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We calculate the effective action in Polyakov s fermionic-string theory in a manifestly supersym-
metric formalism, including the effects of string boundaries. Supersymmetry causes divergence can-
cellations such that no Liouville interaction term is generated by renormalization of the string fields.
For open surfaces, supersymmetry is spontaneously broken by the presence of the boundary, leading
to a linear divergence proportional to the length of the boundary.

I. INTRODUCTION

A string is the natural one™dimensional extension of the
classical point particle. Whereas a particle tries to mini-
mize the length of its world line, the string moves so as to
minimize its world surface area. Surface dynamics appear
in many contexts, in particular domain wall fluctuations'
and dynamics of large Wilson loops in non-Abelian gauge
theories; the low-energy excitations of the QCD flux tube
connecting two quarks are well described by a string
model (the "dual" model).

A particularly interesting class of string theories arises
when fermions are glued to the string. Such theories are
found in X = oo lattice gauge theories, the three-
dimensional Ising model, and dual models. The struc-
ture of the string is enriched by the polarization informa-
tion carried by the ferrnions. For instance, the fermionic
dual-model string may be considered as a one-dimensional
chain of fermionic partons with nearest-neighbor interac-
tions.

Because of these many-fold applications, an under-
standing of the partition function or quantum mechanics
of strings is of considerable importance. However, the
quantized string is extremely singular since the zero-point
oscillations of the string modes cause the mean displace-
ment to diverge. Early attempts at formulating the quan-
tum theory had many inconsistencies —they were only
consistent in unphysical spacetime dimensions (10 for the
fermionic string, 26 for the bosonic string), the ground
state was a tachyon, Green's functions were only known
on-shell, etc. Because of these difficulties, the subject lay
dormant for many years. Recently, interest has been re-
vived by the work of Polyakov on the path-integral
quantization of an action originally proposed by Brink, Di
Vecchia, and Howe, and by I3eser and Zumino. The
basic string variables in this model are a set of coordinate
functions X"(z) describing the location of the string world
sheet in spacetime. Here the index p runs over the direc-
tions in the d-dimensional embedding spacetime and z is a
set of intrinsic coordinates on the world sheet. Coordinate
reparametrizations leave the physical configuration of the
string unchanged, thus we should make the action invari-
ant under general coordinate transformations of the z's.
This may be achieved by coupling the Lagrangian covari-

antly to a metric g,b on the intrinsic coordinates. The
simplest action that we might write is

S = J d z~gg' c),X"t)bX„.

The equations of motion derived by varying both g,b and
X" are just those which generate minimal area surfaces. '

Polyakov has evaluated the path integral for this action in
the gauge g,b

——e 5,b. The local scale factor P drops out
of the action (1.1), allowing an explicit evaluation of the
functional determinants arising from gauge fixing and in-
tegrating over X". The only dependence on the field tb lies
in the regularization of the determinants; this is a short-
distance effect, and so the effective action calculated from
these determinants is local:

S,ff= f d z[(Btb) +p e ~j+ boundary terms .
48m

(1.2)

Thus, the consistency of the quantized bosonic string in
other than 26 dimensions should be restored by the
dynamics of the P field. An elegant formalism has been
developed for the analysis of the bosonic string with arbi-
trary world-surface topology' which exploits the complex
structure of two-dimensional mani folds and employs
heat-kernel methods for the determinant calculations.

The most natural way to introduce fermions into the
theory is to supersymmetrize it. The action (1.1) becomes
two-dimensional supergravity coupled to a set of d scalar
supermultiplets. The effective action may be calculated in
a manner analogous to the bosonic string using the corn-
ponent fields g,b, X", and their partners ttt, and Xg (a is a
two-dimensional spinor index). The present work was ini-
tiated with the goal of using superspace methods in order
to maintain manifest supersymmetry in the calculation.
Indeed we have found that the elegant calculus of Ref. 10
has a natural superspace generalization which clarifies the
discussion of cancellations due to the supersymmetry,
especially for string surfaces with boundaries.

In Sec. II we review the superspace formulation of
two-dimensional supergravity and introduce the generali-
zation of the complex tensor calculus and heat-kernel
methods of Ref. 10 to the supersymmetric case. In Secs.
III and IV we analyze the fermionic-string path integral
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The superspace formulation of two-dimensional super-
gravity is highly redundant. All two-dimensional mani-
folds are conformally Aat, and so describable locally by a
single superfield yet the vierbein ez comprises 16 super-
fields, and the gauge freedoms of local diffeomorphisms
and rotations remove only 5 of these. The other redun-
dant components must be removed by constraints on the
vierbein. Such constraints can be applied covariantly by
fixing some components of the torsion tensor Tzz, defined
by

l ~A ~ ~B I ~AB ~C ++AB~ ~

where

(2.1)

~A =eA ~M+0AM (2.2)

is the covariant derivative and RAB,
'

pA, and M are the
curvature, spin connection, and Lorentz generator, respec-
tively.

Following Ref. 13, we choose the constraints

Tap 2~3 ap ~

T af3
——0,

T,'I, ——0 .

(2.3a)

(2.3b)

(2.3c)

The first of these ensures that the supersymmetry alge-
bra IQ, gpI =2iy~pP, is maintained, and enables one to
express e, in terms of e . The next two constraints allow
one to determine the spin connection pA in terms of the
vierbein just as (2.3c) allows one to solve for the spin con-
nection in ordinary general relativity. One may verify
that the vierbein of the conformal form

e =e&D, e, =e ~[8, +iy, (D P)Dp] (2.4)

using this formalism and find results which differ from a
previous calculation in component fields. " In particular,
the p term in (1.2) corresponds to a divergent cosmologi-
cal constant in the original theory (1.1); in the supersym-
metric theory, this divergence cancels between bosons and
fermions and no such term is generated (this result was
first obtained in Ref. 12). The presence of a boundary on
the world surface spontaneously breaks the supersym-
metry, so that near the boundary this cancellation fails
and generates a divergent boundary cosmological term

dx e ~("'. Thus, at least in the interior of the
am

parameter-space manifold the action is that of a free field.
Section V contains a discussion of these results. Three ap-
pendices are included: Appendix A lists the superspace
notations and conventions, Appendix 8 sketches the deter-
minant calculations used in Sec. IV, and Appendix C
derives the effective action for an alternate choice of
boundary conditions on the string fields.

Much of the analysis presented here is a direct corollary
of the investigations of Ref. 10. Some details only
touched on in the following are carefully discussed there,
and the reader may find an understanding of that paper
helpful.

II. TWO-DIMENSIONAI. SUPERGRAVITY

P~= —2y~ Dpe, fg = —egBbe

The most general vierbein satisfying (2.3a)—(2.3c) is lo-

cally gauge equivalent to (2.4) because e, is determined
from e~, and (2.3b) provides two constraints on e . This
leaves six superfield degrees of freedom: two-vector and
two-spinor fields generating diffeomorphisms, one field
generating local rotations, and the conformal factor g.

Having chosen a gauge in which the vierbein takes the
form (2.4), we may classify the set of tensors on the mani-
fold which carry tangent-space indices. This is most con-
veniently done in complex coordinates

1 . — 1
x = - (xt+ixq)~ x= - (xt ixz—) ~v'2 V2

8= (8t+i8p), 8= (8t —i82) .1 . — 1

2 2

(2.6)

Tensor indices may be freely raised and lowered with the
tangent-space metric

0 1

6,b —— 10, 5P——
0 1

—1 0 (2.7)

Thus, an arbitrary tensor with raised and lowered x, x, 8,
and 8 indices may be turned into one with only x's and 0's

by raising and lowering indices —a raised x is equivalent
to a lowered x index, etc. The y matrices are Clebsch-
Gordan coefficients between vectors and spinors, so we

may use them to replace an x index by two 8 indices (only

yBB
——yBB

—V 2 is nonzero in these coordinates).
Tensors are classified by their transformation law under

the tangent-space group O(2) =U(1). A spinor X
transforms as

X' e-'~"X', Xg e'~"Xg, (2.8)

V'B=e~D +n(D eb)=e '" " D e"

V"=e&D n(D e&-) =e'"+-'—~&D e--(2.10)

Defining an inner product on u " by

(TS)= f d ze 'T*S, TSHw" (2.11)

we see that formally Ve ———(V'B), neglecting boundary
contributions (these will be discussed in Sec. IV). Note
that Vg maps M "into M "+, whereas V& maps M "into

We may define two distinct Laplace operators
g(+). ~~n ~~n b

under a rotation by angle P. Thus, a general tensor with

n+ raised 0 indices and n lowered 6I indices transforms
like a spin-(n+ n)/2 ob—ject. The rotational transfor-
mation properties of a given tensor depend only on the
different n+ —n, so all tensors lie in one of the spaces
u "defined by

u "=
I T

~

T +e'"~ 'pT under —a rotation by angle pJ .

(2.9)

The covariant derivatives (2.2) on u " take a particular-
ly simple form in the basis (2.4),

indeed satisfies (2.3a)—(2.3c) and the spin connection is
determined to be g(+ ) p(n + & )p(+) g( —) p(+ —& )p(&)

n g 8 ~ n 8 I9
(2.12)
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In Sec. III, we will find that the effective action for the
fermionic Polyakov string is determined by the deter-
minants of these Laplacians. Although we cannot calcu-
late detA for a general vierbein, we may calculate
5(detb. )/5g and hence determine the dependence of this
quantity on the conformal factor.

One conventional definition of the determinant of a La-
placian 6 is

~ dtlnsdet'b, = — str'(e ' ),
e

(2.13)

where the prime indicates that the operation is to be car-
ried out over the space orthogonal to the zero modes of 6
(for a definition of sdet and str, see Appendix A). The
lower limit e of the integral over t regulates the diver-
gences of the determinant by cutting off the large eigen-

—~a(+)
values of the Laplacian. However, the heat kernel e
does not have a diffusive behavior and does not tend to
zero as taboo since the spectrum of 6„ is not bounded

gg(+ )

below; thus, e " has spurious poles and divergences in
its behavior even in flat space. To remedy this situation,
we calculate instead

ln sdet'5'„—'= —, ln sdet'(6„' —')

ing the equations of motion and boundary conditions for
the string fields as well as the Faddeev-Popov determinant
for the conformal gauge (2.4). This will set the stage for
the computation in Sec. IV of the effective action coming
from the integration over the gauge group and string
fields.

The action for the string may be written

S=—,'2 f d ze 'e X" e~X"

+B —, f dze 'R+ f dsk

e =sdetezM (3.2a)

R = —,'y pV V—p —,'y' ——pV p—p, (3.2b)

ds k= f dx f d Oe '( —4ny —Pe n Vpt') .

(3.2c)

+C f d ze '+D f ds+E f dsk, (31)

where p = 1, . . . , d (the dimension of the embedding space
of the string), M is the parameter-space manifold, X" and
the unconstrained components of e~ are dynamical vari-
ables, and

~ dt
str e

e
(2.14)

Proceeding along the lines of Ref. 10, one may prove that

~(g(+ ) )2

5 ln sdet'b, '„+ '= ( —)"[2(n + 1)str'(6ge "
)

which is perfectly well behaved since (6'„-') = ——,'E in

flat space. If we perform a variation of 6'„+' with respect
to the conformal factor g, we find

5b.'„+'= (n +2)5/6„'+'+ n b, '„+ '5P —2n V-'"+ "5/V'"'

(2.15)

Here n' and t' denote the unit tangent and normal vectors
to the boundary. Possible terms involving the torsion Tz~
may be expressed in terms of R by using the constraints
(2.3) and the Bianchi identities. ' Thus, the action (3.1)
includes all the terms which are allowed under the re-
quirements of general covariance and renormalizability.
The B term in (3.1) is the superspace version of the
Gauss-Bonnet invariant

f d ze 'R+ f ds k =2vrX(M), (3.3)

where the Euler characteristic X(M) depends only on the
topology of the manifold:

X(M) =2—2(No. of handles of M)

+2n str'(5ge "+' )], (2.16) —(No. of boundaries of M) . (3.4)
where the different signs arise from the fact that we are
taking the strace and not the trace. Equation (2.16) is
tractable because it only involves the local structure of the
manifold; a diffusing particle cannot travel far in an infin-
itesimal time. We defer calculation of the determinants
until we have properly treated the boundary conditions on
the spaces M ".

III. THE FERMIONIC STRINCi

The extension of the action (1.1) to the fermionic string
was first considered in Refs. 8 and 9. In this section we
review the description of the string in superspace, ' deriv-

Since (3.3) is metric independent, it will have no influence
on the dynamics of the string. We will find that super-
symmetry prevents renormalization of the C term for ei-
ther Neumann or Dirichlet boundary conditions on X".
The D term is the length of the boundary in superspace;
however, it is only supersymmetric if C=D." Nonrenor-
malization of C implies that either D is not renormalized,
or supersymmetry is broken. Which of these possibilities
is realized depends on the choice of boundary conditions
for the components of X" (see Sec. IV).

Variation of the action yields

5S=A d ze '[5X"boX& (6H' 6Hp) eX".e —X"+5H—pe X—" e X"+5H ~ X" ~gX"]
M

+C f d z(5H 5H, )+ boundary terms—, (3.5)
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where

ao ———ee e 'e

5' =(5' )eM

(3.6a)

(3.6b)

We now must discuss the measure and gauge-fixing
determinant for the vierbein. Since e, is determined from
e~, we look for the most general metric on the space of
eM.

We concentrate on the 3 term which will result in the
"classical" string equations of motion. It is straightfor-
ward to show that

II5e II'= f d'ze '(5co5 +a5c5D+b5c5D)H Hp

(3.14)

5Tgg Hg T——Dg —TggHD+( —)' Hg T~D+V~Hg

—( —)' V~H„+ (H„pD —5$„)Mz

which, combined with 5T~p ——0, yields

H.'=(y'y. )~t.' 'y. t'—V.—H~ .

(3.7)

(3.8)

In the first term, 5&~5 ~=5&5~~ —5~&55 implies that only
the 5d, 5 ~ term is independent. The constraints (2.3) im-

ply, through their variation (3.7), that ye~HI is related to
H~, y~~H~, and H~. Thus, the only independent terms
are

][5e.[('= f d'z e-'[H'H. „+a(y.' H$)'+b(H. )'] .

(3.15)

Substituting this result into (3.5) yields the equations of
motion

We fix the gauge by specifying

ea=e ea ~
(3.16)

S~~=O, (y'y. ) t'V~& V,X&=. 0. (3.9)

(3.10)dxd 05X"8 DX"=0,
BM

where n' is a unit vector normal to the boundary. Let

X(x,8)=3 (x)+i 8 X(t)+i 8 F(x) . (3.11)

Equations (3.9), when written in component fields, repro-
duce the usual fermionic-string equations. In contrast to
the bosonic case, an algebraic solution for the vierbein in
terms of the matter fields is not possible due to the neces-
sity of using tangent-space indices.

Now we turn to a discussion of boundary terms. The
boundary term in (3.5) arising from the matter field varia-
tion is

with e a suitable background vierbein satisfying the con-
straints (2.3). Next let us decompose (3.15) into gauge
transformations (diffeomorphisms), local tangent-space
rotations, and conformal transformations. The variation
induced by a diffeomorphism 5z =A, tangent-space ro-
tation W, and conformal transformation g is

5e„BM——[A B&,ez BM]+ WMqe~ 8M+pe~ BM, (3.17)

from which one may show

H~ =A Tcw —VaA +(A Pc+ W)Ma+$5w . (3.18)

Substituting (3.18) into (3.15), the Jacobian for the change
of variables from e to g, W, and A" may be computed to
be

A =0, gg ——+ nx
' 1/2

on BM (3.12)

Then there are two choices of boundary conditions for
which (3.10) holds:

g( M)

a(q, W, A")

vS 0
stuff

Q~a

and
1/2

nx
n RA=0, g~ ——+ g& onBM,

n„
(3.13)

=(sdetQ Q)' (3.19)

where n„, n„are the components -of n in the basis (2.6).
These conditions are sufficient to ensure that (3.10) van-
ishes provided the variation 5X also obeys (3.12) and
(3.13). The choice of boundary conditions depends on the
physical problem we wish to model. The Aucutations of
surfaces with a fixed boundary provides a toy model of
the Wilson loop. When we vary the action, the boundary
of the string is held fixed; thus, (3.12) is the appropriate
boundary condition. In the case of the dual model, the
end of the string is free; hence, the string variables satisfy
the condition (3.13). The Neumann boundary conditions
(3.13) are just those of Ref. 11, where they are derived by
performing supersymmetry transformations on n.BA =0.
We will complete the discussion of the boundary condi-
tions on X~ below when we discuss the problem for fields
belonging to any of the spaces M".

= f d ze '(A Tc VA )(A T~~b ——V Ab)

f d z e A (Tc +5cv )(TD~b 5Dbva)A

(3.20)

so that

(Q Q)cD=(Tc"+5cv )(TD b 5Dav ) . —(3.21)

This expression may be simplified by use of the formula
r

B
sdet C D

——sdet(A BD 'C)sdetD, — (3.22)

where a and b are the constants in (3.14) and Q~~ is deter-
mined from the first term of (3.15):
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where the block form denotes any partition of the bosonic
and fermionic variables. Choosing D = (Q Q)zs, we find

sdetQ Q =constXsdet[V (1'dl'e)~Vpl & (3.23)

(3.25) is

Smatter+ghost d2Z e~ —l(entry. &~ y+ g q)
4m

which, when evaluated in the complex basis (2.10), be-
comes

+ boundary terms, (3.26)

sdetQ Q =constX(sdethz )(sdetb, 2 ) . (3.24)

S ff[g]= —, ln(sdethz+ 'sdetb, ' 2') ——ln sdetb, o

+8 X(M)+C J d ze 'e

+E j dsd Ok.

The contribution of the string and ghost determinants in

We can now write a complete expression for the string
effective action obtained in the conformal gauge (3.16)
after integrating over the string fields X", diffeomor-
phisms A, and local rotations 8':

in agreement with Polyakov's result. ' We will obtain
this result, and its boundary corrections, in the following
section.

IV. THE STRING EFFECTIVE ACTIGN

We will now evaluate the determinants of all the Lapla-
cians (2.12) using (2.16). We will thus find the g depen-
dence of the determinants in (3.25). The first step in this
program is to find the appropriate boundary conditions on
the tensor spaces u " on which the Laplacians act. The
analysis is similar to that of Ref. 10. Define the tensor
space W" as the direct sum u "eu " along with the
corresponding differential operators D"=Vg V&

" and
I, ' —'=6' —'@6' '. First note the identity

(txs&, D"@2)—(D" Ctt, @2)=2Im f ad Oe C&, iW28n tItz for Ct, ES"+', @2&S". (4.1)

We would like the right-hand side to vanish, for then the
operators D" would have well-defined adjoints. This will
define the proper boundary conditions for W "+' in terms
of those for W ". If we denote the components of P"H u "
and /by

P"=3"+iOX"+i OX "+iOOF",

ttr=ttr+iOri+iOri+i 88p,

then the integral on the right-hand side of (4.1) is

0=1m de&'2t [—~ -'"+'7 "+X-'"+"~"
BM

+—g —(n +1)g n]e —P (4.3)

For ihe present discussion we choose coordinates in which
BM is the x& axis, so that n = —n„. The boundary condi-
tion (3.12) X =+X implies A'=+3 ' and g=+g from
the first and last terms of (4.3). Using the second term we
find g 2 +y —2

Additional conditions may be found from the require-
ment hatt„P" H~ "; for instance, we find that F" and 3"
obey the same boundary conditions because A„maps the
F" part of the space u " into the 3" part of that space.
We also need Vttg" Hu "+' and V&/" H~ " '; for in-

stance, the constraint g =++ implies 0 g '=a.g
Some boundary conditions are dictated by physical con-

siderations. Diffeomorphisms of the coordinates x and x,
which belong to the space W, must map the boundary
into itself. This means that the normal component of the
vector field specifying an infinitesimal diffeomorphism
must vanish on the boundary, resulting in the boundary
condition A =2 for our choice of coordinates. Also,
conditions (3.12) or (3.13) are required by the variational
problem for X". Starting from physical conditions such

as these we can generate boundary conditions for all the
spaces W" through the requirements given above. We
thus find, for n ~0,

(boson)" = (boson)

t)„(boson )"= t)„(boson )

( ferm ion )"= + ( fermion)

t)„-(fermion)" = +t)„(fermion)

(4 4)

5A = (~X +~X ),
5X = (~2mB A +—eF ),
5X =V2Ãtl„A +FF

5F = t ~2( E t) —X —E't)nX )

(4.5)

from which we find the additional conditions"

=0 if n.BA =0, (4.6)

ol

nBF =0 if A =0 .

where (boson)" and (fermion)" denote the bosonic and fer-
mionic parts of P", respectively. These are just the mixed
boundary conditions of Ref. 10.

For ~ these boundary conditions are replaced by
(3.12) or (3.13). By requiring invariance under supersym-
metry transformations e which preserve BM, namely
e=+e, we may find a complete set of boundary condi-
tions for the space u . The transformations of the com-
ponent fields are
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ia„x'=ax', —ia„x'=~x',
(4.7)

This last condition violates the requirement hoP Cu
that is, the component equations of the eigenvalue prob-
lem b,pP =A,P are

boundary conditions; we sketch this analysis in Appendix
C.

If we let G(z&,z2, t) be the bulk heat kernel, then in the
coordinates in which BM is the x

&
axis the full heat kernel

on the spaces P'", n&0, is

OA =A,F, F =L4

which have no solutions unless A and F" obey identical
boundary conditions. The correct boundary conditions on

are thus either

+Neumann
G~(zi, z2, t) =G (zi, z2, t)+ G (zi, z2,'t)

with z =(x,O)~z'=(x, O) . (4.10)

a'=F'=0, X=+X, a„X=+a.X (4.8)

or

nBA =n BF =0, g=+g, (3+=+3 g . (4.9)

These boundary conditions spontaneously break super-
symmetry and will give rise to nonsupersymmetric boun-
dary terms in the effective action. Although (4.8) and
(4.9) seem to be the most natural choice, it is possible to
choose supersymmetric boundary conditions (3.12), (3.13),
and (4.6). In this case Ap would not have eigenvectors be-
cause b,oP Ku; nevertheless, (b.o) P Hu and, there-

—&(&o)
fore, the heat kernel e appearing in (2.16) is well de-
fined. The derivation of the effective action given below
may thus also be carried through for supersymmetric

1 —(&, —&2) /4&
Gp(z&, zz,'t) = e 5(8( 82) .

4mt
(4.11)

The 5 function in 8 space greatly simplifies the calcula-
tion compared to the bosonic case [in particular,
Gp(z, =z2) —=0 so the leading divergence cancels] and one
finds

One may verify by expanding in 8& and 82 that this ex-
pression satisfies (4.4). Since we are only interested in the
short-time behavior of the diffusion operator, a diffusing
particle only feels the local structure of the manifold and
hence (3.27) is sufficient to calculate (2.16). The calcula-

(+)tion is easily done by treating the operators 6'„—' locally
as perturbations about the flat-space Laplacian 8 /Bx
with bulk heat kernel

t(L„)
( )~ n+1

7T f d ze 'Rf+ f dsd Okf (4.12)

For some details of the calculation, see Appendix B. Inserting this result in (2.16) gives us

5 ln sdet'L„'+ ' = ( —)" 2(2n +1) f d ze 'R5$+ f dsd Ok5$

—2(n + 1)str[5$ Ker(L„'+')] 2n str[5$ Ker(L„'—+'& )] (4.13)

If we write out the Laplacians b, '„—' in components we see that, in a background field where f(x, O) =P(x), (i.e., only the
bosonic conformal factor is nonvanishing), sdetL„'+' is the ratio of the determinants of the Laplacians of Ref. 10 for n/2
and (n —1)/2. That the results agree is another check on the consistency of our approach.

The kernel terms in (4.13) are important when the topology of M is nontrivial. In this case, there are deformations of
the vierbein which preserve the gauge choice (3.16) but cannot be expressed as a diffeomorphism; i.e., Ker(b, 3 )&0. An
extensive discussion of these "Teichmiiller" deformations is presented in Ref. 10 for the bosonic string. We will not con-
sider this problem here, but a similar analysis should be possible with the formalism of this paper.

The determinant of &o———,
' [b,p+'+4p ] must be treated somewhat differently due to the boundary conditions. The

flat-space heat kernel is

G~(z, z';t)=Gp(z, z';t)+ e '" " ' '[(8—8') +28+8' ],~t
(4.14)

where 0+ ——0+0. The 0+0' part of the image term guarantees that the fermion components X+ and X obey opposite
boundary conditions. However, it also explicitly breaks supersymmetry: the bosonic superfield components obey the
same boundary conditions as discussed above. Using (4.14), we find

51nsdetbp ————,
' f d ze 'R5&+ f dsd Ok5& + f ds5&

l
g=o+ 2 fs ds n'5a50

l e=o ~

1 1

(4.15)

where P= 1 ( —1) for Neumann (Dirichlet) boundary conditions. Note that the area divergence cancels but not the per-
imeter divergence because of the nonsupersymmetry of the bosonic components of the boundary.

Combining the scalar determinant arising from the path integral over the XL" s with the gauge-fixing determinant
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(3.24), we find

g ~ matter/ghost
eff —,

' f d z e 'R5$+ f ds d 8k5$ + f ds 1 85(8)5$

+ f dsd 88 rr V'5$+(Ker terms) .
d

BM

Equation (4.16) may be easily integrated in the gauge (3.16) to give

(4.16)

co matter+ ghost
eff

10—d
2m f d ze '[ , (e P—)(e g)+ , Rf]—+f dsd Ok/ .

+ ds d 85(8)e ~+ f ds d 88 g"eP+(Ker terms)+(independent of g) .
4~~p BM 4~ BM

(4.17)

sdetko —— (detQ)
(det )

l
D(det )

l ~

1/2

(4.18)

Carets refer to quantities calculated with the background
matrix e~.

Several remarks are in order. First, the result (4.17)
differs from Polyakov by a factor of 4 in the first term
only because of a difference in the definition of g/i Note.
that the leading divergence cancels even when a boundary
is present, in contrast to the result of Ref. 11. Thus, the C
term in Eq. (3.1) is not renormalized. This is to be expect-
ed for reasonable boundary conditions on the fields be-
cause the propagator Gz is obtained by adding image
sources outside of the domain M; these cannot contribute
to the short-time diffusion behavior in the bulk of the
domain. Neither the calculation just presented nor the
calculation with supersymmetric boundary conditions
presented in Appendix C agrees with the result of Ref. 11.
In both cases, however, the A and 7 determinants agree
with the results explicitly calculated there; only the contri-
bution of F terms differ. For supersymmetric boundary
conditions, our method gives

where the subscripts denote the boundary conditions. We
may thus interpret the F component as representing the
ratio

sdetb'o
l F component=

(det )
I D

(4.19)

Hence, the properly regularized F determinant gives a
contribution which cancels the boundary divergence of the

and g determinants as shown in Appendix C. For
nonsupersymmetric boundary conditions, we can under-
stand the difference between the two calculations because
in Ref. 11 it was assumed that a remnant of supersym-
metry exists when there is a boundary. The effective ac-
tion was obtained from the purely bosonic sector by super-
symmetrization, but we see that this cannot work since su-

persymmetry is completely broken for the boundary con-
ditions (4.8) and (4.9).

The divergences of the determinants come from the
small-time behavior of e ' . Substituting (4.12) into
(2.14) we obtain a logarithmic divergence

lnsdetL„'+'=( —)" —, f d zR+ f dsd Ok —dimKerL„'+ lne+finite as e~0.(+) „(n +1) 2 (+)
2&

(4.20)

Similarly, for the scalar determinant we have

ln sdetho —— d zR+ f dsd Ok —dimKerho lne+ f dsd Oct+finite as e~0.
4~ . ' aM 4 ~e

(4.21)

Combining (4.17), (4.20), (4.21), and (3.25) we arrive at our final result for the effective action:

B+ lne g(M)+C f d z e 'e ~+ f ds d 85(8)e
4 M 4 me

+ E+ f ds d'Ok+d 10—d f d2ze '( ,'e ge„P+Rttt)+ f—dsdOk/

+(Ker terms)+(independent of g), (4.22)
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where 8, C, and E are the bare parameters of Eq. (3.1).
This is our major result. By varying g, we obtain the

equations of motion of the supersymmetric Liouville
theory':

a,g=p'e -'&+k,
together with the boundary conditions

n'"d, g=ke&+k, g=+g

(4.23)

(4.24)

(recall g=P+igg+igg+ggp) for the dual-model case,
and

re=+8

for the Wilson-loop case.

(4.25)

V. DISCUSSION

We have succeeded in generalizing the differential-
operator formalism of Ref. 10 to superspace, and have
calculated the effective action of Polyakov's formulation
of the fermionic string in this manifestly supersymmetric
formalism. The calculations are simpler and more tran-
sparent than previous calculations in component fields. In
particular, the nature of divergence cancellations due to
supersymmetry has been clarified. The cosmological con-
stant is not renormalized, which raises the possibility that
it may be consistent to set C=O in Eq. (4.22). This would
result in an effective action which is a free field obeying
either Dirichlet boundary conditions for the Wilson-1oop
case or "Liouville" boundary conditions (4.24) for the
dual-model case [due to the perimeter divergence in
(4.22)].

The reader should keep in mind, however, that a
nonzero value of C is certainly permissible in this theory.
One might, in fact, argue that eliminating the cosmologi-
cal constant (i.e., the Liouville interaction term) is not a
natural choice, since any nonzero value of C in Eq. (4.22)
may be transformed to any other value by changing g by
an additive constant. However, classically g tends to
move to the minimum of its exponential potential, which
corresponds to decreasing C. The value of the effective
cosmological constant in the quantum theory is a dynami-
cal question which still is not completely understood.
Even so, it seems likely that there is no problem in taking
C to be small or zero. The assumption is that C=O
should simplify the problem of quantizing the effective
action. Further, whatever value we choose for the cosmo-
logical constant C, it need not be equal to the boundary
cosmological constant, as is claimed in Refs. 11 and 14.
Indeed, since the boundary term is divergent while C is
not, it can be argued that its coefficient ought to be much
larger than C.

Several problems still remain even if the action for g is
a free field. First, the boundary conditions for the dual-
model case are nonlinear; the low-frequency modes will
not be simple harmonic oscillators of the g field. The
short-distance fluctuations of g must be cut off at some
small proper distance scale, depending on g itself, which
greatly complicates the regularization procedure.
Friedan' has argued that the full theory should be invari-
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APPENDIX A: NOTATIONS AND CONVENTIONS

We denote tangent-space (coordinate) indices by letters
from the beginning (middle) of the alphabet; latin (greek)
letters represent vectors (spinors), and capitals denote a
general index. Define an orthonormal frame field

ez ——ez B~, and define the structure constants

C
[eaieB I =C&Bec i (Al)

where [, I denotes the graded commutator. The action of
the Lorentz generators

6~ on vector's,b

MV = V MB, where M~ ——),B B
—,y on spinors .

(A2)

The covariant derivative Pz ——ez+PzM defines the tor-
sion and curvature through

P~ ~BI =7'~B~C+R~BM

from which

C C C
~AB CAB 4[AMB)

The flat-space vierbein is

e =D~=d +i(89), e =8

(A3)

(A4)

For a general matrix Mz the superdeterminant and super-
trace are defined by

sdetM =det(M, MrM& Ms )det —'(M~ ),
strM =M —M (A7)

The 5 function in 8 space is 5(g, —g2) =(g, —g2)2 so that
J d 85(8)=1.

ant under rescalings of the background vierbein e, since
this is just an arbitrary reference choice in the class of
metrics [e~e I. Hence, the full theory should have no
trace anomaly; this restricts the quantization of f, since
the trace anomaly of the f-field stress tensor must cancel
that of the string and ghost fields. Friedan' showed that
straightforward canonical quantization of g does not have
this property.

The free-field effective action for the fermionic-string
theory should provide a simplified laboratory for the in-
vestigation of these remaining difficulties without the ad-
ditional complication of quantizing a theory with an ex-
ponential interaction. The formalism presented here
makes the analysis of the supersymmetric string no more
difficult, and perhaps simpler, than that of the bosonic
string.
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APPENDIX 8: SKETCH OF THE DETERMINANT CALCULATIONS

%'e wish to calculate

str(fe ' )= f d ze '(z)f(z)(z ~e
' '~z)

for t~0. We write

(81)

(82)

where V contains the information about the geometry of the manifold as it deviates locally from flat space. The Green's
function appearing in (81) may then be expanded in perturbation series

6 =Go+ Go VGo+ 0 (~& )

where

6 =e ' and Go ——e
" = — e '" " ' /"'(8 —8')2 —t( —BB )

4~t

(83)

(84)

for manifolds without boundary. Because of the factor (8—8'), Gp(z, z;t) =0; hence, only the second term contributes:

(9—0" lg g&52
6 VG ( t) f d2 i dtI ( ) —(x —x') /4(t — t)V( 'i) ( ) —(x —x') /4t'

4~(t t')— 4~t'

Since (8—8') =0, only the Be()&, part of the V contributes. This term is

e ~[2(n+ 1)(D-D P}+4(D-tt)(D @)](}-(3

(85)

(86)

for the Laplacians (2.12). In the neighborhood of z we may choose coordinates such that Dettt=D&/=0. Then we have
that

Gp VGp(z, z;t) = [DeDett/(z)]
n+1

2%
(87)

Essentially the calculation boils down to counting factors of DeDettt. The calculation for surfaces with boundary differs
only in that we must use the propagators (4.10) or (4.14) which obey the appropriate boundary conditions and in that
n. t}ttt cannot be gauged away.

APPENDIX C: EFFECTIVE ACTION FOR SUPERSYMMETRIC BOUNDARY CONDITIONS

The heat-kernel formalism may also be used to calculate the scalar determinant when the supersymmetric boundary
conditions (3.13) and (4.6) are chosen. The zeroth-order heat kernel is

G~(z,z';t) =Go(z,z';t)+ e '" " ' '[(8++8+)(8 —8' )l2],
t

(Cl)

where 8+ ——8+8. Note that Gz(z =z')=—0 even at the boundary due to the residual supersymmetry under boundary-
preserving supersymmetry transformations, and hence neither area nor perimeter divergences are generated. The varia-
tional equation for the determinant becomes

51nsdetb, o ———
2 f d ze 'R5$+ f dsd 8k5$1

M BM

Thus we find, instead of (4.17),

(C2)

~ matter+ghost
eff

' f d ze '[ —,'(e g)(e p)+ —,'Rtt/]+ f dsdz8kg . . (C3)
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