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Single-spin asymmetries in the Drell- Yan process
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The angular distribution of lepton pairs produced via the qq annihilation process is studied through

0(o, ) in perturbative QCD. Asymmetries for single-spin experiments are found to be very small in this

channel. This provides an interesting new QCD test in forthcoming m p l experiments. The smallness of
of the result is intimately related to the gauge structure of the theory and to the color coefficient associated
with the qq subprocess.

The treatment of lepton-pair hadroproduction in quantum
chromodynamics (QCD) has been the scene of continuous
progress over the last years. ' New experimental data have
recently led to fairly comprehensive information on various
differential cross sections. The theoretical situation, while
becoming vastly more intricate and sophisticated, is not yet
settled. For example, testing the Drell-Yan mechanism for
d cr/d4Q has become quite involved because of the
phenomenological necessity of including higher-twist and
intrinsic-transverse-momentum effects. There are single-
spin-dependent quantities in da. /d Q dQ, however, which
vanish identically in the Drell-Yan picture since no imag-
inary (absorptive) phase is associated with the parton prob-
ability distributions. At the Born-term level, i.e. , the usual
applicable limit of perturbative QCD, these therefore pro-
vide a useful null test immune to the values of the parton
distributions. The lowest order in which a parity-conserving
single-spin dependence can occur in the usual QCD frame-
work can be understood as follows: one power of o., is
needed to provide Qr &0 and another power of n, comes
from loop integrals which can generate imaginary parts.
Furthermore, the complete calculation, as presented in Eq.
(5), yields a coefficient of n, proportional to (CF —N, /2)
in the qq channel. These terms conspire in QCD to practi-
cally cancel so the null result of the parton model is main-
tained for, e.g. , m p lepton-pair production.

Since single-spin proposals are under consideration at
CERN and Fermilab, it is useful and urgent to clarify the
QCD expectations in some detail. In this paper we study
the spin dependence of the differential cross section
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where k is the difference between the leptons' momenta k~
and k2, one gets
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in a lepton-pair rest frame. Constructing in this frame the
basis 5

Z =Pgg Ps —Psg ~ P„,
X = Pg Q2Z Ps —Psg2Z Pg

+Q(g PsZ Pz —Q PzZ Pz)

part of interfering amplitudes, We consider the qq fusion
subprocess, known to dominate in 2r p (and pp) collisions.
The reason for this is that the spin-dependent parton distri-
bution functions are only known for quarks. 4 Of course,
the calculation can be extended to include the contribution
of the qg subprocess with some assumptions for the spin-
dependent gluon distribution function.

Let us first remind the reader about the basic formalism
we are going to use. Calling LI"' and Wl"" the usual leptonic
and hadronic tensors such that

where Q" is the lepton-pair four-momentum and 0 the an-
gles of the leptons in a given frame. Correlations between
B and a single hadron spin probe directly the imaginary

i
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which defines the angles 0 and P, the differential cross sec-
tion for Qr & 0 may be written in the form
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where we have averaged over polarizations of hadron B but
kept the spin vector S& of hadron A. It is obvious that to
define the angle @ one must have Qr %0. Straightforward
power counting in QCD reveals that

kf
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when compared to 8 p p, s being the usual subprocess
Mandlestam variable. Moreover, usual chiral properties
suppress transverse-spin effects by 1/Js so that Ty ~ and
T2T 1 should be small. Helicity effects can, on the other
hand, be large. Indeed deep-inelastic polarized experiments
show that quarks remember fairly well the proton's helicity.
We thus have chosen to first calculate the largest-helicity
term Ty ~, at lowest nontrivial order, i.e., at O(n, ) for qq
channel.

Let us now present the main steps of the calculation and
outline the basic features of the result. We assume some
factorization of the long-distance dynamics from the short-
distance perturbatively calculated QCD diagrams. We use
the dimensional-regularization procedure and work in the
Feynman gauge. The goal is to calculate the imaginary part
of the interference between Born graphs [Fig. 1(a)] and
higher-order graphs [some of which are drawn in Figs.
1(b) —1(d)], summing over the antiquark helicity states
while taking the difference between the quark helicity states.
It is straightforward to see that only graphs with a loop may
have an imaginary part. Moreover, one can show that only

(c)

FIG. 1. (a} The lowest-order graph for qq y g. (b} The
graphs contributing in Feynman gauge to the imaginary part of W&'

at order o., (crossed graphs have been omitted}.

those in Figs. 1(b) —1(d) actually contribute. The computa-
tion thus requires, apart from some rather large traces
which have been performed with the help of the symbolic
program REDUCE, the calculation of integrals of the form

1 (1,m", m~m", m~m" m~)
Im — d"m

2

'
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where n =4 —~. The resulting expression at the subprocess
level, which is the coefficient of 5((p +r —Q)y), may be
cast into the form
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The infrared finiteness of the result at this order requires that A be zero, which we indeed find. This is in itself a nontrivial
result ensuring the applicability of perturbative QCD. An imaginary divergence would not have been factorizable into the
usual quark distribution. The 8 —E coefficients have fairly compact forms:

sQr' JQ'+ Qr' Q s'4rQ' Q+r'
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with 5= Q p —Q r, ln(Q r/Q p) being twice the rapidi-
ty of the pair in the subprocess c.m. system.

For this discussion, we define an integrated asymmetry 6
for the physical process by

1 2'
dcosH dye — d do t d dQ8= 2'
dcosO d + d@ do d dA

where do t indicates positive helicity h. for proton 8 [since
8 is linear in X, one can replace drrt by (do. t —do. t)/2].
As a preliminary step one can define 8, the asymmetry at
the subprocess level, by an obvious modification of Eq. (7).

I

It is easy to show that

2Z Sg T28=
3m 8'p p

and a similar expression holds for C.
In Fig. 2, we plot the subprocess asymmetry as a function

of the lepton-pair transverse momentum Qr for Qy =25
GeV', s =200 and 400 GeVy, and the photon rapidity y )0.
[Note that, at this level, the differential cross section
drr/d4Q dO is proportional to a 5(fy f

—yo) term and that 8
is odd in y. ] This asymmetry is quite small; indeed this
might have been anticipated for the qq channel, as we wi11

now show.
Let us consider the theoretical expression for T2 1, Eq.

(5). The coefficients B, C, and D are imaginary parts of
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FIG. 2. The asymmetry at the subprocess level, as defined in Eq.
(7), in units of {2C~—N, )o.,(0 ) for s =200 GeV (full curve)
and s =400 GeV (dashed curve).

doubly logarithmic terms while E is the imaginary part of a
single logarithm, coming from relations like

Imln2( —s —iq) = —in Ins

Im ln ( —s —i q ) = —i 7r

It is well known that the leading (i.e. , ln2s) real corrections
can be obtained order by order by soft-gluon approxima-
tions, i.e., by integrating gluon internal momenta from
0 (Js ) down to fixed values as Q, s ~. Similarly,
infrared-divergent real terms of single-logarithm order come
from the various collinear regions determined by the exter-
nal legs. For the purposes of locating imaginary terms, one
can replace the original Feynman integrals by their approxi-
mations in these regions, neglecting the loop-momentum
dependence of propagators that become far off shell.

The analytic properties of this replacement can then be
easily pinpointed. For instance, the soft and collinear re-
gions of Fig. 1(d) have no thresholds, except for a gauge
term that annihilates with Figs. 1(b) and 1(c) using the
Ward identity. There remains only hard-gluon-exchange re-
gions from this diagram which are expected to contribute
only to the nonleading coefficient E This (somewhat ove.r-
simplified) reasoning leads to the association of the leading

coefficients from the remaining diagrams with the color fac-
tor of Fig. 1(b), i.e., (CF —iV, /2). Thus the color factor of
A, B, C, and D in the complete calculation, Eq. (5), seems
to have a simple explanation.

The fact that CF —iV, /2 = —
6

in QCD has important
consequences. The results of the complete O(n, ') calcula-
tion can be summarized in the limit Q2/s, Qr'/Q', and y
fixed and s ~ by the estimate

g,tds ~, (*)q(x)q( ))
I&I = CF —5 o.,%

n, (q(x)q(x))
(9)

where the brackets indicate the parton convolutions. The
near cancellation between the color factors therefore
suppresses the QCD contribution to (I substantially. Nu-
merical integration of our result, using the NA3 parton dis-
tributions9 and Aq(x) =0.94Jx from the SLAC-Yale experi-
ment, " gives 6 = —0.4n, % ( —0.9n,%) at Q =25 GeV2,
Qr=4 GeV (6 GeV), and y =0 for vr p experiments at
Js = 27 GeV.

We conclude that the null value for 6 of the naive Drell-
Yan model including intrinsic effects is not upset at O(n, ')
in QCD because of a fortunate cancellation in the color
algebra for the qq subprocess. The qq channel, in turn, is
known to dominate unpolarized m p p, p, +X and
pp p, p, +X for moderate Qr. Color factors of the quark-
gluon Compton-subprocess contribution, ' which should be
of order iV, /(2CF —/t/, ) times the color factor in Eq. (9),
might tend to compensate for the well known valence
suppression of this channel, " but at most a few o.,% contri-
bution to 8 could arise in this way, Parity-violating weak-
interaction effects are at the level of a fraction of a per-
cent. ' We conclude that observation of an asymmetry
greater than, e.g. , 3% in the usual experimental region
would be incompatible with the present framework.
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