a nonun-
itary representation V of H, presumably some of ihe ones
mentioned in the Introduction, such that V(A, a ) = V{A,a )
within some reasonable subset of H, say H+. Unfor-
tunately even this point of view cannot be retained. The
reason is that it does not respect the Euclidean inuarianee.
It is quite natural to assume that two observers, whose
reference frames are obtained one from the other by space
translations and rotations, will determine exactly the same
decay law and other characteristics for a given unstable
particle. Hence, in particular, the operators V(I,a) with
a =(0,a) should be unitary, and this is not true for the
representations which we have in mind.

Furthermore, the translational invariance implies that
the operators V(A, O) referring to the pure Lorentz transfor
mations (boosts) must not be unitary In or.der to see
it, notice that the relation (5) yields the identity

U(I, Aa)U(A ', 0)U(I, —a)U(A, O)= U(I, Aa —A 'a) .
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A =L~([m0, 00))L (R,d kl2ko)C +', (10) The representation U acts on the space (9) according to
the following prescription:

where ko ——(1+k )'~; the two spaces are isomorphic by
means of the relation ( U(A, a )@)(m,p) =e 'i"S(m, s;A)g(m, p~), (12)

QJ(m, k) =m gj(m, m k)

valid for all j=—s, —s+1, . . . , s, m H[mo, ao }, and
k eR3.

where a.p=a„p", further p~ is the three-vector part of
A 'p, and the matrix S expresses by means of representa-
tions of the little group SU(2). For the space-time transla-
tion on x =(t, x ), we have S =I so

oo 3

(y, U(I,x)g)= g f dm f, , expI —i[t(m +p )'~ —x.p])gj(m, p)PJ(m, p) .
1 = —S 2(m +p )'~

In particular, for the pure time translations and y =f we have p

ao d3
(PUg)= g f dm f, expI it(m—+p )'~

I I fj(mp) I

mP R3 2(m 2+ p 2)1/2

Changing the variables (m,p) to (A, ,p } with A, =pa ——(m + p )'~, we may rewrite the last expression in the form

(13)

(14a)

(14b)

where Vi ——Ip: I p I

&(A2 —mo2)i~2).

IV. EFFECTIVE ONE-DIMENSIONALITY OF A „

it(m, p)=f(m)g(p) .

Next we adopt various simplifying assumptions. First of
all, we set

supp f=(M —il, M+i))L[mo, ao), (16a)

f I
f(m)

I
dm= f I

f(m) I2dm=1,

where g is supposed to be a positive number much less
than M. Further we assume

(16b)

supp g =B = [ p:
I p I «I (16c)

so the support of g is centered at p =0. For small enough
e, this is practically equivalent to the assumption that the
particle dwells in its rest system. According to (12), the
space translations give P:f (m, p) =e' ' i'P(m, p) when

acting on @=/ . Since @ should belong to A „ for all

Now the crucial point lies in the choice of the subspace
which would be ascribed to the unstable particle

alone. If this space were one dimensional (spanned by
some gH~, then (14) would yield according to (3b) the
nondecay amplitude. However, we have argued above that
A „should be invariant particularly with respect to the
space translations. This is impossible for a one-
dimensional A „, because the momentum operators P&
have purely continuous spectra so it cannot be their eigen-
vector. Nevertheless, we are going to formulate an argu-
ment which shows that in most cases the relations (14)
may be accepted as expressions of the nondecay amplitude
in a reasonable approximation.

We shall consider first the scalar particles s =0. Our
most important hypothesis is that there is a state of the
unstable particle described by a wave function which fac-
torizes,

A „=I/:f(m, p)=f( m) g(p), g&L (B,)) . (17)

As a set, this A „coincides with C(f)SL (B,), where
C(f) is the complex linear span of f. The scalar product
is, however, different: the norm of g is according to (9)
and (16) given by

d3
IIWII'= f „dm l&(m)

I

' f,
(18a)

Let
I

I.
I I2 denote the norm in L (B,):

llg 112= f, I
g(P)

I

'd'p . (18b)

We may use it to estimate the norm (18a) from both sides,
or vice versa, to derive the inequalities

2(M —n }
I I@I I' &

I lg I
12' & 2[(M+n }'+~'0'"I

I II I' .

(19)

It shows particularly that tt/i„'IC:A „ is a Cauchy se-
quence if and only if the same is true for the correspond-
ing sequence Ig„ I C:L (B,); hence A „defined by (17) is a
(closed) subspace in A . The inequality (33a) below shows
that e «M and the same restriction was imposed on g, so
the function g corresponding to a unit vector /PA „ ful-
fills

I Igl I2=(2M)'
Let us inspect now the action of the time-translation

operators on a unit f from the chosen subspace (17}. Ac-
cording to (12}, they multiply P(m, p) by
expI it(m + p }'—~ I. The expression does not factorize,
but for e small enough one may try to approximate it by
e ' '. Since e«M, we may restrict ourselves to the
first two terms of the expansion

a ER, and the exponentials form a complete set in
L (B,), we may set
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2 ~2 1/2 —imt ~ PexpI i—t(m + p )'~
I =e ' ' 1 i— +0(p 4)

2P7l

(20)
I

The evolution operator is correspondingly written as
U, = U,' '+ U,'" neglecting the remainder. In order to esti-
mate the influence of the second term, we take an arbi-
trary unit vector yHA „, q(m, p)=f(m)h(p), and ex-
press

(pU,'"g)= f dm e ' 'I f(m)1 f 2(m'+ p ')'"
The relations (16), (19), and (21) yield the following inequalities:

2

l(q U'"4}l &
2(M ) 2M )

llhll llgll

1(M+~P+e'j'~'
M-~

~2
—i h(p)g(p) .

207
(21)

(22)

Hence we may estimate the norm

IIE. U'"@ll =sul I I (q U"'0} I:q &~. Ilq II = 1 I . (23)

Since both E,ri are supposed to be much less than M, we find (23) to be & e tl2M; the approximation mentioned above is
therefore possible under the condition

p2 t
(24)

In such a case, a norm of the difference between E„U,P= Vtg and E„U,' 'f is very small, and we are allowed to write
V, f=E„U,' 'f.

In the next step, we shall verify that the last expression is close to (g, U,
' 'lit)tp. To this end, we take an arbitrary unit

vector q HA „,y(m, p)=f(m)h(p), which is perpendicular to f. The orthogonality of q, g together with (16b) makes it
possible to estimate (h, g)z from the identity

2M M m—se 2M 2(m &+ p ~)~&&

Since e,g are much less than M, we have the following estimate:
T

1 1 1 +2M 2(m&+- ~}~&& —2M M

(up to higher-order terms). Combining it with the Holder inequality, we obtain

(25)

(26)

I
(h, g }21 &

M +, Ilh ll~llg112 ~

2M

Now we are able to estimate the scalar product (y, U,
' 'g):

(27)

1(y, U,
' 'g)

I
& f dm

I
f(m)

I
e ' '(h, g)q

+ fM m l«~} I' f. . .„,—2M Ih(p} I lg(x } Id'p .
M —g &~ 2( 2+p 2)1 j2 (28)

Applying (25) and (26} to the second term and the first term on the right-hand side of (28), respectively, and using the
Holder inequality again, we get

f(q, U"'@)
I

& "+, llhll~llgll~ f
However, q& and @ are assumed to be unit vectors so

I
I" Ill= I lg lie=(2M}' . Finally, the normalization condition (16b}

yields

g2
l(q U"'4)

I

&2" + (29)

Since y is an arbitrary unit vector from A „orthogonal to g, we see that U, @ stays nearly parallel to @. Hence we may
write
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(V,@)(m,p)=@(m, p) J dpe '+'~f(p)
~ f, [g(it) ~'.

0 2(m '+ a. ')'~' (30a)

Moreover, the inequality (26) allows us to replace the
denominator in the last integral by 2M; the corresponding
error is again at most comparable with the right-hand side
of (27). Thus we have also

(Vi@)(m, p)=@(m, p) J e '"'( f(p) ( dp . (30b)

TABLE I. Values of Rc (MI )
' for the metastable parti-

cles.

Particle a(MI") ' (cm)

1.11x 10
1.2 X10

Concluding the above discussion, we may say that if the
three mom-entum spread of g is sufficiently narrow, the de
cay goes effectively as if PP„would be one dimensional In.
that case, the nondecay amplitude is given by (14), and it
may be approximated by the integrals appearing in (30).
Of course, the approximation also needs q «M but this
can be achieved as we shall see in a while.

The presented argument generalizes easily for particles
with a nonzero spin. One has only to use the rotational in-
variance of A „ too, then the following choice is natural:

~,= [g:g(m, p)= f(m)g(p), geL'(B, )SC~+'I .
(31)

Mimicking the above reasoning, we arrive again at the ap-
proximation (30b).

Hence we must ask under which circumstances the con-
ditions (24) and i) «M are valid. In any realistic descrip-
tion of unstable particles, the function

~

f(.)
~

should
have a sharp peak of more or less Breit-Wigner shape. Its
position may be identified with the mass M of the particle.
On the other hand, the mean life is defined by

T= j Pt,(t)dt; (32)

hq » iric(Ml ) (33b)

Thus we come to the following result: the conclusion
about the effectively one-dimensional A „ is applicable
provided the unstable particle is not spatially localized so
sharply that (33b) is violated. However, this condition is
fulfilled almost always in actual experimental arrange-
ments as shown in the listed values shown ' in Table I.

Notice finally, that the above considerations apply to
the "coordinate" part of the wave function only. If the
part of the decay problem related to internal degrees of
freedom cannot be decomposed completely, we have
dim% „&1 even in the sense of the discussed approxima-
tion. So for the neutral kaons, e.g., the space A „ is effec-
tively two dimensional provided the conditions (33) are
valid.

V. DECAY OF A MOVING PARTICLE

I

its inverse I characterizes width of the peak. For all real
unstable particles, M is much larger than I: the ratio
M/I varies from 1.06&10 for X to 1.31&(10 for neu-
trons (with the exception of m, il, and X, its lower bound
is 10"). Hence we can choose the parameter 71 so the ine-
qualities I «g «M hold. The first one of them ensures
that truncation of the mass distribution

~

f(.)
~

to the in-
terval (M —

q,M+ i)) will cause a negligible change in the
decay law.

Of course, the condition (24) cannot hold for all values
of t, but it is reasonable to demand its validity in the re-
gion where the decay law is actually measured, i.e., up to
few T. Thus the three-momentum spread Ap=e must
obey (bp) «MI or

(33a)

when we return to the conventional system of units. In
order to appreciate this restriction, let us rewrite it by the
uncertainty relation to the form

'9
K-
Ks
KL
D-
DO

F

1.05x
6.03x
1.3 x
3.85 x
3.26x
7.85 x
1.7 x
1.2 x
8.0 x

10-'
10—10

10—11

10
10
10-'
10-'
10-'
10

We are obliged to show that the proposed description by
means of the representation (12) and its restriction to a
subspace of the type (31) will yield a correct result for an
unstable particle which is not at rest. Let a reference
frame S belong to the observer, and suppose the rest sys-
tem of the particle moves with a velocity P, relative to S
(Fig. 1). Of course, we may not only sandwich the propa-
gator between U(A(+P), 0); similarly as a simple-minded
look on the factor which multiplies the time variable in

n

A
g+
yp

X
~p

Q
A+

0.763
3.74x
3 53x
5.4 x
2.71x
3.6 x
2.71x
1.70x
5.3 x

10
10
10
10
10
10
10
10-'

FKx. 1. Decay of a moving particle.
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Lorentz transformation does not yield the time dilatation.
From the viewpoint of the reference frame S, we are in-
terested in the space-time shift on x=(t, Pt). If the con-
dition (33a) is valid, i.e., if we are allowed to characterize
the particle by a single vector /HA which refers to its
rest system, then the observer will ascribe to it the vector
U(A(P), 0) 'P. The corresponding nondecay amplitude

equals

v(t; p) =(U(( p), 0) 'l(, U(I,x ) U(A(p), 0) 'g) .

(34)

Using the relations (5) and (13), we may rewrite (34) as fol-
lows:

oo d3
v(r;P)=(Q, U(I, A(P)x)g)= g f dm f, exp[ ip—.A( jj)x I ~

PJ(m, p)
~

2(m +p )'

However, the Lorentz
A(P)x=(t(1 —P )'i, O) so

transformation gives

v(&;P)=v(t(1 —P )';0) .

This provides us with the relation

Pp(t; 13)=Pg(t(1 —P )'i; 0), (36)

which is valid as far as the approximation identifying the
decay law with the square of (34) may be used. The rela-
tion (36) is, of course, the desired result. It is tested by
numerous experiments; and it was even used for a direct
proof of the relativistic time dilatation from cosmic-ray
muons 30 years ago.

VI. CONCLUSIONS

Let us compare the above-discussed description of un-
stable particles with the one based on nonunitary represen-
tations of H. We have already mentioned the Williams'
construction' of minimal unitary dilation for the nonuni-
tary representation proposed by Zwanziger. He obtained
the Hilbert space (10) with ma= —oo and a unitary repre-
sentation U of H on A which coincides with (12) when
transformed by means of (11). The principal difference
concerns the choice of A „: Zwanziger's representation is
recovered by projection of U to the subspace

A =C(f)L (R,d k/2ko) C '+ ' (37)

where f (m) =(2m. /I )'~ (m —M+ ,'i I )—
Williams himself regarded the below-unbounded mass

spectrum as the main defect, but it can be rectified by a
mass-filtering procedure without any observable conse-
quence; essentially the same argument we used in
condition (16a). Excepting that, in a theory pretending for
completeness the function f should be obtained as a solu-
tion to the dynamical problem, with the Breit-Wigner
shape of

~
f( )

~

resulting from the pole approximation to
this solution. However, it seems that we will not have
such a theory soon. In spite of substantial progress
achieved in the perturbation theory of embedded eigen-
values during the last decade, one can hardly proceed
beyond the Fermi golden rule since even finding the "un-
perturbed" eigenvalues represents a difficult problem for
the theory of strong interactions.

A difference between the two approaches is now obvi-
ous. In both of them, it is only the mass distribution
which is essential for expression of the decay law, while
effect of the momentum (velocity) dependence of the wave
function is suppressed. In the approach treated here, this

I

conclusion is obtained by realizing that the momentum
distribution is actually very narrow. On the contrary,
with the choice (37) the mentioned independence is
achieved because it makes all velocity distributions possi-
ble. Both the approaches yield the same decay laws as far
as a fixed reference frame is considered, simply because
they have been constructed so. However, the first one has
the advantage of producing the translationally invariant
description.

One might say that in a subspace A „ofthe type (37) a
lot of space is left unemployed. The presented quantita-
tive considerations show that what one really needs is

A „=C(f)eL '(B„,d'k/2k, )eC~+',
where a =E/M. The subspace A „' LA isomorphic to (38)
though (11) is "intermediate" in a sense between (31) and

referring to (37). For A „', one can derive a con-
clusion similar to that of Sec. IV with more ease. On the
other hand, (38) is no longer translationally invariant,
though the violation is manifested on large distances
only. "

Finally, let us mention that frequently the possibility of
neglecting the p spread of the wave function is even better
than the condition (33b) together with the data shown in
Table I. We have in mind the situation when the unstable
particle suffers repeated nondecay measurements, ' e.g.,
by monitoring its track. Since the decay starts anew after
each measurement (which has given the positive result),
we need not require (24) to hold for times comparable with
I ' but merely with the mean time between the neighbor-
ing measurements which is usually a few orders of magni-
tude shorter. As an example, consider the decay of
charged kaons in a bubble chamber treated in Ref. 25:
there the mean time between the measurements is
—10 I '. Instead of (33b), we obtain then the condition
hq »10 cm, but actually the kaons are localized within
the range of bubble diameter, i.e., about 10 cm. Similar
conclusions may be obtained for the other unstable parti-
cles and track-monitoring devices too. On the other hand,
the conclusion about the effective one dimensionality of
A „can be used to justify the basic reduction postulate of
the repeated-measurements theories.
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