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The quantization rules for gauge theories with open algebras are generalized to the case of linearly
dependent generators. The given zero-eigenvalue eigenvectors of the generators may also be linearly
dependent and possess zero-eigenvalue eigenvectors which may also be linearly dependent and so on.
We give the solution for the general case of such a hierarchy.

I. INTRODUCTION

In Ref. 1, we proposed a method which gave a closed
formulation of the quantization rules for gauge theories
with open algebras under the conditions of irreducibility
and completeness. The condition of irreducibility requires
the generators of gauge transformations to be linearly in-
dependent at the stationary part of the classical action
(and consequently in a neighborhood of that point). The
condition of completeness requires the degeneracy of the
classical action to be totally due to its gauge invariance
described by the given generators.

These conditions are fulfilled in a large class of gauge
theories, but recently examples have appeared in the litera-
ture (Refs. 2—9) in which the condition of irreducibility
docs not hold. Of course, one can always single out a
basis of linearly independent generators, but then one will

generally lose either locality or relativistic covariance.
The local and covariant generators are generally linearly
dependent. In particular, this is the case when one de-
scribes spin-0 particles by an antisymmetric tensor or
spin- —, particles by a symmetric spin tensor.

The purpose of the present work is the generalization of
the method of Ref. 1 to reducible gauge theories. The
condition of irreducibility will be replaced by a "hierarchy
of reducibility" which may have any number of stages, in
the following sense. Let the infinitesimal gauge transfor-
mations of a gauge field P' be represented in the conven-

tional condensed form' as 5$'=R' (P)58, where 58
are the parameters. If the vectors R' enumerated by ao
are linearly independent, by which we mean that the ma-
trix Ra (P) at the stationary point has the maximal rank,

the theory is irreducible and will be called a zero-stage
theory. A first-stage theory corresponds to the case in
which R' (P) at the stationary point has nontrivial zero-

eigenvalue eigenvectors Z&~ with respect to the index ao,a&

but the matrix Z~ has the maximal rank. In a second-
a&

stage theory the matrix Zi', at the stationary point also
a&

has nontrivial zero-eigenvalue eigenvectors Z2' (with
2

a1
respect to the index a~), but these Z2, have the maximal

rank, apd so on. The only limitation imposed is that the
theory be of a finite stage. It is only important that the fi-

nal Z shall have the maximal rank.
We shall suppose that the above zero-eigenvalue eigen-

vectors Z are all explicitly given, as well as the initial gen-
erators R', and are local covariant operators. This is

0
indeed the case in the known examples. The problem is to
formulate the quantization rules in terms of these given
quantities and avoid the introduction of other bases which
may destroy locality and other indices which may destroy
relativistic covariance.

The condition of completeness remains unchanged.
Therefore the number of admissible gauge conditions
needed to remove the degeneracy of the action must equal
the true number of gauge invariances, i.e., the number of
linearly independent generators. However, it may prove
difficult to introduce such a set of gauge conditions in a
local and covariant way. One would like the gauge condi-
tions to carry the index ao of the generators R', but thenao~

there will be too many gauge conditions. The problem
arises of introducing gauge conditions using only indices
matching those of R and the Z's, and at the same time
guaranteeing the correct number of 5 functions in the
functional integral. For linear theories this problem has
been solved in particular examples. ' We shal1 give the
general rules for gauge fixing and constructing ghost La-
grangians for theories with arbitrary reducible and open
gauge algebras.

Our principal result is that the general formalism given
in Ref. 1 is valid for gauge theories of any finite state of
reducibility. A modification is needed only in two places:
(1) in the determination of the minimal set of fields and
antifields, on which the proper solution of the master
equation (S,S)=0 can be realized, and (2) in the deter-
mination of the structure of the gauge fermion 0', securing
the admissibility of gauge conditions.

The summary and the plan of the paper are as follows.
Section II contains a precise formulation of our assump-
tions about reducible gauge theories. Section III contains
the general construction of quantization rules and gauge
algebra, unique for all reducible and irreducible theories.
(This is a review of the method of Ref. 1.) In Sec. IV, we
obtain the Feynman rules for first-stage theories. The
solution of both aspects of the problem, i.e., the construc-
tion of reducible gauge algebras and the introduction of
redundant gauge conditions, is discussed in detail. A new
feature, which arises when passing from the first to higher
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stages of reducibility, is encountered in Sec. V, where we
consider theories of the second stage. Section VI contains
a complete formulation of the Feynman rules for theories
of an arbitrary stage of reducibility. The reader who is in-
terested only in the results without derivations and ex-
planations need read only Secs. II and VI.

In Sec. VII, we consider two examples: the spin-0 an-
tisymmetric tensor field and the spin- —,

' symmetric
spin-tensor field. Both are linear theories, so the gauge
algebra is trivial. However the problem of gauge fixing is
nontrivial even at the linear level. ' These examples are
intended to illustrate the use of general formulas.

The Appendix contains the theory of the master equa-
tion. The properties of the master equation were briefly
formulated in Ref. 1. Here they are considered in more
detail.

2Votation and conventions. We mainly use the notation
of Ref. 1. In particular, eq ——e(A) denotes the Grassmann
parity of A; 8, and BI are right and left derivatives. The
ghost number of 3 will be denoted by gh(A ).

The rank of a matrix is the maximal size of its inverti-
ble square minor. In the case of an even-parity matrix X
one may speak about two ranks: those of the Bose-Bose
and Fermi-Fermi blocks. These ranks will be denoted by
rank+X. The rank of an even-parity matrix is
rankX =rank+X+rank X. BerX is the superdeterminant
(Berezinian) of the even-parity square matrix X.

By linear independence of k vectors V„', p = 1,. . .,k, we
always mean rankV& ——k. In the presence of Grassmann
numbers, this should be mentioned specially.

%'e use the condensed notation for the gauge field:
P', i =1,2, . . ., n =n++n, where n+ (n ) is the num-
ber of bosonic (fermionic) components. W(P) is the clas-
sical gauge action and is a bosonic quantity. Pp denotes
everywhere a stationary point of W(P).

II. POSTULATES GF REDUCIBLE GAUGE THEORIES

Although the postulates of gauge theory, formulated in
Ref. 1, must here be weakened, the following assumptions
remain unchanged.

The classical gauge action 5 (P) is assumed to have at
least one stationary point Pp,

Then there exist m ~
——m ~++m ~ zero-eigenvalue eigen-

ap
vectors Z

&a&.

ap
E(z)~ )=e~ +6~, CE)= l, . . . ,m )

These eigenvectors are assumed to be regular and linearly
independent in a neighborhood of the stationary point:

ap
rank+Z)~

~ p =m)p .

The condition of completeness reads

ala„Wrank+, . n+———(mp —m
~ )+

~4'~W &p

and n+ ) (mQ —m~)+.
Second-stage theories. For these theories we have

rank+A~
~ ~ =mp+ —(m] —m2)+,

mI+ )m2+, mQ+ ) (m] —m2)+ .

(2.5)

(2 6)

(2.7)

ap
E(Z&~ ) =6~ +E~, A) = l, . . ., m )

(2.g)

which are regular in a neighborhood of the stationary
point, and

ap
rank+Z)

~ p =(m) —m2)+ . (2.9)

Because of (2.9), there exist m l ——m 2+ +m 2 zero-
eigenvalue eigenvectors Z2',a27

ap a]z,.z,. ~~, o,
a&

E(Z2~ )=E~ +E~, CÃ2 —l, . . .,m2

(2.10)

which are assumed to be regular and linearly independent
in a neighborhood of the stationary point:

There exist m
&

——m &+ +m
&

zero-eigenvalue eigenvectors
ap

Z]a o

1

a. =0,
BP' yp

(2.1)
al

rank~z2
~ p =m2+ . (2.11)

and to be regular (infinitely differentiable) in the neighbor-
hood of Pp. Further, mp+ bosonic and mp fermionic
Noether identities are assumed to hold in a neighborhood
of the stationary point:

The condition of completeness reads

B)B„Wrank+, " . =n~ —[mp —(m, —m2)]+—aO'ai &,
(2.12)

~r
i 0

R a 0 p exp 1 y ~ ~ ~ &mQ mQ+ +mQ (2.2)
and n+ & mp+ —(m ) —m 2 )+.

Similarly, we define a theory having any finite stage of
reducibility.

where 8 (P) are regular functions, and e'(R ) =6;+6
Here e; =e((b'), and e is the Grassmann parity of the pa-
rameters of gauge transformations. The formulation of
the remaining assumptions, namely, those of irreducibility
and completeness, is different for theories having different
stages of reducibility.

First-stage theories. For these theories we have

rank, R.'
~ ~ =(mp —m, )+, mp+ &m, + .

III. THE GENERAL CGNSTRUCTIGN
OF QUANTIZATION RULES

AND GAUGE ALGEBRA

The general scheme for the construction of quantization
rules and gauge algebra is still that of Ref. 1. Here we re-
call some definitions.

Let @ be a set of bosonic fermionic fields which con-
tains the initial gauge field:
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y'ce" (3.1)

To each N adjoin an antifield @A having opposite statis-
tics:

W =S+ g Ai'M~ .
p=1

This gives

(3.11)

e(4")=ez, e(C&~ ) =eq+1 . (3.2)

For any two functions X, Y on the phase space of @,N*,
define an operation called antibrackets:

I
(X,Y)=-

a@A a@A

a„x aI Y

ae„* ae' (3.3)

Consider the following class of surfaces in the phase
space

&ti(@)
A (3.4)

where %(4) is some fermionic function which will be
called the gauge fermion Thi.s class of surfaces can be
equivalently defined in the canonically invariant form".

&: Xg (@,@*)=0, (X~,Xs )=0,
ar+A

Ber &0 .
a+*,

(3.5)

Let the bosonic function W(4, 4*) satisfy the equation

i ar al6 exp —W =0, ae" a@*,
'

or, equivalently,

—,( W, W) =ibid, W .

(3.6)

(3.7)

Let Wx(@) be the restriction of W(4&, @*)to the surface
(3.4):

Wx(N) = W(@,N*)
~

x= W 4,@*= ae
=ac (3.8)

Then the functional integral of the theory may be ex-
pressed in the form'

=f exp —W (N) g d@",
A

(3.9)

where the content of the field + and boundary conditions
to Eq. (3.7) are to be determined from two requirements:
the nondegeneracy of the functional integral and the
correctness of the classical limit.

The gauge fermion qi(@) is arbitrary modulo the re-
strictions imposed by the requirement of nondegeneracy.
Making the transformation

ne" =(e",W) —'Sy(e) ~, (3.10)

in (3.9) and using (3.7), one can prove that the functional
integral does not depend on the choice of
W@——N@+~@. The arbitrariness of 4 is the most general
gauge-fixing arbitrariness existing in the theory. The
transformation (3.10) is the most general version of the
Becchi-Rouet-Stora (BRS) transformation.

The solution of Eq. (3.7) can be expanded in powers of

p =0: (S,S)=0,
p = 1: (Mi, S)=i hS,

(3.12)

(3.13)

p —1

p)2 (Mp S) ihllfp ) 7~g (Mq Mq q) (314)
q=1

The classical part of W, denoted by S, satisfies the master
equation (3.12) and, remaining restricted to X, represents
the full action of a theory. The remaining terms of (3.11)
give the quantum integration measure.

The requirement of correctness of the classical limit
leads to (3.1) and the following boundary condition for S:

S(+~@*)
~
e~=o=~(P) . (3.15)

BiB„W
rank+ . . n~ —r——ank+R '

gyigp ~
— — ~o o

(3.16)

(in consequence of the completeness) and is smaller than
the number of fields. Therefore such a solution is not
proper. Owing to the boundary condition (3.15), there are
initially m0 zero-eigenvalue eigenvectors R that are not

0
contained in the Hessian of S at the stationary point. In
order to make the solution proper one must include these
eigenvectors in the Hessian. The rows and columns in
which they are to be included may be inferred from the
nilpotency relations (see the Appendix):

BiB,S(4,@*) BiB„S(%,+*)
a@ a@ a@pa@

BS BS =0ae a@~

Now, in virtue of (3.15), one has

+(—1) " '(a C)=O.

The nondegeneracy requires first of all that S be the
proper solution of the master equation 1. The solution is
called proper if the Hessian of S(4,4*) has the maximal
possible rank at the stationary point of S(@,4*). It can
be shown that this maximal possible rank equals the num-
ber of fields 4" (half of the total number of fields and an-
tifields). This is because the Hessian of S(@,C&*) at the
stationary point is nilpotent. The solution is proper only
if this Hessian has no other zero-eigenvalue eigenvectors
except those contained in itself. For details see the Ap-
pendix.

The requirement that the solution be proper dictates the
minimal content of 4" as well as the boundary conditions
for S, supplementing (3.5). From this point on the con-
struction of the proper solution crucially depends on the
properties of reducibility of the theory. I.et us recall how
this question was solved for irreducible theories. '

Suppose that 4" contains only the initial gauge field P'.
Then both the master equation and the boundary condi-
tion (3.15) will be satisfied if we simply put
S(@,C&~)=W(@) with no dependence on antifields. But
if W(@) is the gauge action the rank of its Hessian at the
stationary point is
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a,a,w(y)
ay'ap

Therefore R' must be contained in a block of the form

Here it is convenient to introduce the notion of ghost num-

ber. The ghost numbers of the fields P', Co, P;, and Co
are defined by

a,a„s(e,c *)

ay*, a(7)"

gh(P') =0, gh(P,')=—1,
gh(Cp') = 1, gh(Cp, ) = —2 .

(3.21)

where the question mark stands for some new field. At
a

this Point one introduces mo auxiliary fields Cp having
aO

the statistics e(Cp ) =c,+ 1 and requires that

C,'c.4', aia„s(4, 4&*) =R' (P) .
ay*, ac," (3.17)

rank+R ',
~ ~,= rn p+, (3.19)

and the rank of the Hessian equals the number of fields.
ao

In this way one is led to the introduction of ghosts Cp'.
For irreducible theories one sees that the proper solution

of the master equation is realized with the minimal set of
fields

@".= Id"'Co'I (3.20)

and satisfies the boundary conditions (3.15) and (3.17).

Then the number of fields @" becomes (n+mp)+. The
Hessian of S at the stationary point is shown in Fig. 1. Its
rank equals

aia„w(p)
rank+ . . +2rank~R '

apiary
— +p p

=n++rank~R'
~ ~ (3.18)

by virtue of (3.6). If the theory is irreducible, then

It can be proved that there exists a proper solution of the
master equation with boundary conditions (3.15) and
(3.17) and (conserved) ghost number equal to zero. This
solution generates Feynman rules via expressions (3.9) and
(3.11). Expanded in powers of antifields it yields the gen-
erating function (Ref. 1) of the open-gauge algebra. '

Conservation of ghost number is a property of the
gauge algebra. In the usual derivation of the gauge alge-
bra, ' structure functions are not associated with every set
of indices. There is a certain ratio between the number of
group (upper and lower) and field indices. The structure
functions of the algebra are the coefficients of the expan-

sion of S(4;„,@;„)in powers of iti*;, Co, and Co, and

conservation of ghost number is the selection rule for
these structure functions. Note that ghost-number conser-
vation is essential for the solution to be proper. It is the
addition of this requirement to the boundary condition
(3.17) that gives the Hessian of S at the stationary point
the form of Fig. 1.

The requirement of nondegeneracy imposes also restric-
tions on the gauge fermion. This is the second point at
tohich the properties of reducibility of the theory play a cru
cial role. The number of gauge conditions in irreducible
theories must equal the number of generators R' . In Ref.

0

1 these gauge conditions were introduced in the following
way. The space (3.20) was extended by 2mp additional
auxiliary fields:

Cpao ~pao + @
(3.22)

e(Co, )=e,+1, e(rrp, )=e, .

The dependence of S on these new fields was chosen to be
trivial:

FA&v) I

~VO

S(e,e*)=S(e;„,e;„)+Co rrQ (3.23)

It is easy to see that (3.23) satisfies the master equation in
the extended space if it is satisfied in the minimal space.
It is also clear that 'he solution remains proper. One easi-
ly finds that gauge conditions are generated by the gauge
fermion in the form

aq'
0aC, (3.24)

FICx. 1. The Hessian of S(@;„-@*;„)at the stationary point
for irreducible theories. The stationary point is ijk =Pp,
P*=Cp=Cp =0. The empty blocks are zeros due to ghost-
nurnber conservation.

with m.
p playing the role of Lagrange multipliers.

Indeed, one has, from (3.8),

S(e,e*) i,=S e;„, 8%
' '

~~min
rrp . (3.25)

8%

ac

The fields Cp and Cp are the Feynman-
0

DeWitt —Faddeev-Popov ghosts, and the corresponding
matrix (the inverse ghost propagator) stands on the left-
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hand side of the following equality: C, C,
"

C, C,
"

rank+
BgB,+

ac,ay'
.R'

Co ——Co ——0

=Alp+ (3.26) 05(q)
Qqi. /pe

This equality is the only restriction on the gauge fermion
in irreducible theories.

The only quantity that remains undefined in the func-
tional integral (3.9) is the measure. As explained in Ref. 1,
the boundary conditions to Eqs. (3.13) and (3.14) for the
measure cannot be formulated without an appeal to the
canonical formalism. ' ' However, in a local basis of the
gauge algebra the right-hand sides of Eqs. (3.13) and (3.14)
are proportional to 5(0). In the framework of a regulari-
zation which annihilates such divergences one may put
Mp ——0, p &1.

The presence of the measure makes the functional in-
tegral independent of the choice of the basis of generators.
In nonlocal bases the measure may generate all sorts of
Feynman diagrams; only in a local basis is the measure
inessential.

The status of the measure in reducible theories is the
same. Since the generating function S of the gauge alge-
bra in reducible theories will here be constructed in a local
basis the measure may be ignored.

IV. QUANTIZATION RULES
FOR FIRST-STACiE THEORIES

~I ~r aoS(@,@*) =Z i

»I»' =0

(4.1)

If the theory is reducible, then condition (3.17) does not
guarantee that S is already the proper solution. Although
the rank of the Hessian (Fig. 1} is given by Eq. (3.18), as
before, we have

rank+R '
~ ~ & m o+,

so that the rank (3.18) is smaller than the number of
fields. The reason is that the block R' of Fig. 1 now has

ao
zero-eigenvalue eigenvectors Zi' which are not included

ao
in the Hessian. In other words, the ghost Cp becomes a
gauge field. The same considerations as before lead to the
conclusion that we must introduce new auxiliary fields

a& a
C, , ai ——l, . . .,mi, e(C, ) =e and require that

C, Co

C»
O(O

FICx. 2. The Hessian of S(4;„,@*;„)at the stationary point
for first-stage theories. All quantities are restricted to /=$0.
The empty blocks are zeros due to ghost-number conservation.

If the theory is a first-stage theory, then Eqs. (2.3)—(2.6)
hold, and the rank (4.2) exactly equals the number of
fields.

Thus in first-stage theories the minimal content of M is

qA Itic 0 C 1I (4.3)

and the boundary conditions for the master equation are
(3.15), (3.17), and (4.1). We assign ghost numbers

gh(Ci ' }=+2, gh(Ci, ) = —3 (4.4)

to the new ghost and its antifield. The ghost numbers of
the old fields appearing in (4.3), and of their antifields,
remain the same as before. Again we require that S be bo-
sonic with (conserved) ghost number equal to zero.

Under these conditions one can prove a theorem analo-
gous to that formulated in Ref. 1 for irreducible theories,
namely, that a solution of the master equation exists as a
power series in antifields. The coefficients of this series
are polynomials in Cp, Ci and are infinitely differentiable
in P in a neighborhood of the stationary point. The proof
is based on postulates (2.1)—(2.6).

The generic monomial in the expansion of S(@;„,4;„)
is proportional to

in order to include new zero-eigenvalue eigenvectors in the
Hessian. ' The number of fields W is now
(n+mo+m, )+, and the Hessian is shown in Fig. 2. Its
rank equals

(((} )'(Co) (Ci )'(Co)'(Ci)',

where

r+2s =l+2p+3t

(4.5)

(4.6)

BiB,W(P) ao
rank+ . . +2rank+R~

~ &
+2rank+Z, ~

Bp'Bp 00
ao o a) o

(4.2}

in consequence of the requirement that the ghost number
vanish. The lowest-order terms in the expansion of
S(@;„,@";„}are of the form

'C )=~+4 R'C +C (Z, r)'+TI„Crc~)+rI', (Ap C v] +I'p CrC~C }

+P; P*(BJ'rl +EJ'pC~C )+2C yP(G' C"rl +D& scscrc~)+ (4.7)
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where the new ghost C~ is here denoted by q for simplicity. In (4.7) we keep terms at most quadratic in the antifields,
with r +2s & 3. The coefficients, R', Z', , T$&, . . . are functions of p.

The general relations which the master equation imposes upon the coefficients of the expansion in terms of antifields
are derived in the Appendix. In the present case the lowest-order relations imposed upon the coefficients of (4.7) are

B,W
—. A~C =0,
I (4.8)

glZa ~ 2 gJl Q( 1) j
O (4.9)

arm' C
R&~~+R'„T&~Cf'C 2" . —EJ.'~C~C ( 1)'=—O,

BP ~P ~+ ~P

a, T& C&C~ B,W'C +2T CPTPsc Cr+Z ~o sC CrcP+2 ' Di sC CrcP( 1) 0

RbC~+2T„~C~Zg q'+Z, ~.'~Ci'~'+2 "
. GJ~Ci'q'( 1)"=—O.

(4.10)

(4.1 1)

(4.12)

gh(%) = —1, (4.13)

Note that Noether identities (4.8) and commutation re-
lations (4.10) are generated by the master equation in the
same form as in irreducible theories, but the Jacobi identi-
ty (4.11) changes. Besides the usual open term proportion-
al to BW/B(t, this identity acquires a new term propor-
tional to zero-eigenvalue eigenvectors Z, . In the usual
derivation of the Jacobi identity this term would arise
when dividing by R~. Equations (4.9) and (4.12) are the
new algebraic relations. The lowest-order new conse-
quence of the master equation is Eq. (4.9). It shows how
the reducibility condition (2.4) looks off the mass shell.
The totality of relations generated by the master equation
forms a new algebra: that of a first-stage theory.

Turn now to the question of gauge fixing. %'e must
determine the restrictions that the gauge fermion ~p(N)
must satisfy in order that it generate admissible gauge
conditions. First of all we require that

gh(CO ) = —1, gh(Cp )=0,

gh(pro, ) =0, gh(mo ') = —1,

gh(Ci, )= —2, gh(Ci )=+1,

gh(iri, ) =—1, gh(m i ') =0,

gh(Ci ')=0, gh(Ci", )= —1,

gh(vri ')=+1, gh(m. 'i*, )= —2 .

(4.17)

BgB,+
rank+ . ——(mo —m i )+,—ac ay'

0

(4.18a)

Then the following restrictions on the gauge fermion
guarantee the correctness of the gauge fixing (@o is the
stationary point of the action S

~
x):

in agreement with (3.4) and the assigned ghost numbers.
Secondly, as pointed out in Ref. 1, the minimal set of
fields 4" may be extended by any number of pairs of
fields of the type (3.22) appearing in S as in Eq. (3.23).
This freedom proves to be extremely useful in reducible
theories. Instead of one pair (3.22) we shall introduce
three pairs of auxiliary fields,

a0
Iank+ Z )p

BC)a BCO
N0

=772 I+

ala, q
rank+ . R p ——(ma —m i )+,

BC BP'
0

(4.18b)

(4.18c)

I al ~a&
COa y 7TOa p C]a p K$a p CJ p 7T] C 4

e(CO, ) =e,+1, e(mo, ) =e, ,

(4.14)
a&

raIlk+Z ia
BCOa BCI

=m ~+ (4.18d)

e(Ci, )=e, ,

e(C) ') =e, ,

e(~, , ) =e,+1,
e(m& ') =e,+1,

(4.15)
Here the Z~ are zero-eigenvalue left eigenvectors of the

0
matrix (4.18a):

and define

S(N, +*)=S(N;„,@*;„)+Co mo

+C) m)a +C)a +C(a m) (4.16)

a, B(B,%'

BC BP'Oa0
0

a& a&
rank+Zla

l @ ——mi+, e(Zia ) ——E'a +e~

(4.19)

where N;„ is the minimal sector (4.3). The following
ghost numbers must be assigned to these fields: From (3.8) and (4.16) one obtains
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S(4,@*)! =S 4;„, + boa
BCO

rank+
BCoa BCi

(4.24)

8% 8%+ ~]a + ~ KJ e

Therefore the integration over all m's will give three sets of
gauge conditions:

(a) =0, (b) =0, (c) =0 .
OC, gC,

ale, q
0 gC qadi

0

Np

Po
(4.22)

The matrix in (4.22) (the inverse ghost propagator) is de-
generate according to (4.18b). Its zero-eigenvalue right
eigenvectors Z&p coincide with those of R p. Therefore

Co is a gauge field, and the Z~ play the role of the corre-
sponding generators. This is the reason why we intro-
duced the second pair in (4.14). The second set of gauge
conditions, Eqs. (4.21b), removes m i components
of Co', and (4.18c) is the standard requirement of admissi-

bility of gauge conditions imposed on the Co'.
The matrix in (4.22) has also zero-eigenvalue left eigen-

vectors, which coincide with the Z~ of Eq. (4.19). This
means that Co is also a gauge field; the corresponding gen-
erators are the Z&. For this reason we introduced the
third pair in (4.14). The third set of gauge conditions,
Eqs. (4.21c), removes m i components of Cop, and (4.18d)
is the standard requirement of admissibility for the gauge
conditions imposed on Cop .

0

Thus the conditions (4.18) secure the removal of the de-
generacy connected with the gauge fields P, Co, Co. The
new ghost C& and its Ci [introduced in the second pair of
Eqs. (4.14)] are not gauge fields. The quadratic part of
their action is of the form

(4.21)

In irreducible theories we had only mo gauge conditions
(4.21a), which removed m o components of the initial
gauge field P'. In first-stage theories only (mo —m i) com-
ponents of P' should be removed. This is guaranteed by
(4.18a). The requirement (4.18b) replaces (3.26) and
guarantees the admissibility of the gauge conditions im-
posed on P'.

Further the quadratic part of the action of the
Feynman-DeWitt —Faddeev-Popov ghosts is of the form

in virtue of (4.18d), the redundant gauge conditions in
(4.21a) exactly remove the extraghost C'i.

Thus the mo primary gauge conditions (4.21a) play a
double role: (mo —m ~) of them remove the degeneracy of
the initial gauge field, and the remaining m& conditions
eliminate the extraghost. This is the general solution of
the problem of redundant gauge conditions in reducible
theories.

Note that the zero-eigenvalue left eigenvectors Zi (in
contrast to the right ones) do not enter the gauge algebra.
(4.7) and the functional integral. They are defined only by
the choice of the gauge fermion [Eq. (4.19)] and are need-
ed only to verify the correctness of gauge fixing [Eq.
(4.18d)].

The simplest way to constru"t a gauge fermion satisfy-
ing the above requirements is to put

(a) X '(P)+rr ', Ci ' ——0,

(b) o&u,'Co ——0, (4.26)

(c) Co cr '=0,

and allow the elimination of the redundant components of
P', Co, Coa, , and the extraghost Ci

The gauge conditions (4.21) or (4.26) arise as 6 functions
in the functional integral only if the gauge fermion 0'(@)
does not depend on Lagrange multipliers ~. Such a depen-
dence is possible, however, since m C@. In order to have
the usual quadratic gauge-breaking Lagrangian, one must
introduce a linear dependence of 4 on the m's. Then the
integration over the ~'s will give Gaussian averages of
gauge conditions instead of 6 functions. In the simplest
case one must add the following terms to (4.25):

a0P0
—,(Co,~ rrop, +Cia, pp, ~i

pp'( —1) 'Ci '), (4.27)

a=Co,& '(y)+C,
, to 'Co" +Co,o 'C, ',

a& a0
where ~a and o. are some convenient matrices having
maximal rank and satisfying Eqs. (4.18c) and (4.18d), and
the X o(P) are some redundant gauge conditions satisfying
Eqs. (4.18a) and (4.18b). Then Eqs. (4.21) take the form

BIB„%' p p,Ci, p Zip, leo
BC) BCo'

(4.23)

a0P0where ~ and pp' are some invertible matrices.
1

The integration over the m's is useful if the matrices
a&

and pp, do not contain derivatives, but if

and, for first-stage theories, is nondegenerate due to
(4.18c). There remains only one redundant field: the "ex-
traghost" C', introduced in the third pair of Eqs. (4.14).
Note that it has no partner in the minimal sector (4.3).
However there also remain m& redundant gauge condi-
tions in (4.2la). Since

—].K a0P P P P

are required to be differential operators, then integration
over the m's is inconvenient because it yields nonlocal
determinants. In this case the following device is useful.
Make the replacement
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Cp —+Cpy A ]cp
&oPo —1

(4.28)
e(Cz') =e,+ 1, gh(C2') = +3,
gh(Cz, ) = —4,

(5.1)

as well as

~o~o —1 po
my~, ~[vr)r Bp —Co~ A a ~ op ]

p e +1
Xp '

', ( —1)

~o
p,~y, Co

(4.29)

(4.30)

and a corresponding boundary condition [Eq. (5.6) below]
which includes Z2 in the Hessian and makes the solution
of the master equation proper.

The minimal sector of the second stage, namely,

@ .=[4"Co' Ci' Cz'] (5.2)

now contains a zero-stage ghost Cp, a first-stage ghost C1,
and a second-stage ghost C2. The complete set of boun-
dary conditions for the master equation (3.12) reads

aopo a&
where A and Pp' are arbitrary invertible matrices. The

1

Jacobian of this replacement equals unity, because ~0 and
Cp, as well as m.

1 and C1, necessarily have opposite statis-
tics, while (4.30) is simply a shift of origin.

As a result of the above replacement the gauge-breaking
terms of the action (4.20) take the form

8% B% B%

4»=—0

=R', (P),

8( Br ao—S(@,4*) =Z) (P),
BC0

4»=0

(5.3)

(5.4)

(5.5)

~o aopo~[—,( —1) mo I vrpp +~,p 8
t p

aopo —, yo 1p, ~o—Co~~ & propp ~Co ] ~ (431)

where

6~ 6p
I =A 'A 2 '—= ( —1) (4.32)

One must also remember to make the appropriate replace-
ment in the argument B%'/8@;„ofthe action (4.20).

The term Xa. 'X of (4.31) removes the degeneracy of the
initial gauge action, while the last term of (4.31) removes
the degeneracy of the action of the Faddeev-Popov ghosts
Cp Cp. If ~ ' contains derivatives, then, as seen from
(4.31), the Lagrange multiplier ~o becomes a propagating
field. A propagating up arises already in irreducible
theories and is the so-called Nielsen-Kallosh ghost. '

Whether the new Lagrange multipliers mi and ~1 will pro-
pagate or not depends on the form of the matrix B. The
extraghost Ci, however, will always be a propagating
field, because in specific examples either o- or x ' always
contain derivatives. (See examples considered in Sec. VIII
of this paper. )

(5.6)

& a
1

~a
1

pao & pao s la~ & ia~ y 1 7 1

I a~ a~
2a2 & 2a~ 9 2 & 2 & 2a~ s ~2a2 ~

(5.7)

The Grassmann parities and ghost numbers of new fields
in (5.7) are

The bosonic proper solution of the master equation in the
minimal sector (5.2), which satisfies the above boundary
conditions and has (conserved) ghost number equal to
zero, generates the gauge algebra.

The new feature that arises in the construction of the
gauge fermion is the appearance of "extraghosts for the
extraghosts. " It is clear that since the first-stage ghost
and its C1 are now gauge fields, two new sets of gauge
conditions will be needed, and hence two new pairs of aux-
iliary fields in addition to (4.14). It is also clear that one
of these two pairs will contain a new extraghost. It is less
evident, however, that the old extraghost C1 is also now a
gauge field, requiring a third pair containing an extraghost
for the extraghost.

For second-stage theories the space (5.2) must be ex-
tended by six pairs of auxiliary fields:

'y. QUANTIZATION RULES
FOR SECOND-STAGE THEORIES e(C2, )=E,+1, e'(~2, ) =e, ,

The postulates of second-stage theories are (2.1), (2.2),
and (2.7)—(2.12). For these theories a qualitatively new
feature arises in the construction of the gauge fermion.

No qualitatively new features arise in the construction
of the gauge algebra. Note that the block Z1' of Fig. 2

a&
now acquires zero-eigenvalue eigenvectors Z2' which area2
not included in the Hessian. Therefore one introduces a

a2
Ilew ghost C2

e(C2 ')=e,+1, e(vr2 )=e, ,

e(C2', )=e,+ 1, e(~2', ) =e, ;

gh(C2 ) = —3, gh(C2 ') = +2,

(~2 )=—2 gh(~2 ) + ~

gh(C2 ')=+1, gh(C2* ) =- —2,

(5.8)
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gh(m2 ')=+2, gh(mz~, )= —3,
IA a2

gh(C2', ) = —1, gh(C2 )=0,
gh(n. z~, ) =0, gh(m. 2

') = —1 .

(5.9)

a2
rank+ Z2"ac,.ac,

' '
a)

0

where

=1'2+ (5.14)

The solution of the master equation in the extended phase
space is of the form

S(4,@*)=S(@;„,4;„)+Cp mp +Ci mi,

~ a& 4a2 zI

trina

+C la ~1 +C2 ~2a&+ C2a2~2 +C2 ~2a2 '

araa2
2ai

aC1 aCoa&
0

E(Z 2~ ) =6~ +E~

a~
rank+Z2a) I @p iii2+

(5.15)

(5.10)

The classification of fields (5.7) and the corresponding
conditions on the gauge fermion are the following. The
first three pairs in (5.7) are the fields (4.14) of first-stage
theories. Therefore the conditions

rank+ . ——rank+ . R p—ac,ay' —ac ay'
0 0

In the present case the first three pairs generate redun-
dant gauge conditions. The redundant gauge conditions
from the second pair remove the new extraghost C2 the
same way as C1 was removed in first-stage theories. The
redundant gauge conditions from the first pair must re-
move the old extraghost C1 as before. However this time
they remove only (mi —m2) components of Ci. This is
seen from the third rank in (5.12). The corresponding ma-
trix has m2 right zero-eigenvalue eigenvectors:

= [mp —(m
&

—m2)]+ (5.11)

aIa '0

a, ~2Z
aco ac1 '

40

replace (4.18a) and (4.18b), and the conditions E(Z2~ )'=E~ +e~ (5.16)

rank+

1 0

aI a„%'=rank+ Z 1~,
ac,.ac,"

aIa, +=IaIlk+
ac ac',"

a1
rank Z2p, ~~,=m2+,

which play the role of gauge generators for C1. The gauge
components of C1 survive. To remove them we intro-
duced the sixth pair in (5.7), which contains the extraghost
for the extraghost: C2'. The condition of admissibility is
standard,

ala, %a&=rank+Z ia'ac...ac', '
@0

aI a„%'
rank+ Z2p

aC2', aC1 '
@0

=Pl 2+ (5.17)

a&=rank+Z i~, ~ c,,——(m i
—m 2 )+

(5.12)

where Z2 are eigenvectors from (5.16). There still remain
the redundant gauge conditions from the third pair. They
exactly remove the extraghost for the extraghost. This is
guaranteed by the condition

replace (4.18c) and (4.18d). The fourth pair in (5.7) is in-
troduced in order to remove the redundant components of
C1, which is now a gauge field. This pair plays the same
role as the second pair in (4.14). Therefore the require-
ment of admissibility of gauge conditions imposed on C1
parallels (4.18c):

rank+ ——m 2+,
aC2a aC1a2

0

(5.18)

following from (5.17).
The simplest form for the gauge fermion, which satis-

fies the above conditions, is

aIa 4 a1
rank+ X2p,ac,ac, '

=NZ2+ (5.13)
V=Cp, X '(P)+Ci, cubi', Cp'

aO al — a2 a(
+COa ~la C1 + 2a2~2a&C1

The fifth pair in (5.7) is introduced in order to remove
the redundant components of Ci and plays the same role
as the third pair in (4.14). Correspondingly, C2 is the
second-stage extraghost. The condition of admissibility
parallels (4.18d):

al a2 —„a2 a/+C la) &2a C2 +C2a~o.2a C (5.19)

Here the functions X (P) are restricted by (5.11), the ma-
trices coi and o, are degenerate and are restricted by (5.12),
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and the matrices co2, o.2, and o.2' have the maximal rank
and are restricted by (5.13), (5.14), and (5.17), respectively.
The six sets of gauge conditions generated by six pairs of
fields (5.7) take the form

4;„=[P';C, '
/
a, = l, . . ., m, ; s =O, . . .L $,

e(C, ') =e +s+1, (6.6)

B% ap ap+oi,C) ——0,
BCoap

8% a) ap
=~&a Co +o2a C2

ac,.
gh(C, *)=s +1,

where C, is the ghost which arises at the sth stage to make
the solution of the master equation proper. The boundary
conditions for the master equation (3.12) are of the form

s(e,e*)
~

. ,=w(y),
Coap+la& +C2a2 2a&

BC, '

a2 a&
=co2a C( ——0,

aC,.
8% =C) o2 ——0,

BC

(5.20}

~r S(@,4*)
BC", &as

=Z, * '(P) .

Bg S(4,@*) =R' (P),
~&' ac," 4~=0

(6.7)

Qlp
=cr2a C) ——0.

BCz

VI. QUANTIZATION RULES
FOR Lth- STAGE THEORIES

In I.th-stage theories we have gauge generators

R', i =1,. . .,n =n++n

ao=1 . . .,mo=mo++mo

The solution of the master equation in the minimal sector
(6.6), which has vanishing (conserved) ghost number and
satisfies the boundary conditions (6.7), generates the open
L,th-stage gauge algebra.

The auxiliary sector of fields N is constructed accord-
a

ing to the following rules. First to each ghost C, ' of the
minimal sector (6.6), one adjoins (s+1) fields having the
same statistics:

ap
Cp ~Co

al Ia&

e(R', }=e;+e, ,

and zero-eigenvalue eigenvectors

as —1
Zsa ~ as = 1~ . .~ms =ms++ms —~

S

(6.1) a2
C2 ~C2a, C2 C2a,

a3 a3 II III a3
C3 ~C3, C3, C3', , C3

(6.8)

s 1pe ~ ~ yi

s —1e(Z, ' ')=e, +e

satisfying the Noether identities

and the conditions

L
rank+R'

~ ~
—— mo —g m, ( —1)'

s=a

(6.2)

(6.3)

(6.4)

Here the (s+1)th line from the top (s =0, 1,. . .,L) con-
tains a complete set of new ghosts arising at the sth stage.
All ghosts on a given line have the same ghost number:
the number of the stage at which they first appear. The C
and C fields on each line alternate. The primed fields are
extraghosts for extraghosts for. . . or extraghosts of a cer-
tain generation. The number of primes increases mono-
tonically along a line and indicates the number of a gen-
eration.

Next, to each field on the right of (6.8) one assigns a
Lagrange multiplier of the opposite statistics:

Coa ~~pa0 0

1ank+Zz~
L

g m, ( —1)'
s =s

Additionally, the postulate of completeness holds in the
form

Cla ~~la
1 1

C) ~m)

C3a, ~m3
Ia3 Ia3

C3 ~m3

a2
C2a& ~~2a2 ~ C2 ~2 ~ 2a2 ~2a2 ~

(6.9)

BIBpW
rank+ . . +rank+Ra =n+ .—ay'ap

(6.5)

III III a3
C3a ~~3a

3 3

The minimal sector of fields 4 consists of All the C's in the (L + 1) lines of (6.8) and all the m's in
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the (L +1) lines of (6.9) form, together with the initial
gauge field P, the complete set of fields @" for the Lth-
stage theory. To each 4 one then adjoins an antifield

The solution of the master equation in the complete
phase space has the form

S(@,4*)=S(@;„,4 *;„)
+ap+CO ~0ap

+a&
1+C) mi +Ci, mi

Each arrow in Fig. 3 connects two fields either as C—+C
or as C~C. The connections C~C and C—+C alternate
along each left branch. The connections adjoining the
algebraic branch are always the C~C ones.

To each connection C~C there corresponds a zero-
eigenvalue right eigenvector Z and a condition on the
gauge fermion. To each connection C~C there corre-
sponds a zero-eigenvalue left eigenvector Z and a condi-
tion on the gauge fermion. There are as many conditions
on the gauge fermion as there are arrows in Fig. 3.

Consider a left branch and a connection

+C2 ~2a2+ C2a2~2 +C2 ~2a& C ' '~Ca
s

(6.11)

+a3 r a ppga3 Ill a+C 3 f/3 +C3 f/3 +C 3 ~3 +C 3 773 belonging to this branch (we omit primes) . The conditiona3 a3 3a3 3a3
corresponding to this connection is of the form

+ ~ ~ ~ (6.10)

It remains to indicate the ghost numbers of the auxili-
ary fields and the conditions of the gauge fermion. For
this purpose it is convenient to arrange the fields (6.8) in a
triangle as shown in Fig. 3. The vertex of the triangle is
the initial gauge field P. The right side of the triangle,
formed by bold bars, is the "algebraic branch. " It con-
tains the ghosts of the minimal sector (6.6), generating the
gauge algebra. Each field of the algebraic branch gives
rise to a left branch formed by arrows. Each horizontal
dashed line contains all ghosts first arising at the given
stage of reducibility. The horizontal lines are the lines of
the table (6.8), written from right to left.

We now introduce the rule: the sum of the ghost num-
bers of any two fields connected by an arrow equals minus
one. Since the ghost numbers of fields from the algebraic
branch are known [Eq. (6.6)], the above rule determines
the ghost numbers of all C's. The sum of ghost numbers
of any field and its antifield also equals minus one. This
determines the ghost numbers of all antifields. Finally,
the ghost numbers of all the m's can be determined from
Eq. (6.10) and the condition that the ghost number of S
equals zero.

rank+
BC BC '

a

BI8„'+=rank+
" Z &'

BC BC '
p

as

L

g m, ( —1}'
S =S

@p

(6.12)

of the same left branch, namely,

Z i@ =0, E(Z )=6 +E
aC. OC"-'

s —2

L
rank+Z ' '

i c,,—— g m, ( —1)'
S =S +

(6.13)

If the connection (6.11}adjoins the algebraic branch (i.e.,
as —1if the field C ' ' belongs to the minimal sector), then

a
Z * is the initially given eigenvector (6.2) of the gauge
algebra. This will be true also when s =0 if we identify

If the connection (6.11) does not adjoin the algebraic
a

branch, then the right eigenvector Z ' ' in (6.12) is de-
s

fined by the previous connection

C. ~C"-'

C0~, ————C",'

—1 yg

The condition corresponding to a connection

(6.14)

/~ OtC ---- C --- — C. '
C C '

of a left branch is of the form

(6.15)

—// / O(gC —--—(-~---- C. -- ——C'
ala 'Z Qotg 2

///~ // /ds o(ss C C, '————C,~—,———C.,'

rank+ ——rank+Z '
aC. ~Cas "-' aC. ac'

p

L

g m, ( —1)'
S =S

(6.16)

FIG. 3. The diagram of proliferation of ghosts. Each hor-
izontal dashed line contains all ghosts which first arise at the
given stage. The right bold line contains ghosts of the minimal
(algebraic) sector. To each arrow there corresponds a nondegen-
eracy condition on the gauge fermion.

a
The left eigenvector Z' ' in (6.16) is defined by the pre-
vious connection

Cas —2
as —I



I. A. BATALIN AND G. A. VILKOVISKY 28

of the same left branch, namely, dently linearly dependent and have the zero-eigenvalue
eigenvectors

=0, e(Z ' )=e Zt, ——t) 5(xo —xt), R' Zt, =0, (7.7)

a
rank+Z ' I

g m, ( —1)"
S =S

In Eqs. (6.12)—(6.17), exsp is the stationary point of the full
action S

I
z.

The conditions on the gauge fermion are thus formulat-
ed for each left branch separately. The simplest structure
for the gauge fermion is a sum of products of each pair of
C's that is connected by an arrow.

VII. EXAMPLES

To apply the methods of this paper to the simple linear
theories mentioned in the Introduction is like cracking
nuts with a sledgehammer. (The structure of the quantum
action for these theories was already deduced earlier by
other methods. ' ) Nevertheless, for the sake of illustrating
the above general results and comparing them with other
methods, we shall consider two examples: the spin-0 an-
tisymmetric tensor field and the spin- —, symn1etric spin-
tensor field. Both examples are first-stage theories, so we
may use the formulas of Sec. IV.

Since the gauge algebra in both exan1ples is Abelian,
only the first three terms of the expression (4.7) survive:

&(@;.,~'*;.)=~(P)+P*;R',Co'+Co,Zia, Ct' .

(7.1)

W,„.„=J (a„C,„—a„c,„)+ a.c, dx,5% 5%

5A„„" " " 5CO

(7.8)

5% 5% 5%
~gauge = — trpa + tr t + tr ] dx

5Co 5C) 5C i

(7.9)

It remains to construct the gauge fermion %.
The following redundant set of gauge conditions sug-

gests itself:

XX (A)=vgg PVI'A„p, V —=0. (7.10)

where at ——(x&). The eigenvectors Z', are evidently linear-
ly independent, so the theory is first stage.

According to Sec. IV (or Fig. 3), the ghost content of
this theory is the following. The zero-stage ghosts are
vectors Co and Cp and are fe~ions. The normal first-
stage ghosts are scalars Ci and Ci and are bosons. The
extraghost C& is also a scalar and a boson. The zero-stage
Lagrange multiplier mo is a vector and a boson. The
first-stage Lagrange multipliers m~, m~ are scalars and fer-
mions.

Using the above information in Eqs. (7.3) and (7.4) we
find, for the general form of ghost and gauge-breaking
contributions to the total action in the functional integral,

S
I X=~(4)+~ghost+~gauge r

where

~o ~+ ~o
~ghost= . Ra Cp + Zla Ct

ac,"

(7.2)

BC
m.p, + m.t,+ ~t ' . (7.4)

Co ~C&, gC, '

The final action in the functional integral [Eq. (4.20)]
takes the form

This is the X (P) of Eq. (4.25). The simplest form for the
gauge fermion is

q'= J [C g V'"A„p+C, V"C „+C V C', ]Vgdx

(7.11)
CX) aowith an obvious choice for the matrices tp

' and o o of Eq.
(4.25). The additional terms (4.27) take the form

Cp g P~pp+ ——Ctn) ——mtC't Mgdx (7.12)

A. The antisymmetric tensor field in an external metric

The action of the antisymmetric
Ap~= —A~p is of the form

W(A „„)= ——,', J F„„pF"~V g dx,

Is«ls ts «p p ts«+ «pIs

tensor field

(7.5)

and vectorial bosonic parameters 8&.
Thus we have

and is invariant under the following transformations:

—(V C, )(V C, )]~gdx . (7.13)

The inverse propagator of the ghosts Co, Co is degenerate,
as it should be, with right eigenvectors (7.7). The zero-
eigenvalue left eigenvectors (the gauge generators for Cp)
coincide with the right ones:

with an obvious choice for the matrices x and pp'. The
constants a and b in (7.12) are free parameters.

The ghost action (7.8) now takes the form

~gh-t= I [ 2g" g" (V„—Co V.Co„)(VaC—op VpCo )—

P' =A„„(x), R ', = (t)P„)5(x —x ), (7.6)
Z,.' =a.S(x,—x, ) (7.14)

where i =(pv, x) and 0=~»0) The generators are evi-
[this follows already from (7.10)]. This is the Zt of Eq.
(4.19) [the notation in (7.14) is the same as in (7.6) and
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Ws,„s,——f ——(V&A„)(V"A p)g ~+b(V"Cp„)pa

——(V C) )(V C') ) ~gdx . (7.16)

The sum of expressions (7.5), (7.13), and (7.16) is the to-
tal action in the functional integral. The first term on the
right-hand side of (7.16) is the usual quadratic gauge-
breaking term, which removes the degeneracy of the initial
action (7.5). The second term removes the degeneracy of
the ghost action (7.13). The propagating fields C~, C~ in
(7.13) are the so-called ghosts for ghosts. The presence of
the propagating extraghost C', in (7.16) is the price that
one must pay for squaring redundant gauge conditions in
the Lagrangian. The final result agrees with Refs. 7—9.

B. The free spin- ~ field

The action of the spin- —,
' field is of the form

~(PI }=f ( —
2 PI P4p. —W„.rdrA~„+&4„.rP~A„

(7.7)]. The action for the ghosts Cp Cp is of Maxwell's
type. It contains no other gauge arbitrariness except that
of the longitudinal parts of CQ&, CQ&. The latter arbitrari-
ness is described by the eigenvectors (7.7) and (7.14). This
guarantees the fulfillment of the rank conditions (4.18a)
and (4.18b). The action for the ghosts C~, C, in (7.13) is
nondegenerate. This is equivalent to the rank condition
(4.18c). Finally, the rank condition (4.18d) can be verified
directly from (7.11) and (7.14).

If we do not add the terms (7.12} to (7.11), then the
gauge-breaking action (7.9) will produce three sets of
gauge conditions (4.26) or (4.21) which, in the present
case, are of the form:

V"A„+V C', =0, V~Co„——0, VI'Co„——0 . (7.15}

These conditions eliminate the longitudinal parts of
CQ&, CQ&. The application of V to the first equality of
(7.15) gives the conditon OC'~ ——0 eliminating the ex-
traghost C'&. The remaining conditions eliminate the
transverse part of V"A& and are the genuine gauge condi-
tions on the antisymmetric tensor field.

If we add the terms (7.12) to (7.11), then the gauge-
breaking action (7.9) will take the following final form
after integration over the m's:

and rewrite Eq. (7.18) as

5y„„=(5„5I.'+agl')(5~ —,' —r,r.)e, (7.20)

where 0 are the genuine independent parameters, but the
generators defined by (7.20) are linearly dependent.

Thus we have

P'= f„„(x),
W', =(5„5I'+aPI')(5~ ,—'r—&y )5(x —x }

(7.21)

with an obvious identification of condensed indices. The
zero-eigenvalue eigenvectors of the generators are

aoZi, ——y 5(xp —xi), (7.22)

where o., xp, and one matrix of y and aQ, while the other
matrix index of y and x~ are u, . The eigenvectors (7.22)
are linearly independent, so the theory is of the first stage.

According to Sec. IV, the ghost content of this theory is
the following. There are two bosonic spin vectors: CQ and
CQ . There are three fermionic spinors: C~, C&, and the
extraghost C I. Finally, there is one fermionic spin-
vectorial Lagrange multiplier mp and two bosonic spinori-
al Lagrange multipliers ~~ and m~. All spinors are Ma-
jorana. All fields will be considered as spinors or conju-
gate spinors according to whether they have a bar or not,
with the exception of gapa and m'&. It is convenient always
to write +pa and m

&
on the left and consider them as conju-

gate spinors.
Using the above information in Eqs. (7.3) and (7.4), we

find the general form for the ghost and gauge-breaking ac-
tions:

(Bp5~+ BPp)(5p ~ rara)Co
p»

5++ —yaC) dx,
5CQ

(7.23)

B% 5% 5%
gauge ~pa — +~1 — + ~1

5CQ 5Ci

(7.24)

The gauge fermion 4 remains to be constructed.
The authors of Ref. 2 propose the following redundant

set of gauge conditions:
+ 4 4u.&@p„Pu5„r—A'p. )d. x (7.17)

where f&„ is a symmetric Majorana spin tensor. The ac-
tion is invariant under the transformation

5t/l~»= Bpe»+ 5»ep, (7.18)

The restrictions on the parameters are equivalent to a
linear dependence of generators. Indeed, we may represent
Ep as

where the parameter ez is a fermionic Majorana spin vec-
tor restricted by the condition

(7.19)

y (p)=Y p „,' Y f, y J (f—)—=0. (7.25)

2 f (Co & ~~op+Cip~i+~&pC& )dx, (7.27)

where op~ is the transposed spinor. In (7.27) we shall
choose

In this case the simplest gauge fermion (4.25) can be writ-
ten as

4= f [Cp X (P)+Ciy„Co+Co y C]]dx (7.26)

a& ao
with an obvious choice for the matrices co and o. . TheaO a&

additional terms (4.27) take the form
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ap 1 ap —iK = 5 Br, Ic~p =a5~pr9,
a 0

s= ——& n =»1 1

b

(7.28)

where a, b, =const, yz ———yy„y ', y = —y.
With this choice of the gauge fermion the explicit form

of the ghost action (7.23) is
1~sh-t = [Cop(r/pl +y„5p. ~rp—5„)

X (P)+y C', =0, y Co =0 Co y =0. (7.30)

The inverse propagator of the ghosts Cp, Cp has the zero-
eigenvalue right eigenvectors (7.22) and the zero-
eigenvalue left eigenvectors [see Eq. (4.19)]:

a&Zt, ——y 5(xo —xt), (7.31)

which coincide with the right ones, as seen already from
(7.25). [The notation in (7.31) is the same as in (7.22)].
The gauge arbitrariness in the action for the ghosts
Cp, Cp is that of their y-trace parts. The gauge condi-
tions (7.30) exactly remove them. Application of y to the
first of Eqs. (7.30) yields the condition C'& ——0 which re-

I

X(5„.——,'y.r.)a„C, +4C, C, ]dx (7.29)

and the gauge conditions following from (7.24) and (7.26)
read

moves the extraghost. The remaining conditions remove
the y-traceless part of X (f) and are genuine gauge condi-
tions for f&„. This verifies the correctness of the choice of
the gauge fermion.

If we add the terms (7.27) to (7.26), then the gauge-
breaking action (7.24) will no longer produce 5 functions.
Since our matrices ~ ' and p

' contain derivatives, we
must make the replacement (4.28)—(4.30) instead of in-
tegrating over the m's. In this replacement we choose

W ~=a ~y-', @=i,
where I is the unit matrix in the space of spinors. Then
the replacement (4.28)—(4.30) takes the form (literally)

m.
p ~ayB[y 'pro [X (lt—)+y C't ]I,

Co Co ya,

rrt~(mt Co .Ba—y )bB,

C, ~C,by,

crt ~m. t b&y„c—o,
where all derivatives act formally to the right. When
making the replacement in the gauge-breaking action
(7.24) one may use Eq. (4.31).

After the above replacement the ghost and gauge-
breaking contributions to the total action in the functional
integral take the form

~ ho t I [acoptt)(r/p, +r,5p. 'rp5—„.-)(5, .' r.r—.)—)„tCo+4bCt ~cl ldx

~s. s.= —(X +Cty )9(X +y Ct ) —abCo~9y~Qypco+ —~o 9mo +crt''t dx,

(7.32)

(7.33)

Ci =Ci y, ~p =(y ) '~p

are redefinitions, not new fields, and where

Introduce the matrix

O

gA O
(A2)

[x=0r —44r—.

The integration fields are

Cps Coa ~ Co 1

7Tpa p AT] p &] o

Expressions (7.32) and (7.33) constitute the final result.
The main difference from the previous example is the
propagating Lagrange multiplier ~p . The Lagrange mul-
tipliers ~& and m'] do not propagate and can be integrated
away. The propagating mp is the "Nielsen-Kallosh
ghost" for the spin- —, field. As in the previous example,
the extraghost C'i is a propagating field.

APPENDIX: PROPERTIES GF
THE MASTER EQUATIQN

pb gba & pb
ezb

=e, +1.

The master equation (3.12) for a bosonic S(z) now takes
the form

B,S b BIS
(SS)—= , P b

——0.
az' Ozb

Define

(A4)

which permits the antibrackets (3.3) to be written in the
form

B,X
(X, Y)=

az' azb
'

Evidently

We introduce the following collective notation for fields
and antifields:

b ~l~r~
gzbgz~

(A5)

z'=(e', e*,); W =1,. . .,X;
a = 1,. . .,2X; e(z') —=e, .

(A1)
which is the Hessian of S(z) multiplied by the nonsingular
matrix g. Let zo denote the stationary point of S(z),
which we suppose to exist.
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Differentiation of (A4) yields

a,s A', =0.
g C (A6)

Hence any solution of the master equation is a gauge-
invariant action. Equations (A6) are Noether identities,
and the columns of the Hessian are generators of gauge
transformations. The generators in (A6) are linearly
dependent. Indeed, differentiation of (A6) yields

As9P, ~, , =0. (A7)

The matrix of generators is nilpotent, which implies the
nilpotency of the Hessian at the stationary point. The
solution of the master equation is therefore an example of
an infinite-stage gauge theory.

Let r+ be the rank of the Hessian at the stationary
point:

N= f exp —8'(z) 5(X„(z))J'r lg dz', (A10)

where 8'(z) =S(z)+O(iri) is given by Eqs. (3.11)—(3.14),

This is equivalent to

Z2 —Z] a

It can be verified that under the boundary conditions for
the master equation, which we impose, we are always deal-
ing with this particular case.

Expression (3.9) is nothing other than the functional in-
tegral for the gauge action S(z). In spite of the infinite-
stage character of this theory, we were able in Ref. 1 to
obtain the quantization rules for S(z) in the special class
of gauges (3.5) or, equivalently, (3.4). The most general
expression for the functional integral in this class of
gauges is

(g~,gs)=0, A =1,. . .,N, (Al 1)
B(B„S

r+ ——rank+
b ' + +P—

gz ()zb
(A8)

Then r+ (r ) bosonic (fermionic) equations of motion are
solvable with respect to small disturbances of z. But r is
also the number of linearly independent generators among
the 9F. More precisely, r (r+) bosonic (fermionic)
Noether identities among the (A6) are solvable with
respect to BS/Bz. It follows from the nilpotency relation
(A7) that

always.
The solution S of the master equation is called proper'

r=N .

za ——gabz i gab 0 5ab c

and let the equations of motion be solvable with respect to
N variables z &,

' let z2 be the remaining N variables. Then
the invertible minor of the Hessian is

If the solution is proper, then all zero-eigenvalue eigenvec-
tors of Ab(zo) are linear combinations of St, (z&&) In oth.er
words, the solution is p;oper only if its Hessian at the sta-
tionary point has no other zero-eigenvalue eigenvectors ex-
cept those contained in itself.

There is generally no correlation between rows and
columns in which the invertible minor of a matrix lies.
However, for the Hessian of the proper solution such a
correlation exists. Define

and J is the Jacobian of a canonical transformation
@,@*~@',N'* which converts the commuting g's into
antifields (or fields):

J=Her ',4g' ——X~(z) .
a(e', e *)

(A12)

S(4,@*)=P'+g C&q @~,S ' "(N) . (A13)
n=1

The coefficients in (A13) possess the generalized symme-
try

S 1 a (S )
1 a

A). . .A„.which for any quantity X ' " is defined as

Here we have used some properties of canonical transfor-
mations in the space of fields and antifields, derived in
Ref. 11.

If S(z) is a local action of field theory, then the terms
O(A) in W are proportional to 5(0) and can be omitted (see
Sec. III). In this case expression (A10) gives the explicit
Feynman rules for S(z). The necessity of requiring S(z)
to be the proper solution is seen from (A10). Indeed, if the
rank of the Hessian of S is smaller than N, then N 6 func-
tions in (A10) will be insufficient to remove the degenera-
cy of the functional integral.

In conclusion, we shall derive the consequences of the
master equation for the coefficients of the expansion of S
in terms of antifields:

Bz2A Bz ~

(A9)
A . . A A '''A B . B

(Xsym):&a a„x
There can be a particular case in which the equations of

motion are solvable with respect to the commuting (in the
sense of antibrackets) set of variables,

(zi,zi ) =0 .

Al . ~ ~ A
I nn .6B
1 n

al
Bn

An
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The substitution of (A13) into the master equation yields the following relations for the coefficients:

gA 0

BS1 "A B~W AA ~ A A
&

~ ~ A„g"+(n+1)(—1) ' " -g ' "=(&,„) ' "=0, n) 1,
gyA

ena ='Enk
I k=0 ~

where

A . . Akn —1

(g k+1)( 1) nk g k+1 Nl g )2
g@A

&nk=—& k+
m

m =k+1

eA =—e(W) .
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OThis condition is necessary for the solution to be proper but

generally is not sufficient. For sufficiency one needs the fol-
1owing theorem of the classical linear algebra: If A'bA,

&
——0;

b =1,. . .,K and all zero-eigenvalue eigenveetors of A are
linear combinations of A, , then

rank&+rank —&-

However, in the presence of Grassmann numbers this theorem
is not valid. One can only say that

rank%+rank A. (X .

Nevertheless under the boundary conditions on the master
equation which we impose, the equality holds, as we verify in
the text. The reason is that the above-mentioned theorem of
classical linear algebra is fulfilled for all matrices

~l~ ~
, Z Zao ~ 1a) ~ 2a2

which enter the boundary conditions on the master equation.
This is guaranteed by the postulates of Sec. II.


