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Covariant quantization of the string in dimensions D & 26 using
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The conventional open string theory is cast into the Becchi-Rouet-Stora (BRS) formulation of
Fradkin and Vilkovisky. Upon quantizing this theory, the nilpotency condition Q =0 of the BRS
charge requires D =26 and ao ——1 for the space-time dimension D and intercept parameter o:o. Uni-
tarity is proved by relating this theory to the old covariant quantization. The string theory is then
generalized as suggested by Polyakov, taking into account the conformal or trace anomaly by
W=W„„„g+L™Wl,where Wl yields the Liouville equation in the orthonormal gauge. Under the
assumption that the exact quantization of Liouville's equation does not yield any additional

anomalies, we show that the condition Q =0 implies C=(D —26)f48rr, in agreement with
Polyakov's result, and the "intercept parameter" P= (D —2)/24.

I. INTRODUCTION

Due to the work of Polyakov, a consistent quantum
theory of the bosonic string might be found even when the
dimension of space-time, D, is less than 26. It is the pur-
pose of this paper to cast some further light upon this sub-
ject, by making a covariant quantization in phase space in
a Becchi-Rouet-Stora (BRS) formalism. The starting
point for our treatment is the Lagrangian density

W(r, tr) = & gg ~t)~ "t)—@„+CWi,2X

where y& are the coordinates (in Minkowski space) of the
string; g ~ is the metric tensor of the parameter space
a,P=0, 1; Bo=r)„ t)

~ =t); g =detg tt, and N is a normali-
zation constant. CWl, where C is a constant, is the term
needed in order to take into account the conformal or
trace anomaly. We use the explicit expression for W&
found in Ref. 2, which is a local form of Ref. 1. We will
first consider the old string theory, i.e., C—=0. The BRS
quantization there will be shown to be consistent if D =26
and o,o, the intercept parameter, equals one. With the for-
malisrn developed we generalize to arbitrary C and find
that only for a specific value of C, C =(D —26)/48rr, can
we make a consistent quantization.

In Sec. II we will first give a short review of the BRS
formalism used, namely, that of Fradkin and Vilkovisky.
In Sec. III we develop this formalism for the ordinary
string and quantize it in Sec. IV. The generalization to ar-
bitrary C is made in Sec. V and the quantization in Sec.
VI. Summary and conclusions are given in Sec. VII. In
an appendix we show the connection of our BRS formula-
tion to the old covariant quantization, which also proves
unitarity.

II. THE BRS FORMALISM IN PHASE SPACE

Kato and Ggawa showed that a BRS quantization of
the ordinary string is only possible for D =26. They use
the formalism of Kugo and Ojima to show this. We will
instead use here the formalism developed by Fradkin and

Vilkovsky and arrive at the same result. This formalism
starts in phase space, which turns out to simplify the cal-
culations. Also the question of unitarity and equivalence
to the standard theory is here more easily established (see
Appendix).

Fradkin and Vilkovisky showed that for a system of
first-class constraints lb, in a general gauge theory, satisfy-
ing the closed algebra

I ga~gb j + =-0c Uab

IHo tI'. j+=A~.
(2.1)

(2.2)

where H =Ho+A, 'g, is the Hamiltonian of the system (A,
'

are arbitrary functions), we have a BRS charge and BRS-
invariant Hamiltonian satisfying IQ, Q j+ —IH~, Q j+—0
given by

Q =p, i)e+ —,
'

( —1) 'H, U,'bribri',

Hp ——Ho+%, Vbri + I/, Qj~,

(2.3)

(2.4)

Q i
phys) =0,

provided that at the quantum level we still have

g', H, are phase-space variables of the

opposite Grassmann type to lb, ,

satisfying Ii)', Hb j+ 5b, ——
0 for g, bosonic,

1 for lb, fermionic,

P is a gauge-fixing function .
When quantizing this system, we should according to
Dirac project out physical states by

f, ~
phys) =0 Va . (2.5)

The great advantage of the BRS quantization procedure is
that one may exchange all the conditions above with a sin-
gle one,
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Q ~

state) —=0 . (2.7)

That this covariant quantization using conditions (2.6) and
(2.7) is equivalent to the constraint conditions (2.5) has
been shown by Marnelius in a simple fashion in Ref. 6,
based upon the formulation of Fradkin and Vilkovisky. I

In the Appendix we will give a review of the basic points.
Since Q in its structure contains all information about

the physical states of the system, the nilpotency of Q,
(2.7), is a crucial test of the quantum properties of a classi-
cal system. We shall verify this for the bosonic string,
first for the "old" theory and then for Polyakov's modi-
fied theory.

All other Poisson brackets are zero.
Using the general expression (2.3), we may now con-

struct a BRS charge Q. One slight difficulty here is that
the structure coefficients Ub, are differential operators, as
can be seen from (3.4). The BRS charge may anyway be
found to be

Q= f da(L, q'+L q'+a, a,q'q' W,—a,q'q')

(3.5)

with the desired property [Q,QI+ ——0. The coordinates
q', g, H~, and %2 are of odd Grassmann type since L+
are even. They satisfy thus

III. THE BRS FORMULATION OF THE ORDINARY
BOSONIC STRING [ri', ri] +=[v]', H J]~=[M;,H J] +=0 (3.6)

For the ordinary string we have the Lagrangian density
(taking X—= 1 for simplicity)

W (r,o)= ,'& gg —pc}~—"c}py„, (3.1)

where g p are to be treated as three dynamical variables
(g P=g~). a=0, 1, c},=a„c},=B, and g=detg p. This
Lagrangian density implies the constraints

pgap=o

p 3 =p ~13

p'+x'=o
where p& are conjugate to y" satisfying

Iy"(cr),p„(cT')], p 5"„5(o ——o')—

(3.2)

L (+v, o ) =—4 (p +y') =0,
L (7,o ) = —,

'
(p —y'.) =0 .

(3.3)

L+, L, and pg p constitute a set of first-class constraints
satisfying the algebra

and pg p are conjugate to g p. The last two constraints
may be rewritten as

and the fundamental Poisson bracket:
[g'(a), ~J(o')j+, y =515(o —o'}. Here we have im-
posed the conformal or orthonormal (ON) gauge

aP ( ) uP 00 11 1
01 () (3.7)

Ho(r) =0 (3.8)

which implies that in order to find a BRS-invariant Ham-
iltonian, we need only the last term of (2.4),

(3.9)

which is automatically BRS invariant due to the Jacobi
identity. Within the ON gauge the ordinary part of the
Hamiltonian is given by

H(r)= —, f do(p +y' )= f do(L++L ) .

(3.10)

where p is an arbitrary function, so that the constraints

pg p are eliminated.
From the Lagrangian density (3.1) we find the Hamil-

tonian

[L+(a),L+(o')J =[L+(o)+L+( )]a5(o cr'), —
Bo'

[L (a),L (a')I = —[L (o)+L (o')] 5(o —a') .

Therefore we must specify P so that the bosonic part of
H~ is H. Taking

p= f do(H)+&2) (3.11)

(3.4) we find

I

H~ ——IQ, QI = f do f da'I(H)+H )(2),a( Lg+' +Lg +~( l'q7~pg g )(a')I+

= f do(L++L +2M, g' + H', 71' —2H2g —~2g')
0

=H + (ghost terms } . (3.12)

~ I )I '2 2'
g g 7

From (3.12}we get the equations of motion:

y"—y "~=0,

(3.13)

These equations imply for the ghost coordinates

g'(r, o)=g'(g), g (r,a) =.g (g),
H (( o ) =rH )(g'), %2(r,cr) =Hp(g),

(3.14)

where /=~+a, g=r a The action in p—has.e-space coor-
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dinates becomes

S= f dr f do(p y+H g —A ~),
where

Hy= f dcTA y .

Varying S we find the boundary conditions

(3.15)

where

f dg e'"~g(g),2' (3.20)
i f— dg e'"~H(g),

[&(p ~(g )}+—g(g g') = ['))„,9' }+— i—5

(3.21)
a~~=a, ~=0,~,
(2%)dg' —2&qdg +dP')g' —dHpq )

~ () „——0 .
For all coefficients we have

L-n=Ln n-n=nn -n=~n . (3.22)
In order to satisfy these, we must take

g'=+g',
H1 ——+%2,

at o.=O, m., to get nontrivial q', q, P'1, and %2. This, to-
gether with the solutions of the equations of motion (3.13),
implies that

ri'=n(k» n'= (-+)n(C»

H) ——H(f), %2——(+)H(g),

where g and H are periodic functions of period 2m. We
may disregard the minus sign without any loss of generali-

ty.
We shall now Fourier decompose the BRS charge. The

constraints I.+ become just

L+(r,o)=L (g') = 1

2&

Using (3.17) and (3.20) we get a decomposition of Q:

Q g Ln i—n+ g g m~n)m)9 n ——m

8= —co m = —ce

(3.23)

We turn now to the quantization.

IV. QUANTIZATION OF THE ORDINARY STRING

Quantizing our system by i [ }+~[ ]+ (fi= 1), we g—et
the fundamental anticommutator for the ghost-mode coef-
ficients

~.l+=&, (4.1)

In terms of mode coefficients, we obtain an expression for
Q (::means normal ordering):

Q =:Q:+~80

L (r, o ) =L ((')= I
2m.

where

e —in/

(3.16)
where A is an infinite constant. We will renormalize this
expression by setting Aria ———prio, where p is an arbitrary
finite constant. This may be realized by the replacement

L„=f dge'"~L(g)

are the Virasoro coefficients satisfying the algebra

I L„,L I = i (n —m—)L„+

For the ghost variables we get

(3.17)

(3.18)

Ln Ln =Ln P&n,o— (4.2)

It is well known that the Virasoro algebra (3.18) does not
close at the quantum level due to the normal ordering. In-
stead we get

[L„,L ]= (n m)L„+—
n(g)= g ne

H(g) = g H„e
277 n = —oc

(3.19)
+ n (n —1)+2pn

This together with the quantized version of Q

(4.3)

g Lq. + g g mP&Z„
n= —oo m= —oo

00 (X)

X n'8 —n+ g m(~ g +q P )go —2 g meit g po

oo n —1

X M ( m )n —m 9 +nV n9nn—m~m+m~ngn g +my g„~ )
n=1 m =1

+ g g m(Q„+ P„=g Pt~t ~ )
n=1 m=1

(4 4)
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implies

[Q,Qj+= g n—(n —1)g„r}„
n=1

—g [ ,'n—(n 1)+—4n ]r}ngn
n=1

+4P g ng„ri„,
n=1

where the first sum originates from the anomaly in the
Virasoro algebra, the second from normal ordering the
ghost part in (4.4), and the third from adding the suitable
constant to L,p. Taking the terms together we find

r

D —26 3 2 D+2—4p
Q =T

6
n+

6
n '8n)n.

n=1

(4.5)

Hence the nilpotency of Q at the quantum level demands

fixing. Accordingly the theory still has gauge degrees of
freedom left, which are represented by the different ways
to span the genuine physical state space. The result is also
consistent with Polyakov s covariant quantization, name-

ly, that it is only for D =26 the conformal or trace anom-
aly is not present in the theory. Therefore any procedure
which can probe the consistency of the quantization and is
sensitive enough should end up with this result. We shall
now turn to the modified theory, taking care of the con-
formal anomaly.

V. BRS FORMULATION OF POLYAKOV'S
MODIFIED STRING THEORY

We will consider the full Lagrangian density

W(7.,o) = —,
' &—gg ~8~"Bpy„+CW~,

where C is a suitable constant different from zero. It has
been shown by Marnelius that the following local foIm of
W1 gives an equivalent formulation to Polyakov:

D =26, P= 1, (4.6) W~(X)= 2
+—gg 8 XBpV++ —gRX+p, +—g

where P may be identified with ap, the intercept parameter
of the conventional theory.

The result (4.6), which coincides with Ref. 4 shows that
the covariant quantization in the BRS formulation is only
consistent if D =26. This result is well known in the old
treatment of the bosonic string. However, the standard
way of deriving it is to check the closure of the Lorentz
algebra in the physical subspace, i.e., by specifying the
gauge completely like the transverse gauge. Thus the BRS
result is more general since it only requires the ON-gauge

I

if in the ON gauge g ~=p(~, o )vP~ we take

Xp=X —1~=0 ~

(5.1)

(5.2)

Here g is an auxiliary scalar field, R is the curvature sca-
lar, and p is a constant. The condition (5.2) breaks, as we
shall see, the reparametrization invariance. But at the
quantum level it may be restored.

Imposing the ON gauge, we may write the action

S= f dr f do[ ,'B~"8—y„+C(—,'8 XpB Xp —,'B~B q—&+@e+)] +( boundrayterms),
0

(5.3)

where

1IlP~ +0

[Xp(o ),&r(~') j,=~=&(~ ~'), —

[p(o),m(o') j, g 5(o cr') .—— — (5.6)

%'e also find the following two first-class constraints:

L ~(& a) = 4(p+y') +C [—F+(Xp) Gy(y)l—
L (~,o):——,'(p —y') +C[F (Xp) —G (tp)],

where

(5.4)

The constraints (5.4) satisfy the algebra of reparametriza-
tion invariance

[L+(o},L+(o') j =(L+(o)+L+(o')) &(o' —o'),
Bo

(5.7)

Px
F+ (Xp) =—4 +XpC

Pi+ +Xp
[L (o),L (cr') j = '(L (o }+L (cr'—)) &(oo'), ' —

Bo

F (Xp)
—= —,

G+(q ) —= —,
'

Px
C Xp

7T +C

Pg
Xp

(5.5}

analogous to (3.4). This holds as long as the constraint
(5.2) is not imposed. We will not for the time being con-
sider this constraint. It will be imposed later.

Now because of the similarities with the previous sec-
tions, it is straightforward to do the BRS formulation.
The BRS charge of (3.5) is replaced by

G (g) —= —, —+p' + —,'p e'P . Q= f da(L+rI'+L rj +&)B)g'q' —%28)rl g )

(5.8)
P& is conjugate to Xp and m is conjugate to y satisfying the
fundamental Poisson bracket relations and the Hamiltonian (3.12) by
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K~(r)= J do(L+. +L +2&,iI'+HiiI'
—2%2iI ' —%2i) ) . (5.9)

Q= g Lq„+ g g meqq„
n= —oo m= —oo

(5.19)
The equations of motion for y&, p&, and the ghost vari-
ables are identical to those in Sec. III. For the additional
variables we find from (5.9)

However, owing to the anomalous term in (5.18), we find

1 1
Xp ———Pg, jr= ——m,

C ' C

x ——CXp' ~= —Cy" +p'e+

=- &Xp ——0, y=p e+, —=~p —~1 ~

(5.10)

JQ, Qj+ ——C4iri g n i) „iI„&0.
n = —oo

(5.20)

Thus the nilpotency of Q is broken. We shall see in the
next section that at the quantum level it may again be re-
stored for a specific value of C.

So we see that Xp satisfies the same equation of motion as
the y's, while y satisfies Liouville's equation.

As boundary conditions we take~' '9 (these boundary
conditions were first considered in Ref. 8)

i)iy= —iM&2e~ at'o =0,
e,q =p&2eq' at o=~,
B]gp——0 at o.=O, m .

The set of Eqs. (5.10) together with the boundary condi-
tions (5.11) imply

VI. QUANTIZATION OF POLYAKOV'S
MODIFIED STRING THEORY

From (5.17) we see that L„consists of two parts

Ln=Ln+~n ~ (6.1)

where M„are the Fourier coefficients of CG (g). Equation
(5.18) then implies

[M„,M~ j = —i(n m)M„+—+i4irCn 5„

(6.2)

L+(~,cr)=L(g) =0,
L (r, cr) =L(g) =0,

where [L (g') is identical to the one in (3.16)]

L(g) —=L(g)+C[+(g) —G(g)),

L(g ir) =L(g+ir—),

+(g) —= —,
' g'(g)+g'(g),

G(g) =4[h'(g)]'"a, 'I [h'(g)]-'" j .

(5.12)

(5.13)

[M„,M ]=(n —m)M„~ —4mCn &„

Defining the operators L„by

(6.3)

L„=L„+M„—P5„p, (6.4)

When we now quantize our model, we must again normal
order. For the ordinary Virasoro coefficients this leads to
the expression (4.3). As for the coefficients M„, we unfor-
tunately do not know if (6.2) is modified by the normal-
ordering procedure, since the Liouville theory has not yet
been quantized exactly. Instead we must make an as-
sumption, namely, that the algebra (6.2) is unchanged at
the quantum level:

g(g), h(g) are arbitrary periodic functions of g of period
2m. Following the steps in Sec. III, we now Fourier
decompose L:

where p again is an arbitrary constant due to the normal-
ordering ambiguity, we find from (4.3) and (6.3)

[L„,L ) =(n —m)L„+
L(P g L e ing—

2' n= —oo

where

L„=f dge'"&L(g)

(5.14)

(5.15)

n(n —1) 4irCn +2n—P 5„

(6.5)

satisfying the Virasoro algebra

[L„,L j = —i(n —m)L„+ (5.16)

We will now impose (5.2), which turns our constraint into

L(g) =L(g) CG(g) . — (5.17)

[L„,L j = i (n m)Ln+—~+i 4m—Cn 5„.(5.18)

which means that the reparametrization invariance is bro-
ken. For the BRS charge we find a mode expansion simi-
lar to (3.23)

Using (5.7) it is straightforward to show that expression
(5.16) will get an additional term, so that

2 D+24P—
6

so that the nilpotency of Q is restored at the quantum lev-
el if

(6.6)

D —26 D —2
48m.

' 24
(6.7)

This expression is of the saine form as (4.3) except for the
term containing the constant C. The ghost part is identi-
cal here to that in Sec. IV. Thus we will only slightly
modify (4.5), the nilpotency condition of Q

D —26—48m CQ= —, n'
n=l 6
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and thus we find that the anomaly vanishes if and only if
D=26. Thus the value of the anomaly constant C is iden-
tical to that of Polyakov. ' Marnelius obtained the same
values for both C and P. But whereas this was done by
checking the Lorentz algebra in a light-cone gauge, we
achieve the same results in a truly covariant way.

Q i phys) =0 .

The space P' consists of two parts &0 and P'~..

~

phys)0=
~
phys) E&0. (phys

~

phys)0 ——0,
~
phys) ~

=
~

phys) EW~. ~(phys
~
phys) ~

——C,

(A 1)

(A2)

VII. CONCLUSIONS

We have in this paper made a covariant quantization of
the bosonic string, first without bothering about the trace
or conformal anomaly and then taken it into account in
the interpretation of Marnelius. The 8RS approach
shows that, for the standard theory, it is only possible to
maintain the nilpotency of Q, at the quantum level, if
D=26 and with the intercept parameter e0——1. Thus a
consistent quantum theory is only found for D=26. The
result coincides with that of Kato and Ggawa, but
whereas their treatment starts in representation space, ours
starts in phase space. Our Hamiltonian (3.12) corresponds
to a BRS-invariant Lagrangian:

if Q is Hermitian.
Define a physical operator I as an operator for which

F
i phys) =

i
phys) .

The physical operators are of two types:

2 e IF(:2
~
phys) )

——
~

phys) ),
8 E [F]:8

~
phys) =

~
phys)0,

(A4)

(A5)

where C is some constant, which is positive if we have
unitarity. From (Al) and (A2) we see that a zero-norm
physical state

~
phys )0 may be found by

~
phys)0=Q

~

state)

W(r, o)= ,
'

(y y' —)+r7,—(rl' 2g' ) r—II''—
+q,(q'+ 2rl')+ rl,'q', (7.1)

(Al) and (A3) implies that the operator

F:[Q,C]+— (A6)

where g are auxiliary ghost variables. The Lagrangian
(2.14) in Ref. 4 is essentially the same as (7.1) after the
functional integration over g ~. Notice that the gauge fix-
ing of g ~ is trivial, i.e., only represented by a 5 function.

Taking into consideration the conformal anomaly, we
find that a consistent quantization in the BRS formulation
is possible if the anomaly constant is given by
C=(D —26)/48m and P=(D —2)/24. This holds under
the assumption that the algebra of the Liouville Fourier
coefficients M„ is unchanged at the quantum level. This
value of C agrees with the result of the covariant quantiza-
tion of Polyakov' in the path-integral formulation, name-
ly, that it is only for D=26 the conformal anomaly van-
ishes and that an exact quantization seems plausible for
D ~26. The question of unitarity and the connection to
the standard theory in the BRS formulation of Fradkin
and Vilkovisky is established using the forrnal proof of
Ref. 6.

is a 8 operator. C may be any operator.
From the Jacobi identities, we find that the 8 operators

defined by (A6) form a closed algebra

[a„kb],=C.'bk, . (A7)

=Lk + g (2k n):9'„gb— (A8)

&k —=[QXk]-= g [I..Xk] 8 . , (A9)

~III 00

k
= [Q nk]+= X— n8n8k n (A10)

For the ordinary string theory in D=26, we have a Q
operator given by (4.4), from which we find the following
8 operators:

&k=[Q ~k]+
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APPENQIX: CONNECTION BETWEEN THE BRS
QUANTIZATION AND THE CONVENTIONAL

COVARIANT QUANTIZATION

We shall here explicitly exhibit the connection between
the 8RS formulation and the conventional covariant
quantization. The approach is basically that of Ref. 6.
With the correspondence to the conventional treatment es-
tablished, the unitarity is secured.

The physical space W of the whole space of states is
projected out by the condition

where gk are a complete set of gauge-fixing operators to
I.„. In the BRS formulation of the string, the B„' opera-
tors are the true gauge operators of the theory, which un-
like tPe Virasoro operators satisfy a closed algebra, provid-
ed Q =0.

The physical space of the ordinary string theory is
spanned by the so-called DDF (Del Guidice-Di Vecchia-
Fubini) operators. ' Since all these operators commute
with I.„ they also commute with B„and the string part of
the physical space is unchanged. Our task is now to show
that these states are coupled to a trivial ghost state.

Using (A8), we see that we may rewrite Q as

00 00 ~III ~III
Q= g L.8 .+ g (~ +~ )(~. +~ .)

III
+&F80 + g m710 .
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From (A9) we get

[L,Xk]-g- I phys) ~
=

I
phys)0 .

Clearly since Pk fixes the gauge completely, we have

[L„,Xk]
~
phys), =(invertible matrix)

i phys) i

which means that

8 ~ I phys & i = I
phys &0 .

~III
This implies that 8„ i phys) ~

——0 so that from (All) we
find

operators so that

L, Q „ i phys) |——0 Vn .

This should be satisfied together with the equations
~II

|&phys
~
Bk

~
phys) ~

——
~ &phys

~
Bq ) phys) ~

~III
=|&phys I +k

I
phys&i=O

A solution to all these equations is

rl„~ phys) ~
——0, n )0,

L„~phys) |——0, n )0,

(A14}

(A15)

O=Q
i phys) &

00 00

L„rj „+ g m80 I phys&i
n= —oo m=1

and thus since g &m is an infinite constant

which means that the physical space is separated into two
parts, a string part and a ghost state:

~
phys)i ——

~

phys)|'""s
~

0)'" ', (A16)

where
~
0)s""' is just the ghost vacuum state. Notice that

for the Virasoro operators, (A15) and (AS) imply
80 I phys&i =o, (A13}

~& phys
~ L„~phys)& ——0 Vn . (A17)

L„rl „ i phys)& ——0.

The operators L„ form a complete set of independent

This establishes that the conventional treatment of the
string is contained in our BRS formulation and thus uni-
tarity is secured.
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