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The recently proposed SO(2, 1)-invariant quantization of the Liouville theory is elaborated. We
develop a renormalized perturbation expansion which preserves this symmetry to a11 orders, but
spontaneously breaks Poincare invariance. Some Green's functions and scattering amplitudes are
calculated in low perturbative order, and it is established that the S matrix is trivial in the tree ap-
proximation. Whether this is also true of the complete S matrix remains an open question.

I. INTRODUCTION

The Liouville field theory is tantalizing because the
classical version can be completely and explicitly integrat-
ed, but in quantized form the model resists conventional
analysis. ' In this paper we elaborate the recent uncon-
ventional suggestion that the quantum theory be defined
by an expansion about a position-dependent classical solu-
tion. ' The energy density, measured with respect to this
background, is positive for fluctuations of arbitrary
strength, and the solution is stable. The fluctuations are
quantized and a consistent renormalized perturbation ex-
pansion is developed for which all amplitudes are infrared
finite. Space-translation symmetry, which is broken by the
classical solution, is not restored by quantum corrections
since no Goldstone zero modes are present to produce in-
frared divergences. Though translation invariance is lost,
the quantum theory preserves an SO(2, 1) subgroup of the
infinite-dimensional conformal-symmetry group of the
Liouville action. Physical states are classified in unitary
representations of SO(2, 1), and the perturbation theory is
SO(2, 1) invariant. Two-point function spectral representa-
tions and scattering amplitudes are derived. Although
nontrivial scattering processes are permitted by SO(2, 1) in-
variance, the 2~~2 scattering amplitude vanishes in the
tree approximation, and the same can be established for
general n~~m amplitudes by using the conformal sym-
metry of the Liouville action. Anomalies prevent exten-
sion of our proof to the full quantum theory. Thus, the
question whether the S matrix is trivial or begins in one-
loop order remains open.

This paper presents a systematic exploration of the
space-translational-noninvariant quantization. The moti-
vation and the underlying hypotheses are discussed and
the results mentioned above are derived. This unconven-
tional procedure is consistent and seems a natural ap-
proach to the quantized Liouville theory, in view of its
geometrical properties.

In Sec. II, some aspects of the Liouville theory are re-
viewed with emphasis on the infinite-parameter conformal
symmetry. Our quantization procedure is outlined in Sec.
III, and the SO(2, 1) invariance group is described. In Sec.
IV, physical states, classified as representations of SO(2, 1),

and the propagator are discussed. Spectral representations
for two-point functions are derived, and a manifest
SO(2, 1)-invariant formulation on a hyperbolic space is
outlined. Section V is devoted to the general structure of
renormalized perturbation theory as well as to the calcula-
tion of the propagator and of the three- and four-point
functions. The canonical mapping and operator argu-
ments which prove that the tree-level S matrix is trivial
are given in Sec. VI, and a concluding discussion follows
in Sec. VII. One form of the spectral representation is de-
rived in Appendix A, while the renormalized quantum
energy-momentum tensor is constructed in Appendix B.

II. REVIEW

giving the following equation of motion:
2

@+—-- e~ =0,Ug (2.2)

whose most general solution is

1
1

F'(x+)G'(x )
2

1+ F(x+)G(x )
4

x+—= (t+x '), (2.3)
2

where F and 6 are arbitrary functions. While this equa-
tion has appeared in many problems of physics and
mathematics, here we stress only its geometrical signifi-
cance. In two dimensions, any metric tensor y„can be
made conformally flat by coordinate redefinition:

y&
——e~ g&, where g& is the Minkowski metric tensor.

Also in two dimensions, the curvature tensor is entirely
determined by the scalar curvature R =f3e ~ g""B„B„C&.
When N satisfies (2.2), R is a negative constant, and y&„
describes a two-dimensional surface of constant negative

A. Classical theory

The Liouville model is governed by the [Minkowski
space: x =(t,x')] Lagrange density

2

,' B„@t)"4 —,e~, P—,m') 0, (2.1)
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5IC =f"d„@+—Bg",1
(2.4)

curvature. The isometry group of such surfaces is
SO(2, 1), and correspondingly, all solutions (2.3) of the
Liouville theory are invariant under an SO(2, 1) isotropy
group.

The Liouville theory is conformally invariant: the ac-
tion changes only by surface terms when fields are
transformed according to the infinitesimal rule

I@(t,x'), @(t,y')J =5(x' —y'),
one finds that the charges

Qf ——fdx 'Jy(t, x ')

generate the transformation (2.4):

I Qg, @1=5y@=f"8„@+—Bg" .
1

(2.11b)

(2.12)

(2.13)

However, the algebra (2.9) is realized only with a center:

5x"= f", —

satisfying the conformal Killing equation

(2.5)

where f~ is an infinitesimal conformal transformation of
coordinates IQg Qg]= —Qt, +P '«f g»

Z(f g) = fdx+(f +d+g + g+ d+f—+ ) )

+ fdx (f r) g gd' f —).

(2.14a)

(2.14b)

(2.6)

In dimensions greater than two, solutions of the confor-
mal Killing equation generate the finite-dimensional re-
stricted conformal algebra with the following elements:

translations: fP —gP (2.7a)
Lorentz
transformations: f"=cP'x„,
dilatations: f"=dx",
special conformal
transformations: fi'=2x "c.x —c"x . (2.7d)

Here a", co" = —cu ", d, and c" are constant transforma-
tion parameters. In two dimensions, however, (2.6) is
similar to the Cauchy-Riemann equation and possesses an
infinity of solutions, corresponding to the infinite-
parameter two-dimensional conformal algebra:

(2.7b)
(2.7c)

f+=f+(x+), f =f (x ) . (2.8)

The restricted conformal transformations (2.7) form an
SO(2, 2)=SO(2, 1) X SO(2, 1) subalgebra of the full two-
dimensional conformal algebra. The conformal transfor-
mations (2.4)—(2.6) satisfy a composition law

l5I 5g1=4

One may ask whether the conformal charges can be
modified by adding terms independent of the canonical
variables such that the resulting algebra is realized
without center. This can be done for a finite-dimensional
SO(2,2) subalgebra, with conformal Killing vectors

m I' I' 2 1f 2 Fg ~1+ F, &2+ F
2 1 G m 6f = —,bi —,b2+ 2, b3,
m O' 6'

(2.15a)

(2.15b)

Qj = fdx'[8 '(@)—8 "(@p)]f„

do realize the SO(2,2) algebra without center:

(2.17)

where F(x+ ) and 6 (x ) are two arbitrary functions
which specify the embedding of the subalgebra and the a' s
and b's are constants. It is easy to show that for both f
and g belonging to this SO(2,2) algebra, we have

A(f, g) =fdx'8 "(@p)h„, (2.16)

where @p is a solution of (2.2) constructed from F and G
as in (2.3), and 9'"(@p) is the value of the improved stress
tensor (2.10c) on the solution Np. Then the modified
charges

with f, g, and h conformal Killing vectors, the last given
by the Lie bracket of the first two: IQj Qgj= Qi . — (2.18)

h"=f a~" gad" . — (2.9b)

Jj"=8"'f„,
B„Jg"——O,

8 =5~Ca e g~ W+ (g~W— —

(2.10a)

(2.10b)

The conserved conformal currents may be simply ex-
pressed in terms of a conserved, symmetric and traceless
energy-momentum tensor':

Although we do not have a complete proof for un-
bounded spaces, it appears to us that the only subalgebra
of the full conformal group which can be realized without
center must be finite dimensional. By a theorem of Lie,
the largest of these is the SO(2,2) just described. It is easy
to see that the diagonal subalgebra of (2.15)—the SO(2, 1)
specified by a;=b;—leaves the classical solution Np in-
variant: 5I@p=O. This fact is related to the geometrical
significance of SO(2, 1) as the symmetry group of a two-
dimensional surface of constant negative curvature.

B. Quantum theory

(2.10c)

When a canonical formulation is defined with equal-time
Poisson brackets,

{@(t,x'), @(t,y')) = [@(t,x'), @(t,y')I =0,

One may quantize the Liouville theory by postulating
that equal-time commutators replace the Poisson brackets
(2.11). Let us assume for the moment that there is a con-
formally invariant regularization procedure in which all
the charges Q~, which implement conformal transforma-
tions by commutation, can be constructed:
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—[Qf,4]=5f4, (2.19)

so that they satisfy the algebra

[Qf,Q, ]=t&QI +«(f g), (2.20)

III. SPACE- TRANSLATION-NONINVARIANT
APPROACH

with possible quantum modification in the definition of
Qf and the necessary quantum correction to the coeffi-
cient of the center included in c.

In the search for the ground state of the quantum
theory, one wishes to consider states of maximal symme-
try, and it is clea'r from (2.20) that such states can only be
invariant under those subalgebras that can be realized
without a center. Therefore, the largest symmetry that a
ground state could possibly support is SO(2,2). The
remainder of the conformal group must be spontaneously
broken, or else beset by anomalies —hence, not preserved
by the quantum theory.

Conventionally, one expects the Poincare group —a sub-
group of SO(2,2)—to be the invariance group of the vacu-
um. However, there is evidence that a normalizable
translation-invariant ground state does not exist. ' Such
a state would conflict with the positivity of the normal-
ordered source P m e~ . Further, the complete effective
potential is also an exponential, so that a translation-
invariant vacuum cannot be found by minimizing it. Pos-
sibly, translation invariance is recovered if the expectation
value of N in the ground state is —oo. However, since
this point is an essential singularity of the action, one can-
not develop a perturbation theory about it. '

Even for a finite, translation-invariant (0
~

N
~

0), there
are obstacles to conventional perturbation theory. Expan-
sion in P produces a P ' tadpole which cannot be shifted
away. Perturbation theory in the entire interaction, i.e., inI cannot be carried out either. By dimensional analysis
it is infrared divergent, becoming more and more singluar
with increasing order. Furthermore, m is not a true pa-
rameter of the theory since it can be modified by a con-
stant shift in N.

It may be that the quantized Liouville theory has no
ground state: the energy spectrum is bounded below, but
the bound is not attained. (The one-dimensional, i.e.,
quantum-mechanical, Liouville model behaves in this
way. ') Since we are unable to develop calculational pro-
cedures to test this possibility, we adopt an alternative: a
ground state does exist, but it is not Poincare invariant;
rather its symmetry group is the SO(2, 1) invariance group
of classical solutions. In this paper we explore this as-
sumption, and show that one can build a consistent per-
turbation theory for a ground state which is space-
translation noninvariant.

2
8' ——4 '+ —N'+ et'~

2
(3.2a)

evaluated on the static solution @=N,', is

Eg =- +—
P sinh v e(x' —xa) 2

(3.2b)

The total energy is infinite owing to ultraviolet singulari-
ties and for e&0 to an infrared (volume) infinity. But it is
also clear that the e=O solution is of lower energy than
those with e&0. Furthermore, the conformally improved
energy density (2.10c) differs from 8' by a total spatial
derivative

g00 g g) II (3.3a)

and for static solutions, it is constant:

00 2E'

p2
(3.3b)

This energy density, unlike 8', is not positive and vanishes
for e=O. In principle, our quantization procedure could
be developed for any of these classical static solutions
along lines similar to those presented in the sequel, but
henceforth we shall discuss only the e=O solution, which
1S

m (x —x0)2 1 1 2

N, (x') = ——ln
P 2

(3.4)

The SO(2, 1) algebra that leaves (3.4) invariant is the
timelike, special conformal algebra and its generators are
obtained from (2.15):

f5=g"'
f8=(x"—x~o)

fg =2(x"—x0 )(t —t0) —g" (x —x0)

(3.5a)

(3.5b)

(3.5c)

The generators of time translation H, dilatation D, and
special conformal transformation in the timelike direction
K satisfy the following SQ(2, 1) commutation relations:

are part of the unbroken subalgebra, and quantize the
Liouville field 4& about a time-independent classical solu-
tion.

The most general static solution of (2.2),"
2

4&,'(x ') = ——ln sinh We(x ' —x 0),
P 2e

(3.1)

contains two constants of integration: x0, associated with
space translations, and e, which can be positive, zero, or
negative. For negative e, there are periodically space
singularities; otherwise, only the point x ' =x0 is singular.

The conventional energy density

A. Classical static solutions

In the previous section we argued that the invariance
group of the Liouville vacuum is a SQ(2, 1) subgroup of
SQ(2,2). In principle, a quantum field theory can be con-
structed for any of the subalgebras described in (2.15). To
proceed, however, we shall assume that time translations

[D,H] =H, —l

[D,X]= —K, —

[K,H]=2D . —

(3.6a)

(3.6b)

(3.6c)
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The fluctuation field

(3.7)

um convention. The absence of zero modes is the key to
the consistency of our procedure, which we shall now ex-
plain. "

Jg"=6"f
with

(3.9)

e~"=a"ea"e g"' ——,'a +a e— (e& Pa —1)—
T

1 1I =X —&p (3.10)

Similarly, the Lagrangian density and the equation of
motion may be expressed in terms of N:

responds homogeneously to the transformations (3.5),

5I4 =fI'Bp@, (3.8)

and the conserved currents are

B. Postulates for the space-translation-noninvariant
quantization procedure

We postulate that space-translation invariance is spon-
taneously broken, and that there is a family of degenerate,
normalizable ground states labeled by xp, which are all
physically equivalent. %'e also assume that @, is the
lowest-order, classical approximation to the expectation
value of the Liouville field 4 in the ground state. We
have

m (x —xo)2 1 1 2

(xo
~

N(x)
~
xo ) = ——ln

2

+quantum correction,

W = —,B&C& 8~4 —
z (e~ —P4 —1 ),

T
(3.11a)

(xo i xo) =1 . (3.16)

(3.11b)

It is remarkable that the mass has disappeared from
(3.11). Also, 8""is the canonical energy-momentum ten-
sor derived from the Lagrangian 3'. The energy density
of (3.10),

(3.12)

is always non-negative and vanishes only when %=0.
Thus, the solution @=0 is stable since variations in the
field will always increase the energy.

Stability against infinitesimal fluctuations may also be
examined by linearizing the equations of motion (2.2)
around @,:

e(x)=@,(r)+e '"'g (r) .

The functions f satisfy

(3.13)

(3.14)

This equation admits regular solutions only for positive
~, so that m is real and N, is stable. The regular solu-
tions to (3.14) are given by

~ 1/2
2 ' simor

g (r)= — — coscor-
cor

=(cur)' J3/2(cur) . (3.15)

The modes f„are of even parity and are complete only on
the half line, and they have been so normalized in (3.15).
It is important that there are no zero-frequency modes:

o=0. Of course, at co=0 (3.14) is solved by two
linearly independent functions:

N, and —@,',c)

Br e=p

However, neither is normalizable, not even with a continu-

The fact that the conventional energy is infinite on this
classical solution is physically inconsequential, since the
vacuum energy is unobservable. This is equivalent to us-

ing the conformally improved energy (3.3).
Because the small fluctuations are complete only on the

half line, we postulate that space spontaneously contracts
to the half line (henceforth taken to be x')xo). This is
the phenomenon of spontaneous (semi)compactification.

Finally we assume that the states of the theory can be
identified as representations of SO(2, 1)—the invariance
group of the classical solution N, .

The consistency of our postulates is revealed by show-

ing that higher-order quantum corrections as well as
scattering amplitudes for physical states can be computed
order by order in a well-defined perturbative expansion.
Since the value of xo is immaterial, we set it to zero and
renamex =r &0.1

IV. PHYSICAL STATES, THE PROPAGATOR,
AND A MANIFESTLY SO(2, 1)-CQVARIANT

FORMULATION

A. Physical states

The SO(2, 1) group may be used to classify the states of
our quantum field theory in unitary representations of
SO(2, 1); just as in ordinary theories, states appear in uni-

tary representations of the Poincare group. The latter
group is in fact a contraction of the former. The infinite-
dimensional unitary representations of SO(2, 1) are con-
veniently labeled by the eigenvalue of some SO(2, 1) gen-
erator, which we choose to be M, and by the eigenvalue of
the quadratic Casimir operator:

C= —,
' IIX+ —,

' Xa —D' . (4.1)

Using more conventional generators J', one can also write

C=J'J, =(J')' —(J ) —(J')',
and the metric of the three-dimensional space (a =1,2, 3)
has signature (1,—1, —1). The generators J', related to
the generators H, D, and E, with the help of an arbitrary
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scale parameter A, are

J=—H+ K,A 1

2 2A

~'

A0+ Np ——0 .
r

(4.6)

J =—H — K,A 1

2 2A
(4.2)

This equation may be rewritten in a manifestly SO(2, 1)-
invariant form:

and obey the usual SO(2, 1) commutation relations

J', —[J„kp] =r Clbp ———24p . (4.7)

[J',J ]=itic J e' =1 (4.3)

J'J.
I J,~&=J(1+1)r'iJ,~&,

M
i j,(o & =p)A'

i j,co & .

(4.4a)

(4.4b)

By definition, the vacuum state is annihilated by all the
generators:

J io&=o. (4.5)

In the next section we shall show that such a state may
indeed by constructed in the full quantum theory, order by
order in perturbation theory.

Upon linearizing (3.11b), we see that free or asymptotic
states are governed by a field kp, which satisfies

The eigenvalues of the Casimir operator C can be written
as j(j+1), but j may be continuous. ' The Casimir
operator C is analogous to the mass-square operator in
Poincare-invariant field theory.

We shall now assume, following our postulates of the
previous section, that physical states are labeled by j and
t0, the eigenvalues of C and H. ' We have

Comparison with (4.4a) shows that the "single-particle"
state 4p

i
0& has j= 1, so that the Liouville "particle" lives

in a single specific irreducible unitary representation of
SO(2, 1), which lies in the discrete spectrum. ' Conse-
quently, if asymptotic fields for multiparticle states are
constructed by applying polynomials in the fields 4p to

i
0&, only states in the discrete series of unitary represen-

tations will result. ' Thus, it seems plausible to conjecture
that the asymptotic states of the theory form the complete
discrete series of nonspinor representations of SO(2, 1).
Still, other states may exist.

B. The propagator

With this group-theoretical machinery, one may obtain
spectral representations for time-ordered products of local
operators. As an example, we analyze the propagator

G(x,x')=G(tr, t'r')=&0
i
&@(x)@(x')

i
0& . (4.8)

The free propagator W(x,x') is constructed from the qua-
dratic terms in W and is given by the small-oscillation
modes (3.15):

Q'(x, x') =&(tr, t'r') =— e
—

I
& —&'

I g„(r)g (r')
2 0 co

& I"d(o;„I, ,
I

si conr

7T O 6) COI)'

—cosmr
sinu r'

,
— —cosco p'

COP'

(4.9)

&(x,x') = Q,
fi (t —t')' —r' —r'

277 2rr'
—i0 (4.10)

Here Qi is a Legendre function of the second kind,

Q) (z) = —1+—ln
z z+1
2 z —1

(4.11)

and it is easy to see that W also is the free-field Green's
function:

H„+ z &(x,x') = i %5 (x —x') .—
r

(4.12)

Gne may explicitly check that the infrared behavior as the
points separate is regular, while the ultraviolet singularity
of & at coincident points is the same as in a free two-
dimensional scalar theory.

We now derive an analog of the Lehmann spectral rep-

The absence of the zero modes guarantees that no infrared
singularities occur in this integral, and it can be evaluated.
We have

(4.14a)

one obtains the Casimir equation for &0
i
@(x)

i j,p) &.

r'I:j&Oi e(x) lj,~&= —j(j+1)&oiC'(x) IJ,~& . (4.14b)

The action of finite dilatations and time translations is

ei(tent/R)ei[(lnr)D/A)@(0 1 )e
—([(lnr)D/i)']e t(tH/rg)—

(4.15)

resentation in our SO(2, 1)-invariant quantization scheme.
The two-point function is presented with the help of a
complete set of intermediate states:

&0
i

4(x)4(x')
i
0&

=g I dco&0 i@(x)
i j,(o&&j,p) i@(x') io& . (4.13)

J
(The summation on j inay include an integration if states
with continuous eigenvalues of the Casimir operator
occur. ) From the equality

&o
i
[J',e(x)]

i J,~ & = J (J +1)r'&0
i
e(x)

i

—J,~ &,
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so that the time dependence of (0
~
k(x)

~ j,co) is e
The regular solutions of (4.14) with this time dependence
are Bessel functions

(0
~
N(x)

~ j,co) =v RÃ(J')e '"'(cur)' JJ+~&2(d'or), (4.16)
where N(j ) gives the normalization. The full propagator
can be represented as

p(j)Q,.
(t t ') —r —r'—i0—, p(j)= ~X(j)

~

(0
~

T&b(x)N(x')
~
0) =—gp(j) I due '

I
'I ~rr'Jz+~~2(cor)J&+~~2(cur')

0
J

(4.17)

This may also be presented in spectral form with respect to energy:

(0
~

T@(x)C&(x')
~
0) =gp(j) j I

defoe

' " ' ' (co rr')'~ J +~~q(d'or)J +~~.2(cur')
J

—oo 2~ 0 0,'—67 —l 0
(4.18)

Equal-time commutators imply the Lehmann sum rule for
p(j):

(4.19)

It should be pointed out that these spectral representations
are valid not only for the canonical field 4 but, with dif-
ferent weight p(j), for two-point functions of any local
operator of scale dimension zero, such as polynomials in

Another spectral representation uses a formula which is
dispersive in the Casimir eigenvalue. This expression is
conveniently given in Euclidean space; it is derived in Ap-
pendix A:

GE(x,x') =gp(j ) g fdA, Y~ (O', P')

(4.20a)

C. Manifest SG(2, 1)-covariant formalism

The coordinate system (4.21) may also be used to
parametrize the hyperboloid in a manifestly SO(2, 1)-
covariant fashion. We define the coordinates

A+I +r

The contraction is formed with the three-dimensional
metric of signature (1,—1, —1). Under SO(2, 1), the vec-
tor g transforms linearly by (pseudo)rotations. The argu-
ment of the Euclidean version of the propagators (4.10)
and (4.17),

(r t') +r +r'—
2rr

with

I (iA+ —, —I) e
—~~y

Y~ ~(8,$)= . — P ~a+,~(cosh8) .I iA.2~

(4.20b)

is just g g', so that the free propagator is SO(2, 1) invari-
ant: &(g,f)=W(g g')

In fact, the full theory can be conveniently reformulated
in terms of these coordinates. The SO(2, 1) invariance of
Euclidean action is then manifest, since it may be ex-
pressed as

Here I is the gamma function, I' &&2+,~ the associated
Legendre function (toroidal function), and 8 and P are
coordinates parametrizing a hyperboloid. We have

Jd xEWz ——J d3$5(g.g —1)

A+t +coshO= ——
2Ar

A —t —r2 2 2

sinh8 cosP =
2Ar

sinh8sing=tlr .

(4.21)

The operators 8, are tangential derivatives

'8 b'=ay "ag
satisfying

(4.23)

(4.24a)

The functions Y~ are harmonics on the hyperboloid.
Just as in (4.2), A is an arbitrary scale. A Minkowski ver-
sion of (4.20) and (4.21) can be obtained by analytic con-
tinuation.

(4.24b)

(4.24c)

Equation (4.23) is derived with the help of the following
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equivalence of measures:

r
=d'g5(g g' —1) .

The field equations for @ then reads

(4.25)

5@= p&(x,x)+22 -1' fi 6m

r r pm
(5.3)

Assuming that 54 is of order A', it is easy to see that 5@
must satisfy the equation

4&+ —(e~ —1)=0 . (4.26)

V. PERTURBATION THEORY

To confirm the consistency of our space-translation-
noninvariant approach to the Liouville theory, we show
that both Green's functions and amplitudes for transitions
between physical states can be computed order by order in
a perturbative expansion in the dimensionless coupling
constant P. First, the one- and two-point Green's func-
tions are evaluated to one-loop order, and an SO(2, 1)-
invariant regularization scheme is exhibited. Then we
give Feynman rules for a manifestly SO(2, 1)-invariant per-
turbation theory that is renormalized by normal ordering
the interaction. Finally„we consider scattering amplitudes
in the tree approximation. Certain scattering amplitudes
vanish for SO(2, 1)-group-theoretic reasons: The decay of
the one-particle state into any multiparticle state is prohi-
bited. The amplitude for 2+—~2 particle states, however,
is also found to vanish in an explicit tree-approximation
calculation, even though it is group theoretically allowed.
We then prove that all on-shell scattering amplitudes van-
ish in the tree approximation, and we discuss the pros-
pects of extending the result to the exact S matrix.

A. One-loop perturbation theory

In tree approximation, we expand the theory about the
classical solutions 4, of (3.4), as required by our postu-
lates. This background field will acquire further quantum
corrections 5N, which may be calculated by minimizing
the effective action to the order of perturbation theory
under consideration. In this new background field

where & is the propagator (4.10), which has an ultraviolet
divergence at coincident points. In conventional scalar
field theories in two-dimensional space-time, this is the
only divergence; a fact which remains true in our ap-
proach, since (4.10) possesses an ordinary short-distance
limit. Multiplication of two propagators is always regu-
lar. Consequently, regularizing the coincident-point
singularity will remove all ultraviolet divergences.

In a Poincare-invariant theory, a Poincare-invariant re-
gulator would be chosen; for example, one would set

&„s(x,x) =&(x—e,x+e)

—1 + —, ln . (5.4)

This expression is constant and thus SO(2, 1) invariant.
With the help of the hyperbolic coordinates (4.22), it is

easy to solve equation (5.3):

5%(g)=- —fd g'5(g' g' I)& —(g g')

with e an infinitesimal vector. In our problem, Poincare-
invariant regularization is not called for; rather, we seek a
regularization which preserves the SO(2, 1) symmetry of
the theory.

An SO(2, 1)-invariant regularization of the singularity at
coincident points of the Euclidean space propagator is
achieved by passing to the coordinates (4.22), which
linearize the SO(2, 1) transformation, and by recalling that
the propagator —a function of g and g' depends only on

The limit of coincident points is therefore
g.g'~g j= 1, and the regularized propagator at coin-
cidence points is obtained by setting g.g' equal to 1+i) for
small q (Ref. 14):

&„s(x,x) =Nz(1+ i) ) = 2''

e, +5+=(0 C ~0), fi 6m
X P~~(1+i))+2-

pm
(5.5)

we can calculate Green's functions for the field fluctua-
tion 4=4&—(0

~

@
~

0).
The effective action to order A is given by

1.(e)= fa'x —,'a„C a~+ — +",™e&

Trln( —CI —m e~ ),
2

where 45m is a mass renormalization of order A. We
now search for a minimum of I (@):

5I'(N) m +Pl 5m p@(

5@(x)
. A'Rm—i= e&~'"'( — —m'ei'~)-'(x, x) .

2

(5.2)

5N = ——&g(1+i) )—p fi5m

pm
(5.6)

'This one-loop correction to (0
~

4&
~

0) is absorbed in the
mass renormalization by defining

z m pfi5m = —— &E(1+i)),
2

(5.7)

and we have (0
~

4
~
0) =O(A'i).

Higher Green's functions are evaluated by expanding
around the minimum of I (@). For instance, the inverse
propagator, to one-loop order, becomes

Graphically, this equation is represented in Fig. 1(a). The
mamfest SO(2, 1) invariance of the integral implies that
5@ can only depend on g /= 1, so that M& is actually con-
stant. In this case, (5.3) is trivially solved and we obtain
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I

2

(a}

mo in (2.1), and then shift N by the classical solution (3.4).
Neglecting total derivative terms, we arrive at the La-
grangian for N

e~ + 4, (5.11a)m'p'r' r'p
which may also be rewritten by using (5.1()):

el
e(p I2)(&+q). e p4. & C, 2

r mp2

(5.11b)

With the help of a convenient renormalization of the mass

(b)
FIG. 1. The one-loop contributions and mass renormalization

for the (a) one- and (b) two-point functions.
plo =pl exp2 2

2

W(1+g)
2

(5.12)

)(,)
5 I (@)

5C(x)M (x ) @ &OI@Ip&

2
I7» + 2 5(x —x ')

X,X (5.8)

The Feynman graphs contributing to this quantity are de-
picted in Fig. 1(b). Note that the mass does not occur in
(5.8), so that G ' does not depend on the mass renormali-
zation. Also, G is SO(2, 1) invariant and infrared finite.

Finally, since

X(x,x')= —2A' 'P W (x,x')

cr(n) =

is the lowest-order contribution to the time-ordered prod-
uct of two interaction Lagrangian densities, it should have
an SO(2, 1)-invariant spectral representation like (4.17).
This is indeed so, and in Appendix A we compute the ap-
propriate spectral function cr(n),

0, n even,
(5.9)

(n +2)(n + —,
'

)(n —1)
0 Odd

(n +3)(n +1)n (n —2)

both the terms linear and quadratic in + are completely
cancelled from the interaction Lagrangian and we find

(5.13a)

e~ ——,4 ——4—:. (5.13b)

It follows, therefore, that a renormalized perturbation
theory can be based on 3'I, provided the instruction is ap-
pended that two 4 's of the same in1eraction vertex should
not be contracted. Equivalently, e&+ is normal ordered.

The perturbation theory derived from (5.13) is now ul-
traviolet finite, diagram by diagram. By inspection, one
also sees that the theory is infrared finite. Furthermore,
propagators and vertices are obtained in a manifestly
SO(2, 1)-invariant fashion. Thus, the full perturbative ex-
pansion is SO(2, 1) invariant order by order. As a conse-
quence, the vacuum expectation value of k(g), which can
depend only on g g= 1 by SO(2, 1) invariance, must be a

8. General structure of perturbation theory

In higher orders of perturbation theory, the only source
of ultraviolet infinities continues to be the propagator at
coincident points, and only the mass need be renormal-
ized. In particular, all tadpole contractions on the ex-
ponential interaction may be performed and the result is

p2
e ~=:e~:exp —&( 1+g ) (5.10)

2

where:: means that no contractions of two N 's should be
made on the interaction vertex. To define the bare La-
grangian we replace the classical mass m by the bare mass

(a)

(b)
FIG. 2. The two-loop contributions for the (a) one- and (b)

two-point functions. Squares represent the normal-ordered in-
teraction vertices of (5.13b).
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finite constant. To two-loop order, the graphs contribut-
ing to (0

~

4
~

0) are shown in Fig. 2(a). The value of
(0

~

4
~

0) may of course also be absorbed into a finite
mass renormalization of m. Thus, (0

~

4&
~
0) actually de-

pends on the relation between the renormalized mass and
m. Higher Green's functions, on the other hand, do not
depend on the renormalized mass. The two-loop contribu-
tions to the inverse propagator are given in Fig. 2(b).

Another important consequence is that the eigenvalue
of the Casimir operator C for the elementary "particles"
of the theory is unchanged by quantum correction, as can
already be recognized in the one-loop evaluation of 6 ' in
(5.8).

C. Transition amplitudes

r, (X, , X, , X, )

14 (x[ xz ~ x3 x4)

X2

Xl

Xi

X2

Xl

Xl

X2 Xy

while the outgoing particle's wave function is the complex
conjugate of the above. One may also define an off-shell
transition amplitude by using off-shell wave functions

(24r) '/ e ' '(cur)'/ J3/2(cur) with a &co

Time-translation invariance ensures energy conserva-
tion, while the further SO(2, 1) symmetry puts additional
constraints on the amplitudes.

We now compute the tree approximation to three- and
four-particle processes. The amputated three-point func-
tion is especially simple:

r3(X1,X2,X3)= 2 5 (x1 —x2)5 (x1 —x3) . (5.14)
—2iP 2 2

r~

I 3 is represented in Fig. 3(a). Integrating this with off-
shell wave functions, we get

T3(al~l a2~2 a3~3)

I /2ip—2 5(a1+a2+a3) V3(F1 c02 co3), (5.15)

where the three-vertex is

An n+—+m particle transition amplitude is calculated
by first determining the connected (n +m)-point function,
truncating the external lines by factoring away the com-
plete propagator, and then passing on-shell by integrating
with the appropriate "single-particle" wave functions.
The relevant wave function for an incoming particle of en-

ergy %co is

(2~) —1/2e t'tot(~r)—1/2J (~r)

XyXp Xy

(b)
FICi. 3. The (a) three- and (b) four-point functions to the tree

approximation in position space.

Qo dp
V3(c01 tt32 co3)= tlt„(r)tit, (r)$ (r)

dr
J3/2 (~1")J3/2 ( tt32r )J3/2 ( ~3r ) ~

r

The integral over the Bessel functions is equal to
1/2

2 Q2

(~1~2~3)

(5.16)

when t01, co2, and co3 form the sides of a triangle of area b, ;
otherwise the integral vanishes.

To go on-shell, we set a~ ——co~, a2 ———m2, a3 ———co3, and
co ]—c02+c03 then T3 describes the disintegration of 1 into
2 and 3. However, in that case the triangle formed from
the three energies has zero area and the amplitude van-
ishes. In fact, using the SO(2, 1) group theory, one may
show that any process where a one-particle state goes to
any multiparticle state is forbidden: the tensor product of
SO(2, 1) states

~ j,co2)
~
j,co3) contains only states in the

discrete series with j') 2j, and these states are orthogonal
to

~ j,co1). ' By extension of the argument to multiple
tensor products, one sees -that group theory predicts that a
single particle is absolutely stable. Perturbation theory
better agree.

The amputated four-point function is

r4(x„x2 x3 x4)= 5 (x1 —x4)5 (x2 —x4)5(x3 x4)
—2iP 2 2

p 2

—4P 5 (x1 —x2)5 (x3 —x4) &(X1,X3)2 2 2 1

I'
1 3

+ 5 (x1 x3)5 (x2 —x4) &(X1,x2)+5 (x1 —x4)5 (x2 —x3) &(x1 x2)2 2 1 2 2 1

p 2p 2 zr
(5.17)
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1 4 is represented in Fig. 3(b). With off-shell wave functions, T4 becomes

T4(a1Co1 CXzCO2 a3CO3 CX4CO4)

pz= —l 5(al+az+a3+a4) V4(col, coz, co3,co4)

QC 1+2 dCO V3(CO1, CO2, CO) V3 ( Co, Co 3,CO4 )0 (a1+az) Co —+i 0

1+ V3(CO1, CO3, CO)
z z V3 (co,coz, co4)

(a1+a3) —co +i 0

1+ V3(CO»CO4, CO) V3 (CO, CO2, CO3 )
(cx1+a4) —co +l 0

(5.18)

where the four-vertex is

dr
V4(col, coz, co3, co4) = —

2 ltj, (r)g„,(r)g„,(r)g, (r)

(co lco2~3~4)
o

d J3/2 (~1 )J3/2 (~zr) 3/2(o 3r)~3/2 (~4r)1/2 (5.19)

There are two on-shell configurations: a ~
——cu &,

o;2 ———cu2, e3 — co3 A4 — cog c0$ —c02+c03+c04, describ
ing the disintegration of one particle into three, and
a~ ——co~, a2 —63/ CX3 — C03 a4 ———co4, co~+cop —C03+~4
describing two-particle scattering. The former should
vanish; the single particle is stable. Indeed it does, since
the three-point vertices in (5.18) cannot meet the triangle
restriction on their arguments and the four-point vertex is
zero in this configuration.

Remarkably, the particle-particle scattering amplitude
also vanishes. Each of the four terms in (5.18) involves
(colcozco3co4)

' times a fifth-degree polynomial in the ener-
gies, and these highly nontrivial expressions finally sum to
zero. (There are no significant partial cancellations. )

It is important to appreciate that this vanishing has
nothing to do with SO(2, 1) invariance, which in fact al-
lows nontrivial scattering in which total energy is con-
served but relative energy can change. One can obtain an
SO(2, 1)-invariant field theory with arbitrary potential
V(4) simply by jnserting that potential in (3.11a) or (5.13)
in place of e ~ —PC& —1. The effect in the 2~~2
scattering calculation is simply to change the relative
strengths of the four- and three-vertex contributions. The
scattering amplitude would no longer vanish, although the
decay amplitude still vanishes.

VI. ABSENCE OF CLASSICAL SCATTERING

The absence of two-body scattering in the tree approxi-
mation is not unexpected, since there exist classical canon-
ical transformations which map the Liouville theory into
a free massless theory. ' The further shift of the Lioo-
ville field N to the fluctuating field @ is obviously canoni-
cal. Moreover, a harmonic field P, obeying the free mass-
less equation CIA=0, may be converted to a free fluctuat-
ing Liouville field @p, obeying the Casimir equation
(r Cl+2)40 ——0, by the fixed-time operator c)/c)r —1/r,
which satisfies the identity

(r El+2) ——=r ——CI .2 1

Br r ()r r

We have

Np ——
9r

This too is a canonical transformation, and we see that the
Liouville dynamics governing N may be canonically
transformed into free dynamics for @p. While these
transformations are only classical, they do ensure that the
classical S matrix is trivial, i.e., all scattering amplitudes
vanish in the tree approximation. ' A possible approach
to the general proof is the following.

In the Lehmann-Symanzik-Zimmermann formalism,
transition amplitudes are obtained from truncated Green's
functions in which free-particle wave operators are ap-
plied to extract external-line poles. Green's function of
the canonical field are usually taken, and were used in the
calculations of Sec. V. However, any local operator with
nonvanishing matrix elements between the vacuum and
the one-particle states can be used as an interpolating
field. Thus, if there is a local composite operator A(x)
which satisfies the free-field equation (r +2)A =0, but
still connects the vacuum to one-particle states, the 5 ma-
trix of the theory is trivial since the residues at external-
line poles vanish.

A candidate for such an interpolating field is the
energy-momentum tensor 9'" of (2.10c) which classically
is conserved, symmetric, and traceless owing to the con-
formal invariance of the Liouville theory. ' In two di-
mensions, any tensor with these properties satisfies
CIO""=0. [Note that &"" is distinct from the energy-
momentum tensor 8" (3.10) of the shifted theory. ] Al-
though 9"' is not directly suitable in the present SO(2, 1)-
invariant theory, it is easily converted to the interpolating
field we need by shifting @=&0,+4& [with @, given in
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(3.4)], subtracting the value of 9'" on N„and applying
8 /Br —1/r. The resulting tensor

r

A Aa~ea e——,g~ e.ea c
Br r

+—'(g~~ —2a~a")++~~e a e,

ty J dr(@,' ) is the normalization integral for the transla-
tion mode and also a contribution to the energy.

It is again the singularity of the background field that
makes the space semicompactified. In this respect our
perturbation theory is similar to analyses of the Liouville
theory with boundary conditions. ' Indeed, at the origin
our field satisfies

m V 2 (py2)@e
+a~+, o c —g~ a.c a.e, (6.2)

satisfies

(r CI +2)T~"= 0. (6.3)

Any of the two independent components of T" can be
used as the interpolating field. For example, the operator

p) A
T = Bpc — + ape — ——ape a~+

Br r

(6.4)

clearly connects the vacuum to one-particle states.
The complete 5 matrix of the SO(2, 1) quantized Liou-

ville model will be trivial if the required properties of T"
can be maintained after renormalization. However, when
proper SO(2, 1)-invariant regularization is used to define
the energy-momentum tensor, anomalies prevent T"
from satisfying (6.3). (Details of the construction are
given in Appendix B.) Thus, the question about the trivi-
ality of the full S matrix remains open, although at the
tree level anomalies are absent and once again we can con-
clude that the classical S matrix is trivial.

VII. CONCLUSION

The breaking of translation invariance in the perturba-
tive expansion, which has been developed for the Liouville
field theory does not follow in every detail conventional
examples of spontaneous symmetry breaking. The princi-
pal difference is that our static background solution has
infinite energy. Obviously there exist static configura-
tions, though not solutions, with finite energy. These con-
figurations are also initial value data for finite-energy,
time-dependent solutions. Thus, the Liouville equation
certainly possesses solutions of lower energy than the one
we have used; however, they are time dependent.
Nevertheless, our perturbation theory is stable. Whether
the finite-energy configurations and time-dependent solu-
tions are relevant to some other sector of the quantum
field theory is unclear. Also, the definition of energy is
not without ambiguity: the conformally improved version
with indefinite sign differs from the conventional, positive
expr esslon.

There are no Goldstone zero modes in the small-
oscillation spectrum. This is gratifying since we need not
concern ourselves whether translation symmetry is re-
stored by infrared-singular fluctuations, as it is for the
conventional soliton phenomenon. We recognize that the
absence of a Goldstone translation mode is related to the
infinite energy of the static solution: the divergent quanti-

However, it is to be emphasized that we do not impose
such a boundary condition a priori and we do not restrict
the Minkowski-space Liouville theory.

The background field can be viewed as a singular struc-
ture at r =0.' In this sense, what we are doing is analo-
gous to inserting a singular Dirac monopole into quantum
electrodynamics or a singular Wu-Yang monopole into
Yang-Mills theory and developing the quantum field
theory in the presence of that singular configuration.
However, the difference is that in the Liouville model we
must have the singular background field to define pertur-
bation theory, while in the preceding two examples the
theory is well defined in the absence of the singular back-
ground field. Moreover, the singularity does not describe
a localized source at r =0; i.e., (d /dr )1nr does not give a
6 function.

One may inquire how our procedure would operate in a
model which possesses both a conventional perturbation
expansion as well as singular, static solutions like, for ex-
ample, two-dimensional N theory with a positive qua-
dratic mass term. ' Of course, since translation
symmetry-preserving procedures exist for this model, our
method is not called for. However, if one does insist on
using it, and expands around a singular background, the
"theory" that would emerge is stable by the energy cri-
terion, but a particle interpretation cannot be given. The
reason is that there is no symmetry, like the Poincare sym-
metry of conventional dynamics or the SO(2, 1) symmetry
of our Liouville model, that prevents the single particle
from decaying. The three-point function, for instance,
does not vanish on-shell, as we have verified by calcula-
tion. It is not clear whether such a theory can be well de-
fined; of course, for the N model there is no good reason
to define it in the first place.

One may think of our background field as an SO(2, 1)-
invariant regularization of the infrared-divergent Liouville
theory. Indeed, with xp large and negative, the restrict-
ed space approximates the full space and processes taking
place far from xp should be insensitive to the singular
"source" at xp. In this way we are approximating a free
massless theory: @, approaches negative infinity as xp be-
comes negatively 1arge; the two-point function approaches
that of the free massless theory, which ordinarily is in-
frared singular, but here is regulated by x p, the tree S ma-
trix is found to be trivial at finite xp and it remains trivial
at xp~ —oo, etc. However, it must be stressed that the
limit cannot ultimately be taken; the regulator cannot be
removed: a free, massless, two-dimensional spinless
theory does not exist; the free Liouville propagator has no
limit as xp~ —oo, etc. Most explicitly we see this in the
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single-particle wave functions, which for large xa become
the sum of two exponentials:

r i ]/2
2 i'(r —x0) 1 iso—(r —xp1)

costo(r —x0) = e +
2n 2'

ECOXp
~ 1 —ld)TO

~ 1

If one multiplies by e ' or e ', one could say that one
arrives in the limit at (2m) ' e'"" or (2m) ' e ' ", but
this is only a formal statement and no true definition of
the limit may be given. In the Liouville theory there is
only one state per energy, and in the free theory there are
two. The group-theoretical distinction between the Liou-
ville and free theories is that while both give a realization
of SO(2, 1)-invariant dynamics, the former is characterized
by the Casimir j= j., while the latter has j=0.

Thus, we suggest that in spite of its peculiarities, our
procedure exemplifies spontaneous breaking of transla-
tional symmetry. Indeed, the full conformal group is also
broken, and only the SO(2, 1) group is realized on the
states. Let us recall that in conventional examples of
spontaneous symmetry breaking, the stability group is
determined by the isotropy group of the lowest-energy
solution. Here the concept of energy is ambiguous, but all
solutions possess an SO(2, 1) isotropy group; hence, it is
not surprising that this should also be the group realized
in the quantum theory. Indeed, other solutions can be
used as a background field for the quantum theory; they
would break the full conformal group into different
SO(2, 1) subgroups.

What is surprising is that the S matrix may be unity.
Thus, the Liouville model may be similar to the
Schwinger model: a symmetry is broken but there are no
on-shell interactions, even though off-shell Green's func-
tions are nontrivial.

%'e have no proof that the S matrix is trivial, but we
can offer a suggestion why this may be so. We have
placed the underlying geometrical significance of the
Liouville equation in the background, but let us now recall
that any classical solution @ defines a space of constant
negative curvature with metric tensor e~ g& . There is
only one such space, and any variation of 4 can be com-
pensated by coordinate redefinition. We did not em-
phasize a coordinate-free description, and an interaction
appeared to act. However, it is possible that the apparent
dynamics is merely the action of diffeomorphisms on the
manifold. This geometrical interpretation may be linked
to the triviality of the S matrix.

Finally, let us observe that the consistency of our pro-
cedure is guaranteed by the consistency of the SO(2, 1)-
invariant Lagrangian (5.13) with positive interaction. The
SO(2, 1)-invariant quantization may be extended to the
supersym metric Liouville theory. The fact that an
SO(2, 1)-de Sitter —type geometry has emerged dynamically
is unexpected, but reminiscent of similar effects in four-
dimensional supergravities. '

i(iote added in proof. We have been informed that com-
puter simulation of the Liouville quantum field theory by
Monte Carlo methods support our claim that translation
symmetry is broken [C. Bernard, B. Lautrup, and E. Rabi-
novici, CERN Report No. TH 3671 (unpublished)].
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APPENDIX A: SPECTRAL FORMS

In this appendix, we derive the spectral representation
(4.20), show how it can be utilized to compute the effec-
tive potential for the fluctuation field N, and derive the
spectral function (5.9).

1. Spectral representation (4.20)

To establish (4.20), we use (4.17) and derive the ap-
propriate spectral representation for QJ, which satisfies

[C+jV+1)]Q;(40')=2~~'(g —0') . (Al)

Since the Casimir operator C = —r commutes with the
compact generator J', they can be simultaneously diago-
nalized:

CY& =(A,'+ —, ) Y& (A2a)

(A2b)

Here, A, is a continuous eigenvalue and its range will be
fixed later, while m is an integer (see below). To solve
(A2), it is convenient to express C and J' in terms of the
coordinates parametrizing the hyperboloid, which we have
introduced in (4.21) and (4.22):

1 a2

sinh 8 BP
C = — . (sinh8)

1 8 . a
(A3a)

sinhO B|9 BO

' ='ay
From (A2b) and (A3b), we see that

Yi„(8,(t)=e ' ~pP(0), (A4)

so that m must be an integer to assure that Y~ is single-
valued, while (A2a) and (A3a) require that pP(8) satisfy

(sinh8) —pg(0)+ pi( (8)
cj m2

sinhO BO Be sinh 0

(A3b)

(A6)
The desired expression for QJ is thus

Qi. (cosh0) = g f di, Yq (O', P')

X . . .Y&, (8$),1

(j+—,
' )'+A,

where cosh8 =cosh8 cosh8' —sinh8 sinh0' cos(P —P').

= (A,2+ —,
'

)p P (0) . (A5)
The solutions to Eq. (A5) are associate Legendre functionsP, ;~ (toroidal functions) which are normalizable P«-
vided A, is r:al. The functions Y~ are normalized by

e i~A 1 (ii(, + —, —m—)
Yi( ~(0,$)= . P (~2+,q(cosh8) .

2~ I iA)
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r(is+ —,—m)
g ( —1) e ' '~ ~', P &&2+,2 (coshO)

I (iA+ —,, +m)

XP ~~2+, 2 (cosh0') =P ~~2+, 2 (cosh0), (A9)

where P„:P„. T—hus, we are left with the integral over A,

alone:

k sinhm. A, — 1d A. P ii2+, 2 (cosh0)
cosh& A, (j+—,

' )'+&' (A10)

For A, ranging from 0 to oo, this integral appears in the
literature and equals QJ:

QJ(coshO)= f dA. —

X ~~2+, 2 (cosh0)p 1

(j+—,
' )'+&'

(A 1 1)

We may check formula (A7) by first performing the
summation over I, remarking that

I ( i—A+ —, —m)I (iA+ —,+m)= m( —1)
cosh'. m

and that

cosh+ X
(A14)

The volume element now clearly appears, and the effective
potential to one-loop order is given by

(@) 2 m +%5m p@ 2 fi

m'/3' /3

I ~(N}=—lnDet( r—+2e~) .
2

Since the functions 1'~ form a complete orthonormal
basis that diagonalizes C = —r, I ~(4) is also equal to

r, (e)= —"f d'gn(g. g —1) g f"dA, K(A, ,@,m),
m = —oo

K(A, ,C&,m)=I'2 (8,$)ln(A, + —,'+2e~ )F2 ~(0,$) . (A13)

The summation over m can be performed in the same way
as it was for QJ, and we obtain

I,(4)=—f d g'5(g g —1)
2

The group-theoretical meaning of (4.20) is that it corre-
sponds to taking in the quantum Hilbert space a basis
which diagonalizes the compact generator J'. cosh' A,

(A15)

2. Effective potential

We compute the effective potential for the fluctuation
field 4 to one-loop order. The one-loop Euclidean-space
effective action for a constant field N is

The renormalization used in (5.7) is equivalent to demand-
ing that the minimum of the effective action, or in this
case the effective potential, be unchanged to one-loop or-
der. Hence,

X'+ —'+2e~~2 p@ }
fi f ~d&A, sinhmA,

1

~ + 4+2e 2(e~@—1)
p2 2 o cosh'. A, g2+ (9/4) $2+ (9/4)

(A16)

3. Spectral function (5.9)

To derive a spectral representation for

X( ,xx}= 2' '/3 M~ (x,x—'),
we proceed as follows. Since

l 2 2 /2

& (x,x')=
2 Q& (z), z=

2IT

we seek the coefficients of the expansion

g i'(z) = g a„g„(z) .

Use of the dispersive representation for Q„shows that the
above is equivalent to

ties of both sides gives

2zQ i (z ) = —g a„P„(z) .

Therefore, the coefficients are
1a„=—f dz(2n + 1)zP„(z)gi(z) .

This integral may be evaluated as follows:

2 (n —1)(2n+1)(n+2}
(n —2)(n +1)n (n +3)

which then implies Eq. (5.9).

APPENDIX 8: CONSTRUCTION OF
THE ENERCx Y-MOMENTUM TENSOR

(A19a)

(A19b)

2 =1 P„(z')
Q& (z)= —pa„dz'—

2 „—& z —z' (A 1 ga)

where I'„ is a Legendre polynomial. Taking discontinui-.

In order to construct the properly SO(2, 1)-regulated
energy-momentum tensor for the shifted Liouville theory,
it is convenient to use the SO(2, 1)-covariant formalism; we
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therefore work in Euclidean space. The formal stress ten-
sor which follows from (4.23) is

8,b ——a, e age — (a,e a'e)+ (e —pe —1) .

orthogonal to p since pa, =0. Hence, (84a) has two in-
dependent components just as (84b). Calling the diagonal
components of 8&„, 8', and —8', and the off-diagonal
one H, we can establish the formulas

Here I',& is a tangential projection tensor,

P.b(P =g.b k.k—b,
a P,b= —2gb,
I' =2,

(81)
0 0 0 2 O0 ))+822 —29,~= —A 8'

O» —e ~» —~~ eo+~r Wo .

Frere A is the usual arbitrary scale, and the components on
the left-hand side refer to the 3 X 3 SO(2, 1) tensor given in
(81).

To regulate O,b, we first use the equation of motion
(4.26) to present (81) in equivalent form,

and one readily verifies by virtue of the field equation
(4.26) that H, b is conserved, which is a statement of the
theory's SO(2, 1) invariance. The relation between 9,& and
the (Euclidean-space) tensor 8„,

e„.=a„ea„e— " a.ea e— ", ( ~~ —pe —1),

e.,=a.e a,e ,' p.b—(a,—ea'e) "(—+2)e, (86)

so that only the quadratic portion 0,~ need be regulated.
Since 8,b is manifestly traceless, the only question con-
cerns its divergence, which formally is P 'a~(Cl+2)e.

%'e define the normal-ordered, split-point bilinear by

H, b
——a, e age ——,p,g(a, e a'e), (84a)

g Q (pQ @ Q + QA'Q
2

(84b)

Both tensors are traceless and symmetric; moreover, O,b is

(83)

may be presented in the following way. %'e consider only
the bilinear parts of the respective tensors —the interaction
terms are obviously identical:

e(g)e(g') =c (g)e(g') —~(g g')

:a,e(g)ape(g'):=a, e(g)abe(g') —a, ab&(g g') . (87b)

To pass to coincident points, g' is taken to be a function of
g, with g' —g of order Mg, and g'.$=1+q, as g goes to
zero.

The regulated expression for O~b is the normal-ordered
version of the quadratic part of (86), which can be written
in terms of unordered products with the help of (87b):

:e.', := iim [ —,
' [a.e(g )a;e(g')+ a.'c (g')a„e (g )+a„'e(g')a. e(g)+ a, e (g )a.'e(g')]

q —+0

——, p, b(g)[ a, e(g') a" e(g')+a,'e(f )a'e(g))+c,b(g) J .

Here C,b is an g-dependent, singular c number, and all derivatives are with respect to argument. Formula (88) is mani-
festly traceless, .but the divergence must be recomputed. When (88) is differentiated with respect to g, we encounter
derivatives of g,

' with respect to gl„and these differ from P,q by terms of O(V g). It is therefore clear that one gets

a':O,q. ——hm [ —,[ e(g)abe(g')+ 'e(g')abe(g)+abc(g')&e(g)+abc(g) e(g')]
g~O

+Mq( terms bili near in e ) +c number) .

Again, all differentiation is with respect to the argument. The "(terms bilinear in e)" may be written in normal order
plus an additional c number; after normal ordering, the factor v'g ensures that these operator bilinears vanish as q~0,
so apart from a c number only the term in square brackets survives. We transform it as follows.

The operator equation of motion reads

(810)

hence,
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In the first term the coincident-point limit may be taken to give

while the second term leaves, apart from a c number,

PQ 4(g)t)'b&(g. g') =PE@($)PP,b(g')Q' '(g g) .

In this way we find, in the limit g'~g,

a'.e.'b: =—ab(2+2)4+ lim —[0C (g)pP,b(g')+& 'C (g')g"P,b(g)]& '(('g')
q~o 2

(812)

We have dropped irrelevant c numbers. The second term is the anomaly, which survives as g —+0:

—[(:)+k)PP,b(k')+ 'C'(k'4"P, b(k)1~ '(k.k') — kb @k)+ (kb kb )[
2 , 0 8~g

(813)

since

~'(f g)~
4m'

Next, in the last term, '4(g') is expanded in powers of
f—g, to give

t)':O~b. ———Bb(V+2)k — g'b 4& — t)bCI4 .
8m 4m.

(814)

The conserved, normalized, energy-momentum tensor is

:O,b..=..O,b. (+2)C&—

p$ r ~ pg+
16 k.4b @+ g.b
16m 4m.

)(kb kb )~)
8m.g

Because f g is 0(v—g), this expression contributes an
amount which depends on the precise regulation method.
However, if we demand that the limiting result be mani-
festly SO(2, 1) invariant, the only possible limiting form
for (I/q)(g,' —g, )(gb gb) is —P,b, since —the former has
trace —2 and is transverse to g, in the limit. Thus, we
find

The last two terms are &.he anomaly. Note that the term
proportional to g,b can be absorbed in a renormalization
of the corresponding classical term, however, the contri-
bution proportional to g, gb is new. Since the three con-
served SO(2, 1) currents are

Jb =:8":e,

dbms,

B,Jb ——0,
contributions to:0": proportional to P are irrelevant.
Hence, an equivalent formula for energy-momentum ten-
sor is

:O,b. ———.(3,4 Bb@:--—,I',b.B,C) ()'@:

p
ab +2

This is not conserved, but the divergence is proportional
to g.

One may now also try to construct a traceless, sym-
metric, and conserved tensor:Tz ., which would general-
ize the classical formula (6.2). Clearly one contribution
must involve:IC„:. Since (814) determines the divergence
of:0& . , one may inquire whether there exists a traceless,
time-local addition AT&, which would cancel the nonzero
divergence of:ic„:. The answer is no; the anomaly pro-
vides an obstruction.
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