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We present a detailed discussion of the semiclassical approximations to path integrals when there

exist caustics in the relevant family of classical trajectories. We show carefully how the Airy func-

tions arise from the post-semiclassical approximation of the path integral and interpret the coeffi-
cients in the Airy functions in terms of the flow of classical trajectories. Finally, we present a
configuration-space path integral for the scattering matrix and extend our discussion of caustics to
the case of rainbow scattering.

I. INTRODUCTION

If a quantum system has a classical limit, the semiclas-
sical expansion of its propagator can be expressed in terms
of the flow of the classical system. ' The first-order terms
in the semiclassical expansion (the strict WKB approxima-
tion) are given by the first-order approximation of the
classical flow, namely the Jacobi fields. The second-order
terms (the Airy regime) which dominate the expansion
when there are caustics (when the Jacobi fields are not
linearly independent) are given by the second-order ap-
proximations of the classical Aow, namely the solutions of
the "small disturbances of the small disturbances". To
show the role of the classical flow, as opposed to a single
classical path, in the semiclassical expansion of a system,
we analyze in Sec. II classical physics as the limit of quan-
tum physics. In Sec. III, we compute the second-order
terms which keep the amplitudes finite when the "WKB
approximation breaks down".

We use a path-integral representation of the propagators
in which the integrators are expressed in terms of the
Jacobi fields of the system. Thus the calculation of the

path integral in expansion of powers of A' gives, term by
term, the semiclassical expansion:

Terms of order fi ' give the phase of the WKB approx-
imation, namely the classical action.

Terms of order A' ' give no contribution by virtue of
the Euler-Lagrange equation.

Terms of order A give the Van Vleck determinants.
Terms of order A'~ give the Airy regime.
Terms of higher order give the semiclassical expansion

to any order desired.
We show how to rdate the initial wave function of a

quantum system to the particular classical flow which

gives the semiclassical expansion. We construct the Jacobi
fields which give the probability amplitudes for position-
to-position, momentum-to-position, position-to-momen-
turn and momentum-to-momentum transitions.

The momentum-to-momentum transition is nothing but
a chapter of scattering theory and is discussed in Sec. IV.

The path-integral representation of the S matrix with
"Jacobi integrators" gives directly the WKB approxima-
tion and the Airy regime; it bypasses the circuitous route
of partial-wave expansion followed by stationary-phase
approximation for the summation over angular momen-

tum. In particular, we establish the following.
(i) The phase of the WKB scattering amplitude is given

in terms of the classical action function computed for a
classical path defined by its initial and final momentum

(and not by any other boundary conditions).
(ii) The Airy regime is obtained from a single expansion

in powers of fi', rather than from the combination of
four expansions used by Ford and Wheeler in their classic
paper. ' This calculation completes the original result ob-
tained by Schulman.

(iii) The Airy parameters (scaling and argument) are
determined explicitly in terms of Jacobi fields and deriva-
tions of the potential.

(iv) The results are valid for any potential V(r, 9) (not
necessarily spherically symmetric) which decreases faster
than r ' at infinity. The Coulomb case will be treated
elsewhere.

The Jacobi fields which form the backbone of this work
are easy to compute if the classical solutions are known.
The properties of the Jacobi fields used in this paper are
summarized in the Appendix of Ref. 2.

II. CLASSICAL PHYSICS AS
THE LIMIT OF QUANTUM PHYSICS.

Let M be the configuration space of a system 5 defined

by a Lagrangian L,. We assume that M is an n-

dimensional Riemannian manifold with the metric

gap(q(t))=t)'i(q(t), q(t))/&q (t)t)q (t),
a=lj ~ ~ ~ j P1 o

Consider the flow of classical paths
Iq(t ap, )a HNI MI, where q(t, ap, )=a and where the
initial momenta pe =VSp(a) are the derivatives of a given
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real-valued well-behaved function So on N. In general,
this flow generates a local group of transformations
[4( ~ .'t ET =[t~,tb]I,

, :N~M by a~q(t, a,p, ) for t, &t &tb .

Classical physics is the limit of quantum physics in the
following sense. If the system is localized in N at time
t =t~, then the probability of finding it in (p, (N) at time t
tends to 1 as A' tends to 0, i.e., if N is the support of the in-

itial wave function P, and if P is the wave function of the
system, then

tX 'Pt X = X 7 X =1
a

in the limit A~O, where ~(x) is the volume element on M,
i.e. r(x)=v'g(x)dx'h . . hdx" (with g=detg ti, and
r, {q(t,a,p, )) is the image of r(a) under the transformation
@t—t ~ 1.e

a

1('WKB[1+O(R' )] . (2.4)

Given a Schrodinger equation and an initial wave function
P(x),

teaq/at =Hq,
P(t„x) =P(x) =exp[i SO(x) /fi] T(x),

(2.5)

where T is an arbitrary well-behaved function on M such
that suppT =N, it has been shown that, if x HN, , (N)

and if @t, has an inverse, thent —t

PwKB(t x) [ detK(tt)(t t )]
aP

defines a Jacobi field K(t(~(t, t, ) along the classical path
q(t, a,p, ) such that K(t„t,)=I. It tells us how the flow
Iq {t, a,p, ):a HN I diverges or converges (see Fig. 1).

The WKB approximation fwKn of the solution g of a
Schrodinger equation can be defined by

v;(q(t, a,p, ))=
~

det [Bq (t,a,p, )/(}a ] ~

r(a) .
aP

(2.2) )& exp[iS(t, x)/A' ]T[4, , '(x)], (2.6}

The quantity

K(tt)(t, t, )=Bq (t,a,p, )/(}at'

(ly

150—

IOO-

(2.3)

where K(ti((,st, ) is a Jacobi field along the path
q(s)=@, , &@, , '(x), and where

t
S(t x)=So(q(t ))+ J L(q(s), q(s))ds .

Hence by virtue of (2.2) and (2.3), gwKii satisfies Eq. (2.1),
not just in the limit A~O, but exactly:

4 (N) WKB X +t X
N

(2.7)

50-
~ IIIIIII II

T =0 AT Z =-200

It follows that the WKB approximation of the cross
section is the classical cross section. Consider a flow of
incoming identical particles being scattered by a potential
V with compact support Xz and being detected at a dis-
tance R from the "center" of the potential, in the direction
0 from the incident direction. The scattering cross section
(r(Q)d Q in the solid angle dQ(8) is the ratio of the num-
ber of particles hitting the surface area R dQ per unit
time to the number of incident particles per unit area per
unit time. The current vector density of a particle of mass
mis

I

-200
I

—100 IOO

FIG. 1. Consider the flow of Coulomb paths q(t, B) (Figs. 1

and 3) parametrized so that t=O and z = —200 for all values of
the impact parameter B. Let h(t, B) be the Jacobi field along

q(t, B). The particles which, at time t, =0, hit the line element
dB defined by the segment of h(O, B) beginning at q(O, B) and
ending at q(O, B+dB) hit at time tb the segment of h (tb, B) lirn-

ited by the same classical paths. The integral curve h(O, B) of
the Jacobi flow is approximately perpendicular to q(t, B) at
q(O, B) because at z =—200 the paths are approximately paral-
lel. However, h(tb, B) is not perpendicular to q(t, B) at q(tb, B).
Thus all the particles hitting dB at t, do not hit at the same time
the exit area, which in the definition of the cross section is as-
sumed to be perpendicular to the classical trajectories. But if we
consider the number of particles within the surface of area
v dtdB at time t„ it is the same as the number of particles
within a surface of area v dt R d8 at time tb regardless of how
slanted the Jacobi fields are at time tb, and the definition of
cross section makes good sense.

[f VQ (Vg )P] . — (2.8)

If we approximate f by gwKB, we obtain

j(a}=— [P (a)V, Q(a}—[V,P (a)](}I(a)I

=—V.S,(u)
~

T(~) ~'.

For a and x far from the scatterer, the momenta V,S (a)0
and V„S(t,x) of the particle are pointing toward, and
away from (respectively), the scatterer and

JwKa(t x)= V„S(t,x) [
detK ~(t, t, ) [

'
(
T((i)

(

1

7?l aP

(2.9}

where t, is any time before the scattered flux has reached
the scatterer, i.e., any time such that
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~jwKs(t, x(R,Q)) ~R dQ
0'wKB( Q )d Q =

/j(~)/

=
/
de« ~«r. )

J

'
/
~~(r x «»))

/

R'~Q
I
~&0«)

/aP

One can rewrite (2.10) in terms of the volume factors r, and the path q(s) =@, , ~ @, , '(s),
a a

(2.10)

, & q r. ~VS(r, q(r))
~

& (q(r))
I
~~o(q(r ))

I

=R (surface area of impact of the flow)/(its surface area of exit), (2.11)

o'wKs(Q) =BdB/sin8d8 . (2.12)

III. CLASSICAL PHYSICS AS THE LIMIT
OF QUANTUM PHYSICS WHEN

THE WKB APPROXIMATION BREAKS DOWN

A. Introduction

In the previous section, we have considered flows
j4, , :tETI of classical paths when T is sufficiently
small for N, , to have an inverse, equivalently for

a
detEC gt, t, ) to be nonvanishing. We now remove this re-
striction. We are interested in the four following situa-
tions:

(i) Final position does not necessarily characterize a
unique path in a family of classical paths having the same

which is precisely the classical cross section.
For an axial symmetric potential in R, if we take the

surface of impact to be the annulus of area 2~B dB, then
the exit surface area is R 1Q =R sin8d8 dg for

0
Q=(8,$) and

initial position. For example, a family of catenaries (Fig.
2).

(ii) Final position does not necessarily characterize a
unique path in a given clas: ical flow. For example, a fam-

ily of classical paths having the same initial momentum in
a repulsive Coulomb potential (Fig. 3).

(iii) Final momentum does not necessarily characterize a
unique path in a family of classical paths having the same
initial position. For example, rainbow scattering from a
point source (Fig. 4).

(iv) Final momentum does not necessarily characterize a
unique path in a given classical flow. For example, rain-
bow scattering from a source at infinity (Fig. 5).

The first two families of classical paths have an en-
velope and their study is clearly a caustic problem.
Phase-space drawings projected onto momentum space, as
opposed to position space, would show that the study of
the last two families of classical paths is also a caustic
problem: A small variation in the initial momenta (case
iii) at time r, or a small variation in the initial position
(case iv) at time t, produces (for certain values of t) a vari-
ation in the final momenta of a smaller order of magni-
tude; the final momenta are "parallel to first order":
There is a direction, say along the cz axis, where
dq(t, a,p )/Bp =0 (case iii) or Bq(t, a,p )/Ba =0 (case
iv). In all four cases the criterion for the existence of
caustics is the presence of nonzero Jacobi fields h (t) with
vanishing boundary conditions:

case (i): h(t, )=h(tb)=0,

case (ii): h(t, )=h(tb)=0,

case (iii): h (t~ ) =h (tb )=0,

case (iv): h(t, )=h(rb)=0 .

FIG. 2. For x in the "dark side" of the caustic there is no
classical path; for x on the "bright side" of the caustic there are
two classical paths which coalesce into a single one as x ap-
proaches the caustic.

We shall investigate the transition amplitudes corre-
sponding to these four situations and their limits when fi
tends to zero. The initial wave function for cases (i) and
(iii) is a 5 function charging the initial position. The ini-
tial wave function' for cases (ii) and (iv) corresponding to
the flow p, =VS, is
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FIG. 3. Let A—:lE/mvo and B:—impact parameter. The family of Coulomb paths having the same initial momentum is the B
family satisfying B(y —B)=A (z+z +y )' in the y-z plane. Its envelope is the parabola y =8A (z+2A). For A negative the flow is
not caustic forming.

P =exp —S, T,

where T satisfies the same conditions as in (2.3).
The transition amplitude for case (i) can be obtained"

from either Feynman-Kac formulas (A45) or (A46). The
transition amplitude for case (ii) can be obtained from the
Feynman-Kac formula (A45) and the one for case (iii)
from the Feynman-Kac formula (A46). However, since

we are interested here in applications to scattering theory,
we shall consider transitions from momentum states as
t, ~—oo (case ii) and transitions to momentum states as
tb~+ oo, and use the path-integral representation of the
Manlier wave operators derived in Ref. 1. Case (iii) can be

' obtained either as in Ref. 1 by reversing time in the for-
mulas used in case (ii), or from a phase-space path in-
tegral. ' Case (iv) can be obtained either from a phase-
space integral' or, by relating' it to case (ii) when
tg —+ 00 and Eb ~ oo ~

We shall show how the WKB approximations break
down in these four cases and how the contribution of the
higher-order terms in an expansion in powers of A' keep
the transition amplitudes finite.

The absolute values squared of the WKB approxima-
tions are proportional, respectively, to the following deter-
minants:

/ /

/

FIG. 4. If the classical deflection function is of the type given

in Fig. 2 of Ref. 4, two paths with different angular momentum
have the same scattering angles 8 & 0„. The two paths coalesce
at 8=8„. No path is scattered with an angle larger than 8„. FIG. 5. Rainbow scattering from a source at infinity.
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case (i):

case (ii):

case (iii):

case (iv):

I MwKt)(b, tb, a, t, )
I

—
I

det()q (tb, a,p, )/dp, p I

'—=
I

det J (tb, t, )
I

ap ap

I
~wKB(b, tb p. t )

I

'-
I

det dq (tb a p. )~()a
I

'—=
I

detK &(tb t. )
I

ap ap

I
~was(pb, tb', a, t, ) I'-

I
«t&p (tb, a,p, )IBp,ttI

'=—
I

detK P(tb, t, )
I

I ~wKB(pb, tb;p„t, )
I

—
I

det dp (tb, a,p»)/dan
I

'—:
I
detl. tt(t„tb) I—

ap ap

(3.1)

(3.2)

(3.3)

(3.4)

where a caret over a determinant means the truncated
determinant equal to the product of the nonzero eigen-
values of the matrix. J and K are the Jacobi matrices'
constructed from Jacobi fields, and E and L are deriva-
tives of the Jacobi matrices. The vanishing of their deter-
minants signals the presence of caustics in configuration
space (detJ =0 or detK =0) or in phase space
(detK =0,detL =0), since a caustic occurs when the Jacobi
fields are not linearly independent. The higher-order
terms in the calculation of the transition amplitudes come
from path integrals in which the integrator is a Green's
function of the Jacobi operator with boundary conditions
dictated by the initial and final states of cases (i), (ii), (iii),
and (iv), respectively. We shall establish first [Eqs. (3.14),
(3.15), (3.22), (3.23), (3.28), (3.29), (3.33), and (3.34), in Sec.
III B] basic properties of the zero eigenvalues of the Jacobi
operator for the various boundary conditions needed.
These properties are used in Sec. IIIC to compute the
probability amplitudes in the Airy regime for cases (i), (ii),
and (iii). Another section (Sec. IV) is devoted to case (iv)
because the existence of conservation laws in a
momentum-to-momentum transition introduces new prob-
lems which are analyzed in Ref. 2.

B. Zero eigenvalues of Jacobi operators

An eigenfunction of the Jacobi operator with a zero
eigenvalue is also a nonzero Jacobi field with zero boun-
dary conditions. We shall consider the four cases of Dir-
ichlet boundary conditions, von Neumann boundary con-
ditions, and the two sets of mixed boundary conditions.
These four cases are sufficiently different to require indi-
vidual investigation.

(i) Dirichlet boundary conditions.
Let W(q) be the Jacobi operator of a system, evaluated

along the path q. Let Igk] be a complete orthogonal set
of eigenfunctions of W(q) with vanishing Dirichlet condi-
tions; i.e.,

W(q)„„g"k(t)=ak5„,$"k(t) (with no sum over k),
gk(t, ) =Pk(tb ) =0 (3.5)

and

f (4k(t) IP, (t»«=5kj .

We shall gain information about the eigenvalues of W(q)
by comparing two different expressions of its Green's
function G. It can be checked that, if there is no zero
eigenvalue, then the two expressions for 6,

G ~(t s)= 8(s t)(J(—t, t, )M(t„tb)J(tb, s)) t'

0(t—s)(J(t, t—b )M(tb, t, )J(t„s)) & (3.7)

(where 0 is the step function equal to 1 for positive argu-
ments and zero otherwise) are both solutions of

(W, (q)) ttG Pr(t, s) =5r5(t —s)

with the same boundary conditions.
From (3.6) it follows that

(3.8)

ak '= f dt f dsy„(t)G(t, s)q, (s), (3.9)

where summation of the Greek indices is implied and does
not need to be spelled out since the time variable keeps
track of the tangent space Tq(, )M where the summation
occurs.

From (3.7) it follows that

ak '=2 f ds f dt's(s —t)g k(t) J(t, t )

X M(t„tb )J(tb, s)pk(s) (3.10)

t/i(, )(t)=J(t, t )li(, )(t ) = —(A, )(tb)J(tb, t) . (3.11)

Let J be the Jacobi matrix corresponding to q, and let
Iaak] and [p «J be the eigenvalues and eigenfunctions of
W(qa). It is possible to choose a coordinate system which
block diagonalizes the matrix J (tb, t, ) into a block whose
determinant vanishes when 6=0 and one which does not.
In this frame of reference,

Ja(tb, t. ) =
0 J (tb, t, )

[where we have used the antisymmetry properties J ~(t,s)
J~(s, t)]. If q (—t, ) and q ( tb ) are conjugate, there is at

least one zero eigenvalue and Eq. (3.9) is meaningless. In
this case, let q be a nearby classical path. For instance, q
and q can be solutions of the same Euler-I. agrange equa-
tion with slightly different boundary conditions, say

q(t, )=q (t, )=a, q(tb)=b, q (tb)=bb=b+5 .

If a and b are conjugate and a and b are not conjugate,
we shall investigate the caustic by studying the limits of
the Jacobi fields along q when b tends to b, i.e., when 6
tends to zero. Assume first that there is only one nonzero
Jacobi field with vanishing boundary conditions, say f()).
Then P(, )(t) can be written in terms of its boundary values
and the Jacobi matrices:

(t»)= gak 'A (t)A (s)
k

(3.6)
Ma(t„tb ) =

0 M (t„tb)

and" and Eq. (3.10) can be written
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(a() '=2 J ds J dt 8(s —t)/{1) (t)J a{(t,ta)M '1(t„tb)J 'p(tb, s)@~{)(s)+terms of order e
T T

(3.12)

On the other hand,

lim Ja, (t, t, ) =J,(t, t, )
h,—+0

=e(1)(t)le{1)(ta} ~

lim J 'p(tb, s)=J'gtb, s)
5~0

=/{1)p( s)it)(1)1(tb ) .

Indeed,

e(1)(ta ) ™(ta~t)e(1)(t)

(3.13)

6+(t,s)= 0(s —t)K(t, t )N(t, tb)J(tb, s)

0(t —s)J(—t, tb )N(tb, t, )K(t„s) . (3.16)

Equation (3.15) shows how zero eigenvalues of the Jacobi
operator combine with Jacobi fields to give a finite expres-
sion.

(ii) Mixed boundary conditions
Let I fkj be a complete orthogonal set of eigenfunctions

of W(q) with vanishing mixed conditions

gk(t, ) =Qk(tb) =0 .

The Green's function of W(q) corresponding to these
boundary conditions is'

/{1)(ta)= lim Mp (ta, t)p(1)(t) .
&~0

This last equation remains true as t tends to tb. Thus in
the chosen system of coordinates where M 1(t„tb) is the
dominant component, {)'j{()(t,) has only one nonzero com-
ponent PI()(t, ) and

Q{()(t}=J((t, t, )g (1)(t, ) .

The second part of Eq. (3.13) is proved similarly. Substi-
tuting (3.13) into (3.12} and using the orthonormal condi-
tion (3.5) gives

lim (a() '= lim M ' (t(„t )b/g( )((t, )g( ) ((t1)b6~0 6—+0

The Jacobi X matrix has no symmetry property, hence the
appearance of the transpose matrix K and its inverse. In-
serting (3.16) into (3.9) gives

ak '=2 f ds I dt8(s t)gk(t)K—(t, t )

XN(t„tb)J(tb, s)gk(s) . (3.17}

Again if the family of classical paths with given initial
velocities is caustic forming and if q (tb) =b is on the caus-
tic, then there is at least one zero eigenvalue and Eq. (3.6)
is meaningless. We shall proceed as before and introduce
a nearby classical path q satisfying the same Euler equa-
tion as q but different boundary conditions, namely

and (3.14)

lim (a)) 'detJ (tb, t, )=detJ(tb, t, )lp (1)(t )ttj(())(tb) .
6,~0

q(t, )=q (t, )=V, , q(tb)=b

qa(tb)=ba=b+6 .

If there is more than one nonzero Jacobi field with vanish-
ing boundary conditions, say li (1), . . . , $(J), a similar
analysis gives

Assume first that there is only one nonzero Jacobi field
with vanishing boundary conditions, say f((). Then

lim (a). . . aj ) 'detJ (tb, t, )

1i(()(t}=K(t, t, )g())(t, )

=g(1)(tb)J(tb, t) . (3.18)

=detJ(tb, t, ) g g (;)(t, )l(t(;);(tb ), (3.15)

where J(tb, t ) is the truncated matrix obtained from
J(tb, t, ) by removing the first j colutnns and j rows in the
system of coordinates which block diagonalizes J into a
block whose determinant vanishes when 6=0, and one
which does not

Ka(tb, t. ) =
0 K (tb, t, )

Let E be the Jacobi matrix corresponding to q, and
choose a frame of reference which block diagonalizes
K (tb, t, ) into a block whose determinant vanishes when
5=0, and one which does not:

r

(jXj)
Ja(tb, t, }= matrix

J (tb, t, )

Na(t„tb) =

Hence

0 N (t„tb)

=2 fT» JTdt e(s —t)@{()(t)K 1(t,t )N '1(t, tb)Ja'p( tb, s)g(p)(s) . (3.19)
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On the other hand,

lim K )(t, t, )=K,(t, t, ) =g())(t)/ft, )(t, ),5~0

lim J 'p(tb, t)=J'p(tb, t)=g())p(t)/p()), (tb) .
5~0

(3.20)

(3.21)

K (tbt)=
0 K (tb, t, )

~'

0

lim (a, ) det Ka(t bt, ) =detK(tb, t, )/g~~~(t, )g~i~i(tb) .
6,~0

(3.22)
If there is more than one nonzero Jacobi field with vanish-
ing boundary conditions, say g~ ~ ~, . . . , Q~J~, a similar
analysis gives

lim (a) . . . aj ) 'detK (tb, t, )
LL.~O

=detK(t, t, ) g li,';,(t, )li„;(t ) . (3.23)
i=1

(iii) Mixed boundary conditions.
Let Ilikj be a complete orthonormal set of eigenfunc-

tions of ~ (q) with vanishing mixed boundary conditions:
gk (t, ) =pb (tb ) =0 The .Green's function of M(q) corre-
sponding to these boundary conditions is'

G(t, s) = 8(s t)J(t, t, )N(t„tb—)K(tb, s)

(3.24)B(t s)K(t, tb)—N(tb—, t, )J(t„s) .

Inserting this expression of the Green's function into (3.9)
gives

ak
—'=2 f ds f dr 8(s t)g„(t)J(t, t,)—

~N(t„tb)K(tb, s)pk(s) . (3.25)

We shall again introduce a nearby classical path q satis-
fying the same Euler equation as q but different boundary
conditions at tb, namely

q(t, )=q (t )=a,
q(tb) =rb,

(tb) r b rb+5 .

(3.26)

Note that 6 is a variation in velocity, in contrast to the
first two cases where 6 is a variation in position.

Assume first that there is only one Jacobi field with
vanishing boundary conditions, say g~~&(t). Then g~, ~(t)
=J(t, t, ) =@())(tb)K(tb, t).

I et E be the matrix corresponding to q, and let us
choose a frame of reference where

Equation (3.20) is proved like Eqs. (3.13). To prove Eq.
(3.21), note that' J(t, t~)=K(t, t, ). Hence

~ P
|i'(i)~(t)=4(i)p(tb)J a(tb t)

=/{))p(tb)J (t, tb)

=f(1)1(tb )K ~(tb~t)

and by the same argument as before, in the chosen system
of coordinates g~, ~(tb) has only one nonzero component
f~~~, (tb). Equation (3.21) follows from Eq. (3.18). Finally,
substituting (3.20) and (3.21) in (3.19), and using the
orthonormal condition (3.5) gives

N (t„tb)=
0 N (t. , tb)

(jU) Neumann boundary conditions
Let Igk) be a complete orthonormal set of eigenfunc-

tions of ~ (q) with vanishing von Neumann conditions

0k(t. )=0k(tb)=o .

The Green's function of W(q) corresponding to these
boundary conditions is

6 (t,s) = 8(s t)K (t, t, )P(t, tb—)K(tb, s)

+8(t s)K (t, tb )P(tb, t,—)K(t„s), (3.30)

where P(t, t, ) is the inverse of K(t, t, ). Inserting this ex-
pression of the Green's function into (3.9) gives

a„-'=2f ds f dt 8(s t)g&(t)K(t, t, )—
XP(t, tb)K(tb, s)fk(s) . (3.31)

The occurrence of zero eigenvalues makes Eq. (3.6) mean-
ingless, and we shall again introduce a nearby classical
path q satisfying the same Euler equation as q but dif-
ferent boundary conditions at tb, namely

q(t, )=q (t, )=U, ,

q(tb ) =Ub

q (tb)=Ub ——Ub+6 .

(3.32)

We assume that the Jacobi field along q has vanishing
Neumann boundary conditions, but the Jacobi field along

Then the singular eigenvalue of P can be written as

(a&) '=2 f ds f dt8(s —t)g, &, (t)J (t, t )

-51 -&P
XN i(t„tb)Ki (tb, s)g(i)p(s) .

(3.27)

On the other hand,

lim J '(t, t, )=J '(t, t, )=t/r(, )(t)/ tl()))(tg),
6,~0

-~P —
p a 1lim K,(tb, s)=K , (tb, s)=~'~~~(s)/g~, ~(tb) .

6,~0

Substituting these expressions in (3.27) and using the
orthonormal condition (3.5) gives

lim (a~ ) 'detK (tb, t, )=detK(tb, t, )/f~~~~(t )gt~~(tb) .5~0

(3.28)
If there is more than one nonzero Jacobi field with boun-
dary conditions, say P~ ~ ~, . . . , Q~J~, a similar analysis gives

hm (a) aj. ) 'detK (tb, t, )
6—+0

J
=detK(tb, t, ) g p(;)(t, )li(;)(tb ) . (3.29)
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La(tb, t, )=
0 L (tb, t, )

Pa(t„ts ) =
0 P (t. , tb)

Hence

(a, ) '=2 f ds f dt 8(s t)@(—)) (t)K )(t, t, )

XP '((t, ts)K p(ts, s}g(()(s) .

And by virtue of equations (3.20) and (3.29), together with
the orthonormality relation of the eigenfunctions,

lim (a) ) '= lim P ' ()t„t s) /f ((()t, ) 1{t(2()t (),
&~p g~p

lim (a, ) ' detL a(t
s, t, )6~0

=detL(tb, t, )/g(()(t, )g(()(tb ) .

(3.33)

If there is more than one zero Jacobi field with vanishing
boundary conditions, say f((), . . . , f(k), a similar analysis
gives

lim (a( uk) 'detL (t&, t, )

q does not. Assume first that there is only one Jacobi
field with vanishing boundary conditions, say g()). Then

q())(t) =K(t, t, )y())(t, ) =q())(ts)K(ts, t) .

Let

La(t, , t. ) =V,„Ka(tb, t. )

be the matrix corresponding to q, and choose a frame of
reference where

caustic on the bright or dark side. We shall show that, al-
though the limit of MwrB(b, t&, a, t, ) when b tends to a
conjugate point b is infinite, the limit of A (b, ts, a, t ) is
well defined. We shall not compute A by expanding
around the classical path(s) defined by (a, t, ) and (b, ts)
for the following reasons.

If b is on the dark side of the caustic, there is no clas-
sical path defined by the given boundary values
(a, t, ),(b, tb). If b is on the bright side of the caustic
there may be one or two' classical paths defined by the
boundary values depending on whether the paths q& and
q2, which start at (a, t, ), arrive at b at the same time or
not. Let M((b, t())s', a, t, ) and A (2b, t (2)s'a, t, ) be the
semiclassical expansions (WKB and beyond) of M around
q& and q2, respectively. If we try to compute A as the
sum of two contributions

A (b, ts, a, t, )= lim (A ((b, t()) ,sat, )
b~~b
(i)b

+M2(b, t(p)s, a, t, )),
we are faced with a delicate situation: when b tends to b
the %'KB approximations of A

&
and A 2 tends to infini-

ty, and their sum tends also to infinity because one of the
path has touched the caustic for t F [t„ts] and the corre-
sponding amplitude has "picked up" an additional phase
equal to —m. /2. One can push the calculation of A ~ and
M2 beyond their WKB approximations, but as q& and q2
coalesce, M&+ A 2 exhibits some peculiarities whose
analysis is subtle. Thus to compute M(b, t(, ,'a, t, ), we
shall proceed via the following steps.

(a) Change the variable of integration in (A45) from
y& I'+ to fE Y'+ defined by

b +py (t) =q(t)+(b b)(t —t, )—/T+pf (t),

k
edtL(t st, ) Q f;(t, )g;(ts), (3.34) where

(3.35)

where 1. is the appropriate truncated matrix similar to
(3.15).

The right-hand sides of (3.14), (3.15), (3.22), and (3.23),
(3.28), (3.29), (3.33), and (3.34) are finite; and, provided
that the expressions used in the investigation of neighbor-
hoods of conjugate points involve only the proper com-
binations of vanishing eigenvalues and vanishing deter-
minants, we are now equipped to compute probability am-
plitudes for transitions between conjugate points.

C. Probability amplitudes in the Airy regime (Ref. 17}

In this section, we consider position-to-position,
momentum-to-position, and position-to-momentum transi-
tions; momentum-to-momentum transitions are computed
in Sec. IV. We consider a system whose Lagrangian is
L (q, q) = —,

'
l q l

—V(q) and transitions between conjugate
points which have multiplicity 1, i.e., the Jacobi operators
are assumed to have only one zero eigenvalue: a' =0.

(i) Position to position transitions -(R-ef 18, and see Fig.

2).
We compute A (b, ts, a, t ), given by (A45) with the in-

itial wave function given by (A50}, for b close to the

fE Y+, i.e. , f(tb)=0;
the initial wave function (A50) enters

(A45) via 5(b +py (t, ) —a ) =6(pf (t, )),
hence f (t, ) =0 . (3.36)

This change of variable introduces the following terms
in the exponential in the integrand of (A45):

(b) Expanding
T

tg
V q(t)+(5. ' +pf(t)

A=b —b . (3.37)

in powers of p up to order 3 gives

P'=I/m, T =tb —t, ,

and where q is the unique classical path between the conju-
gate points (a, t, ) and (b, ts). The term (b —b)(t t, )/T—
is chosen so that
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V(q+br+pf)= V(q +Dr)+p( V (q)f + V ~it(q)f h~r)+ ,'p—V~p(q+hr)f f~

+ —,'p V pr(q+Ar)f~f~fr+ . (3.38)

The gradient of V has been expanded around q so that one can see at a glance how the equation of motion
mq~+ V (q) =0 simplifies the sum of (3.37) and

—(p m) 'V q(t)+6 +pf(t)
tb —t~

needed in the calculation of M(b, tb, a, t, )

(c) Change the integration over Y+ with respect to the integrator w+ into an integration over the space Y of paths f
vanishing at t, and tb, carried on with respect to a new integrator w .

(d) Use the Cameron-Martin transformation to express the integral in terms of an integrator to which "absorbs" the bi-
linear terms in f, namely

V, tt(q (t) +&(t t, )IT)f—(t)f~(t) .

However, the formulas developed in Ref. 1 for this purpose are valid when the argument of V p is a classical path q and
when q(t, ) and q(tb) are not conjugate. But here the argument of V p, namely q(t)+h(t t, )T ', i—s not a classical
path; its limit when 6 tends to zero is a classical path, but one whose end points are conjugate. Thus we shall have to re-
place q by a classical path q very close to q in order to carry on the Cameron-Martin transformation that absorbs
V tt[q(t)]f (t)f (t). We shall take the limit of q tending to q after step e. The result can be read off of similar results
carried out in full detail in Ref. 1 [e.g. , (3.28) in 1]:

M(b, tb,'a, t, )=exp S(qb, tb, t,—} I (3.39)

with

I:(2miR} "~ d—et J ~(tb, t, ) f dP(f)
ap Y

l
Xexp ——f V t3(q(t))f (t)4~(t t, )T '+ V—ttr(q(t)) f (t)f~(t)fr(t)+O(p')+O(b, ) dt (3.40)

where the barred quantities are computed in terms of q and where S(q, tb, t, ) is the action functional computed along

qa(t) =q(t)+b(t t,)T-
Note that 5 computed for q is not an action function because q is not a classical path.

(e) The path integral (3.40) can be computed by making a change of variable of integration from pf E Y to u &R"
which diagonalizes the variance of the integrator K Let p~(t) be the eigenfunctions of the Jacobi operator ~ (q) with

Dirichlet boundary conditions (3.5}. Let

pfI'(t)= g u "p(t), p(t. )=0, p(tb)=0, (3.41)

and let P be the projection

P: Y~R" by f~u={u', u, . . . j;
then the image Pw of w under P is the Gaussian (see Ref. 1, p. 316)

OO OO

d(h)(u)=exp — g ak(u ) g ( akl2nip )'—~ du
2p k=1

By virtue of (3.14) the limit I of I when q tends to q is
—1/2~pI= (2miR) "

( —2m i%') ' det J (tb, t, )lg„,(t, )p„„(tb)
ap

(3.42)

(3.43)

OO 00

X f g ( ab/2mik—)'~ du'du2 exp —
2 g ab(u )

k=2 2P k=2

00

g [~btt&~u + , P kturu u +O(—h)+O(p2)]
mp

(3.44)



28 CAUSTIC PROBLEMS IN QUANTUM MECHANICS WITH. . . 2535

where

~pI =(2iriiii) "
( 2iri—fi) ' det J (tb, t, )//~ i'(t, )/xiii(tb )

ap
I(v,c), (3.45)

P „pimp—= f V p(q(t))gk(t)bp(t t,—)T 'dt,

&Jki= f V pr{q(t))QJ(t)pg(ting(t)dt .

In Ref. 1 we used erroneously ai detJ(tb, t, ) =detJ(tb, t, ), which is valid only in special cases, whereas (3.14) is valid in
all cases. Integrating over u, u . . . and keeping only the terms of lowest order in b and in p one obtains

—1/2

where I(v, c}is the integral over u ', q (t„a)=a for all a and

I(v, c)= du exp i cu ——u i
R 3

where

(3.46)
1.e.,

q(t„a)=a/i(t, ) =a i}q(t„ao)/i}ao,

d q(t, a)/da =0 and 8 q(t„a)/Ba =0 .

and

1
~111

2A

1
C = ——P 1PEP

We write q(t, a) instead of q(a)(t) whenever it makes the
equation easier to read. For ' I.(q, q ) = —,

'
m

~ iq ~ i

—V(q),
the Jacobi field i}q(a)/Ba satisfies

with P"iii and &ip defined as in Eq. (3.44). I(v, c) is the
Airy function of argument v ' c normalized to v

I(v,c)=v 'ii f du exp[i(v 'i cu ——,
' u')]

~{())
Ba

BqP
(t,a)

Ba

= —V, (t,a)2 Bq"
Ba

—=v ' Ai(v ' c). (3.47a)
Vi'V, V(q(t—,a)) (t,a)=0. (3.48)

Ba
We now compute the normalizing factor v of the Airy
function and its argument v ' c. To compute c we note
that the Jacobi field P& satisfies

Taking the derivative of this equation with respect to a,
we obtain the small disturbances of the small disturbance
equation:

VVpV(q (t) }—iA„=O,

hence
z (t,a)=V"V„V&V(q(t,a)

B2q~
p Bq Bq~

(3.49)

1
C = ——&1P4P

=——f V p{q(t)}1{,(t)hp(t t, )T 'dt-
gp f gp(t t,)dt—
AT

gP fb 'b
(t t )pip —— fipdt

(b b
i 1(,(tb)) —. —

A
(3.47b)

The computation of v is an exercise in solving the small
disturbances of the small disturbance equation (i.e., the
small disturbances of the Jacobi equation) with the ap-
propriate Grreen's function of the small disturbance equa-
tion. Let Iq(a)J~ be a one-parameter family of classical
paths such that

q(ap) is the path defined by (a, t~), (b, tb);
Bq(a)/Ba

i
=fbi is the Jacobi field vanishing at t, and

which can be solved with the Green's function 6 of W,
having the same boundary conditions as B q/Ba, namely
the c conditions above:

G(t,s)= 9(t s—)J(t,s) . —
Thus

B q"
(t,a)= — dsJ" (t,s)V V„V&V(q(s,a))

Ba2

(3.50)

tb, ap}
&

(tb, ap)
1 Bq Bq

2A Bap

V V„V&Vq tap dt.
Bap Bap Bap

(3.51)

x q () ().
Ba Ba

Setting t = tb and a =ap, taking the scalar product of both
sides with Bq(fb ap)/dap and using Eq. (3.11),

[i}q (tb ao)/dao]J" (tb,s)=dq (s,ao)/dao

one obtains
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Of course, a similar calculation with an a family of paths
with zero boundary conditions at tb would have given the
scaling factor v in terms of the derivatives at t, . The
point here is that v given as an integral over the third
derivative of the potential is now given in terms of the
Jacobi field 1(, at one end point and the variation of the
Jacobi fields at li i.

When A tends to zero, the leading contribution of the
Airy function is for the value uo of u which makes the
phase v ' cv ——,v stationary, i.e., vo ——v ' c. Note
that vo is of order A' ' . For A vanishingly small,

—1/4 2 32v ~vo cos —,vo ——,vo) 0,
Ai(v '"c)=

i/'tr( —vp) exp
r

—
3 vo, vo (0

For uo ~ 0, b is in the illuminated region and the proba-
bility amplitude oscillates rapidly. For uo &0, b is in the

I

shadow region and the probability amplitude decays ex-
ponentially. Since uo ——vc is proportional to
(m/R)

~

b b~—~, quantum mechanics can be said to
"soften up" the caustics. The probability amplitude
A (b, tb, a, t, ) does not blow up when b tends to b. It is
valid on and near the caustic, in the dark, and in the
bright region for

~

b b~ —-fi/mc.
(ii) Momentum to -pos-ition transitions (see Fig 3)..
Since we want to apply this study to scattering prob-

lems, we shall compute the momentum-to-position proba-
bility amplitude M(b, ts,p„t, ) for t, equal to —oo and p,
equal to an initial momentum p;. We assume b to be on
the caustic formed by the family of classical paths with
initial momentum p; and b close to b. We compute

A (b, ts,p;, —ao ) = W+ (b,p; )exp —(p;, b )

(3.52)
where W+(x,p;) is the Mg/lier wave operator given by the
path integral (see Ref. 1, pp. 292—293, 366—367)

~ t~

W+(b,p;)= f dw+(y)exp — ' f —V(b +p;(t ti, )/m +—py(t))dt, p—:A'/m,+ & l y +
p —oo m

(3.53)

where m+ is the normalized Gaussian on the space of con-
tinuous pathsyE Y+ such thaty(tb)=0. Its covariance is

6 + (t, s) = 8(s t)( tb —s)I—
+8(t s)(tb —t)—I .

tbf «
00 2p

——(q(t)
~
f(t))

P
(3.56)

The calculation of w+(b, p;) proceeds via the following
steps.

(a) Change the variable of integration in (3.53) from
yE Y+ to fE Y+ defined by'

b +p;(t ts)/m+py(t) =—q(t)+b b+pf(t), —
(3.54)

f(tg, )=0 and f( —ce)=0. (3.55)

This change of variable introduces the following terms in
the exponential of (3.53):

where q is the unique classical path defined by the boun-
dary conditions (p;, —ao ) and (b, tb) and where the added
term b =—b —b is such that

(b) Expand V(q +6, +@f) in powers of p up to order 3.
(c) Use the Cameron-Martin transformation to express

the integral in terms of an integrator G+ which absorbs
the bilinear term in f. Here again we have to replace q by
a classical path q very close to q, carry on the Cameron-
Martin transformation that absorbs V t3[q(t)]f (t)f~(t),
then take the limit when q tends to q.

(d) Compute the path integral by making a change of
variable of integration from fH Y to u O' R" which diago-
nalizes the variance of the integrator w+. Let Pk(t) be the
eigenfunctions of the Jacobi operator W(q) with mixed
boundary conditions of type b. Let f be expanded in
terms of these eigenfunctions as in (3.41) and P be defined
as in (3.42). By virtue of (3.22), we obtain a result similar
to (3.44). Integrating over u, u, . . . and keeping only the
terms of higher order in 6 and in p, one obtains

fb

W (b',p, )=exp —' f [—,
'

~q(t) p;/m ~' V(q«)—+~)l« I, — (3.57)

—j/2
I =( 2+i A) ' —detX (t&, t~)/PIi)( —oo )Q(&)&(ti, ) I(v,c),

aP
(3.58)

and where I(v, c) is the Airy function (3.46) with 7"itt and
P"&ii given in terms of the Jacobi eigenfunctions Q~(t)
with mixed boundary conditions f( —00 ) =0, P(ts ) =0 by

P"ip —=f V p(q(t))Pi(t)dt,

F», =—f V»(q(t))li, (t)p(t)p, (t)dt,

Equations (3.57) and (3.58) give the Muller wave operator
W+(b,p;) for ba=b+6 on or near the caustic, on the
dark or on the bright side.



28 CAUSTIC PROBLEMS IN QUANTUM MECHANICS WITH. . . 2S37

82q( —oo,a)/Ba =0 and 8 q( —oo,a)/Ba =0. (3.59)

A calculation similar to the one in Sec. III C (i), but using
(3.18) instead of (3.11), gives

v= — (tt„ao) 2 (ts, ao)
2S a, '' (3.60)

i.e., the same expression as before but for a different a
family; and

We shall now discuss the Airy regime of W+ (b,p; ).
The normalizing factor v of the Airy function is given

by the same expression as the normalizing factor for the
position-to-position amplitude, but in terms of a different
Jacobi field. To compute it we introduce the a family

Iq (a) I of classical paths such that

q (ao) is the path defined by the boundary conditions and

(p;, —oo );(b,tb);

dq(a)IBa
I

=f, is the Jacobi field with

mixed boundary conditions;

mq( —oo, a)=p; for all a; and

q( —oo,a) =a Bq ( —oo,ao)/Bao, i.e. ,

gP f V tt(q(t))g, (t)dt

gP .. gP .
iP4

1
c = ——P )PKP=—

(—b b—
I
fi(tb)),

4 (pf, oo, a, t, ) = II * (a,pf )exp ——(pf, a)

for pf close to pf, (3.62)

where W (a,pf ) is the Msiller wave operator (see Ref. 1,
pp. 292—293 and 366—367):

(3.61)

the same expression as (3A7) but for a different a family.
(iii) Position to m-o-mentum transitions (see Fig. 4).
We shall compute M(pf, oo, a, t, ) when pf is conjugate

to a in the sense that there is one nonzero Jacobi field h

along the classical path q defined by (a, t, ),(pf, oo ), such
that

h(t, )=0, h(oo }=0 .

We compute first

IV* (a pf )= f dw (y)exp — 'z f V(a+pf(t t, )lm—+py(t))dt
p a

and w is the normalized Gaussian on the space of continuous paths y H 1' such that

6 (t,s) =B(s t)(s —t, )I+B(t s)(t —t, )—1 . —
The calculation of (3.67) proceeds via the same steps as the calculation of the other Malller operator (3.46):

(a) Change of variable of integration from y to f defined by

(3.63)

(3.64}

a +pf (t t, )lm +py —(t) =q(t)+&(t t, )+pf (t), —
where 6=(pf —pf ) lm,

y(t, )=y(+ ~)=f(t, )=f(+ ~)=0.
This change of variables introduces the following terms in the exponential of the integrand (3.63):

(3.65)

tbf dt IIq(t) pf/mII + —q(t) p—l/m f(t)+ ——+ —f(t) +
2p p p p 2p

fb= f «, Ilq(t) —pf'/mll'+, ~'+ (q(t) —pf'lm
I
»——«(t) If(t}}

2p 2p p p

(b) Expand Varound V(q ), where q =q(t)+ijb, (t t, ), —
2

V(q (t)+pf(t))=V(q )+iJV„V(q )f"(t)+ V„V„V(q )f"(t)f'(t)

3

+~V„V„V,V(q')f" (t)f"(t)f'(t)+ &(p,')

2
= V(q )+@V&V(q)f"(t)+p V„V&V(q)fl'(t) h (t t, )+ V„V„V(q)f—l'(t)f"(t)

+ V„V„V~V(q)f"(t)f (t)f~(t)+&(p')+&(p'&) . {3.67}
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Combining this expansion with the terms introduced by the change of variable gives

8'* (a,pf )=exp —f, —
~

q(t) pf—/m
~

—V(q(t)+b(t t, ))—dt I .
a

(3.68)

Similarly, as the cases (a) and (b), we obtain

I =(—2miR) '~ [ detK& (t bt, )/p 'ii(it, )g 'ii(i0o)] ' I(v,c),
pv

(3.69)

mixed boundary conditions,

q(t„a)=a for all a and

r}q(t„ap)
q(t„a) =a/, (t, }=a

Bcxp

i.e. ,

i} q(t„a) d q(t„a}=0 and „=0.
Ba BA

A calculation similar to (a) and (b) gives

(3.71)

and

1 Bq Bqv=—,( co,ao) ( m, ao)2' Bap2 p
(3.72)

where I(v, c) is the Airy function (3.46) with ziti and
given in terms of the Jacobi eigenfunction liik(t)

with mixed boundary conditions P(t, )=0 and P(00)=0
by

P-»= f V &(q (t) )(t t, )P, (t)d—t,
(3.70)fV & (q(-t))p, (t)p~(t)pr(t)dt .

Equations (3.68) and (3.69) give the M@ller wave operator
8'* (a,pf ) for pf =pf+6 on or near the caustic, on the
dark or on the bright side. To compute the factor v of the
Airy function, we introduce the a family Iq (a) I of classi-
cal paths such that

q(ao) is the path defined

by (a, t, ), (pf, ca),

i}q(a)/Ba
~

=g, is the Jacobi field with

of —d /dt whose derivatives vanish at both end points,
and hence there is no Gaussian integrator for the free par-
ticle. However a Feynman-Kac formula for scattering
theory has recently been constructed from two different
approaches. In the first approach, ' one constructs it
from a phase-space Feynman-Kac path integral whose co-
variance is the Green's function of the Jacobi operator
with vanishing derivatives at both end points. The second
approach' to scattering theory begins with the scattering
wave function P(x, t) for an initial state of a plane wave.
This wave function is equivalent to the transition ampli-
tude we have called K(b, tb',p„t, ). The advantage of this
approach is that the path integral for K(b,p, ) is well
developed. ' The ostensible disadvantage is that the caus-
tics in scattering theory are momentum-to-momentum
caustics, not momentum-to-positions ones. However,
these two types of caustics can be related in the scattering
limit of tb ~Do and t, ~—oo. In particular, in this limit,
the integrators for the semiclassical expansions of
K(pb, p, ) and K'(b;p~) and their normalizations are equal.
Both approaches lead to the same Feynman-Kac formula
for scattering theory. This formula has two advantages:
In the present context it gives directly quantitative
answers to the caustic problem which have an easy intui-
tive interpretation, and it provides a unified treatment of
all four cases. In general, it allows us to use directly all of
the elegance and power of the well-developed theory of
prodistributions for path integrals. '

Another difficulty presented by momentum-to-
momentum transitions which has also been solved recent-
ly is the existence of constraints between the initial and
final momenta due to conservation laws, and we summa-
rize in the following section the results obtained in Ref. 2.

B. The &KB approximations

] a
bt' f V tt(q(t))(t —t—, )g,(t)dt-

a

(3.73)

IV. PATH INTEGRAL REPRESENTATION
OF THE S MATRIX

A. Introduction

The reason one cannot construct a Feynman-Kac for-
mula for momentum-to-momentum transitions similar to
the ones for position-to-position and momentum-to-
position ones is the fact that there is no Green's function

(i) Transitions during a finite time interual.
In the previous paper, we considered momentum-to-

momentum amplitudes A (pb, tb, p„t, ) when t, and tb are
very large but not infinite, for a system with Lagrangian
I. = —,

'
~ ~ q ~ ~

—V(q). We have computed

~WKB(kb~tb~4'a~ta )

= lim f dx MwKa(pb, tb', x, t)MwKB(x, t;p„t, ),g~p M

(4.1)

where MwKs(x, t;P„t,) is the WKB approximation of
f(x t) given by (A45) for the initial value

p (.) = (T. )e pix/AS, ( ) and Xi"wKB(pb, tb, x, t) is the
WKB approximation of pb(x, t) given by (A46) for pb de-
fined similarly to P~. These WKB approximations are
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easily expressed in terms of the classical Aows 4 and 'tII on
M corresponding to the initial and final wave functions Pa
and P». Namely, let @,: M~M be the classical flow de-
fined by

@,(a)= —VV{@,(a)) with @,=d N, /ds, a&M

(4.2a)

@p(a)=-a, @p(a)=VS, (a) (4.2b)

Then the classical path defined by the boundary values
(i'„t, ) and (x, t) is

then the classical path defined by (s,t), (itib, tb) is

(x) . (4.5)

~WKB( 4b ~ tb ~ 4a ~ ta )

=(2~) a(ci@(cz) ' ' 6(cia)wKB(itib, tb, p„t, ),

If there is no path belonging to both flows, and if T, and
Tb are of compact support, the MwKB(its», tb, i'„t, ) de
fined by (4.1) is of order fP, with n an arbitrary integer. If
there is one, and only one classical path defined by
(iti„t, ),(itib tb) then

, oCi, , '(x) .

Let 4, : M~M be the classical flow defined by

qi, (a) = —VV{qi,(a)),

qip(a) =a, %p(a) =VS»(a);

(4.3)

(4.4a)

(4.4b)

(4.6)

where [c;=0: i =1, . . . , lI are the l conservation laws
that VS, and VSb must satisfy if there is to be a classical
path belonging to both Aows. The quantity
MwKB(itib, tb', p„t,), whose square determines the cross
section, is equal to

MwKB(itib, tb;iti„t, )=(2m%)'" " exp[(q p)iirl4—]exp S(itib, tb—,i'„t, )
W =1+1

—I /2

T,{q(t,))T»(q(t„))

(4.7)

where S(itib, tb, iti„t, ) is the action function computed for
the classical path q belonging to both Aows,
[A,„;A = l + 1,.. n] are. the nonzero eigenvalues of

L tt(tb, t, )=ap (tb, a,p, )/aa

taken at a =q (t, };q+p =n —l, and p is the Morse index.
When there are no conservation laws imposing constraints
on the initial and final momenta, the matrix L (tb, ta) is the
inverse of the Van Vleck matrix I"

p t'(t. , tb }=a's(p, , t, ;p. , t. )/ap. apg .

[See Ref. 2, Appendix A, Sec. III, (A15c) and (A37}.]
(ii) Transitions during an infinite time interual
When t, = —oo and/or tb ——oo, (4.7) is meaningless. To

comPute A wKB(P/, oo,P;, —oo), we shall use the beautiful
limiting procedure provided by the M@11er wave operators
(3.53) and (3.63) for systems which approach integrable
systems asymptotically; namely,

t

M(p/, oo ',pi, —oo )

dx M(PI, oo', x, t)M(x, t;p;, —oo )

for A (p/, oo,x, t) and M(x, t;p;, —oo) given by (3.52) and
(3.62), respectively. We assume in this paragraph that
(p;, —oo ),(x, t) defines a unique path q;„and that
(x, t), (pI, oo) defines a unique path qr,„. Moreover, we as-
sume (x, t) is not conjugate to (p;, —oo) or to (pI, oo).

The calculation of A wKB(pt, oo,x, t) and
MwKB(x, t;P;, —oo} is a simPlified version of the calcula-
tion carried out in Secs. III C (ii) and III C (iii), respective-
ly, namely by

(a) making the change of variable of integration

x +p;(s t)!m +py—(s)=q(s)+pf (s);
(b} expanding the potential V(q +ijf) in powers of p up

to order 2;
(c) making a Cameron-Martin transformation to absorb

the terms quadratic in f, one obtains

I=~W KB(pf ~ oo ~pi ~

= lim f dx[detE ~(oo, t)detK ti(t, —oo)]
A~O R" ap ap

r

Xexp —' f —
I Iq;„(s)—p;/m

I I

—V(q;„(s)) ds

/ l +~ Pl 2 I+ P]X+-
fi ~ 2 Ilqs (s} pI/m I I

—V(qf —(s)) ds pfx

This integral is of the type computed in Ref. 2,

(4.8)

I= lim f dx exp F(x) 3(x)—
P Rs fi

with A (x) the same determinants as in Ref. 2 and
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F(x)= lim f —
I
Iq;„(s)l

I

—V(q;„(s))+
I Ip; I I

ds+ pq;„(t, )
'a 2 2'

+»m f llqric(s)ll —V(qr (s))+ llpfll ds pf—qr, „(tb)

+oo
=S(pf, ,x, t)+S(x, t;p ~)—+ „ Ilp il'ds+ f

The dependence of +(x) on x is the same as in Ref. 2. We shall assume in this paragraph that (pf, + oo ),(p;, —co) defines
a unique classical path. The integral (4.8) is then given by an equation similar to (4.6) with

—1/2

wKII(pf, oo,p, , —co ) = ( 2~ )' " ' exp [(q —p )ivrl4] exp —S(pf, co ',p„—co ) +
fi oo 3 =I+1

(4.9)

where the notation is the same as in (4.7) and where the term 5(
I p; I

—
I pf I

) in (4.6) changes

(4.11)

f —
I I» I

I'ds+ f — Il»f I

I'ds

into E dt.
We shall check that the sum (and not, as is often claimed, the difference) of the action and the 'free" action is a finite

phase shift. For q the classical path defined by (p;, t, ), (pf, tb),
tb ~b tb

S(pf, tb,p;, t )+ f Edt= f I (q,q)«+(p;, q(t, )) —(pf, q(tb))+ f (4.10)
a a a

= f (p, dq) —f Edt+(P;, q(t, )) —(Pf,q(tb))+ f Edt

= f —(q, dp) = f q(t)V V(q(t))dt . (4.12)

The undefined oscillatory terms

lim
&a ~—oo, ltb ~ oo

i 'b
exp ——f E dt

do not appear in the S-matrix elements

~WXII(pf, co,'p;, —co). FOr a pOtential V(r) deCreaSing
faster than

I
r

I

', the right-hand side of (4.12) remains
finite when t, tends to —ao and tb tends to ao. Coulomb
potentials will be discussed in another paper.

C. The Airy regime

In the previous subsection [Eq. (4.9)], we have assumed
that in the (n —I)-dimensional subspace where
1(.(pf, co,'p;, —oo) is computed there is one and only one
patll q defined by (p co ) (pf, oo ). We shall now remove
this restriction. That is, we shall assume that there is a
nonzero Jacobi field h along q such that

h( —co)=0, h(co)=0. (4.13)

Again, as in Sec. IIIC, we shall assume that there is only
one such Jacobi field; in other words, the Jacobi operator
W(q) with Neumann boundary conditions has only one
zero eigenvalue, say o.' =0:

I

have at the present time a Feynman-Kac formula for
momentum-to-momentum transitions. However, the form
of the three results obtained in Sec. III C, and the results
established earlier (the Appendix of Ref. 2, and Sec. III B
on the zero eigenvalues of Jacobi operators), dictate a pos-
tulate for the fourth one. Moreover, we shall show in Sec.
IV D that the rainbow angle obtained with this postulate is
equal to the rainbow angle obtained by Ford and Wheeler
via the Schrodinger formalism, a fact which considerably
strengthens our postulate.

For pf close to pf and assuming I conservation laws be-
tween the n components of the initial and final momenta. ,

A (Pg-, oo,'PI, —ao )
d

=exp —S(q, oo, —oo ) —(pf, qf ( oo ) )
l

+ (p;,qa( —oo))+ f Edt I,
(4.15)

where the action functional 5 is computed along the path
q (not a classical path) given by

~(q)p g(I) ——0, i.e. , f(I)——h . (4.14) q (t)=q(t)+(p —p)t,

We cannot repeat steps (a), (b), (c), (d), and (e) of the three
calculations carried on in Sec. IIIC because we do not

where q is the classical path defined by (p;, —oo ),
(pf, + ao ). I is given by
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I =(2~iiI)(" "~ exp[(q —p)'"~ (2mi(h') ' ] ~

detL t)( oo, —oo )/blitt))( —oo )(()'j())i( oo )
~

' I(v,c),
aP

where

n

detL p= g A,(~),
a =I+2

(4.16)

where A, ~z~ are the nonzero eigenvalues of L p', here there are I +1 zero eigenvalues, l occurring because we have assumed
I conservation laws, and 1 occurring because we have assumed that there is one, and only one, Jacobi field with vanishing
boundary conditions. The term I (v, c) in I is

I(v, c)= f du exp i cu ——u
V

R 3

where

c = ——(pf —pf ) @(i ) ( oo ),1
(4.17)

and

1 + 00P"„,= ——, f V~pr(q(t))g(i)(t)it(i)(t)PI))(t)dt . (4.18)

The computation of v is similar to the one performed in Sec. III C for the three other cases. Here the one-parameter fam-

ily Iq (a) j of classical paths is such that

q (a()) is the path defined by (p;, —oo )(pf, oo ),
()q(a)/()a

~
=1()(,) is the Jacobi field such that g(i)( —oo)=f(i)(oo)=0,

q( —oo,a)=p; for all a and q( —oo, a)=a()q( —oo, ao)/()ao, i.e. ,

() q( —oo, a)/()a =0 and () q( —oo,a)/Ba =0.

(4.19)

() q(t, a)/()a satisfies the small disturbances of the small disturbance equation and can be solved with the Green's func-
tion of the Jacobi operator having the same boundary conditions:

a'q~(t, a) = ——f JI' (t,s)V V V V( q( ,sa))f" (()s))f~, ((s))ds .
m

Taking the time derivative of both sides and setting t =+~, one obtains

)2 p )

m

Taking the scalar product of both sides with g~(()( oo ) and using

(,s)g"„,( )=I(- "(s, )P"„)( )=f(„(s)=()q (s,a )/da

one obtains

aq aq( a) tv= — ( oo, ap)
2A Gap Rap

In conclusion, the amplitudes for all four types of transitions in the Airy regime are
r

A (13,tb', a, t, )=4'& '~ exp —q) I(v,c),

(4.20)

(4.21)

where Ã, &, y, and I are given in Table I. These quantities are obtained from one-parameter families of classical paths
Iq(a) j such that

q (ao) is the classical path defined by (P, tb)(a, t, ),
()q(a)/()a

~

is the Jacobi field h with vanishing boundary values, hence the eigenvector f())of the Jacobi operator

with zero eigenvalue,

() q(t„a)/Ba =0 and () q(t„a)/Ba2=0 .

In the case of momentum-to-momentum transitions,
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M(p/, oo,p;, —oo ) =(2iriit)'5(ci ) . (ct)S (pI, 0o,p;, —oo ),
it is obviously A and not A which is of the form (4.21). The determinants & are all finite. In the first three cases they
are finite because of the properties of the Jacobi operators having zero eigenvalues [Sec. III B Eqs. (3.14), (3.22), and
(3.28)].

In the fourth case, it is finite because of two entirely different reasons:
(a) one similar to the previous case (3.33),
(b) one analyzed in the first paper of this series,
In case (a), we had to deal with an isolated degenerate critical point of the action functional defined on the space of

paths. In case (b), we had to deal with a submanifold of degenerate critical points of the suni of the action functions de-
fined on the configuration space. In case (a), the critical point is degenerate because a projection of the phase-space flow
of classical paths is caustic forming. In case (b), the critical points are degenerate because the action functional is invari-
ant under a continuous group of transformations.

D. Comparison with the Schrodinger formalism

(i) We shall compare the WKB approximations of M(p/, ao,p; —00) and of the S-matrix element (p/ I
S

I p; ), obtained
in the Schrodinger formalism, using the results of Landau and Lifshitz, Mott and Massey, Newton, and Schiff.
It can be shown that

'5(
I p/ I

—
I p I

) . 5(8/ 8)5(4I—0)+ —
I p; If (p/ p )

sinO; 2~

2
exp«~/»

I p; I
'f (p/ p )5(

I pI I

—
I p; I

) «r 8/&8; and 4I&A
1

(4.22)

where

X g (21+1)[exp(2i5i)—1]Pt(cos8), (4.23)
l =0

e'k'= lp; I'= lpI I'=2mE,
Pt(cos8) are the Legendre polynoinials, and the phase
shifts 5I are defined by the asymptotic form of the wave
function

P= QAtPt(cos8)(kr) 'sin(kr lit/2+5i) .— (4.24)
I

The formula (4.22) is obtained by subtracting the contribu-
tion of the initial wave function from the asymptotic value
of the solution of the Schrodinger equation equal to a
plane wave of momentum p; as t~ —00. But, in fact, one
subtracts it only partially because one argues that (4.23)
can be replaced by

where the polar coordinates of p are [ I p I,8,$] and where

f (p/, p;) is the usual scattering amplitude. If the potential
V is spherically symmetric, the scattering amplitude f (8)
is given in terms of the phase shifts by the Raleigh-
Faxen-Holtsmark formula

f(8)= exp( —iver/2)
1

2k

1 00f(8)= exp( i ir!2) g—(21 + 1)exp(2i5t )Pi(cos8)
2k 1=0

(4.25)

5i = I (F' k)dr kro+ ir—/4 lit—/2, (4—.26)

where r0 is the radial distance to the point of closest ap-
proach, and

F=k 2m%' V(r) (1+——,
'

) r— (4.27)

For large 1 the eigenvalues iit'[1(l + I)]'~ =M of the angu-
lar momentum operator are approximated by

M=A'I or M=fi(l+ —,
'

) . (4.28)

The asymptotic values of Pi(cos8) for large 1 is

on the grounds that it invalidates the result only for
cos8=1. The terms in (4.23) missing in (4.25) can be
traced back to the initial wave function, hence the initial
wave function is only partially subtracted.

The WKB approximation of f (8) is obtained by com-
puting the asymptotic value of (4.23) for large 1. Thus one

Pt(cos8) = —(2rrl sin8) ' exp(i~r/2) [exp[i(l + —,
' )8+i'/4] —exp[ i (1+1/2)8—iver/4] I. — (4.29)

2d5t/dl
I ~i i, +8=0 (4.30)

and the critical value l0 of l for the second terms satisfies

Finally, one replaces f(8) by its stationary-phase ap-
proximation. The critical value I0 of I for the first term
satisfies the equation

(4.32)

2d5t!dl
I ii i 8=0. — (4.31)

Using for 5t its asymptotic value (4.26), Eqs. (4.30) and
(4.31) are satisfied if

—2 I dr Mr [2m [E—V(r)] Mr-
—m+O=O .
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fWKB(8) I fwKB(8) I exp(2&PWKB)

with

I fwry B(8)
I
= (2n M sine)2M+1

2k

(4.33)

x (2~) '"(ae/aM)-'"

=(M/2mE)'~ (sineae/aM) '~ (4.34)

and

This equation is identical with the equation of classical
mechanics which gives the classical scattering angle H as a
function of the classical angular momentum. It can be
solved for M with the positive sign if the potential is at-
tractive and with the negative sign if the potential is repul-
sive. We shall assume the potential to be repulsive, hence
(4.30) has no solution and the first term does not contri-
bute to fw~s(8). If we identify the eigenvalue of the an-
gular momentum operator with its classical value, then filo
is the classical angular momentum M corresponding to the
classical scattering angle H, and we can write

(i) 5w~B is sometime confused with Pw~ii. (ii) For
momentum-to-momentum transitions, the action function
(i.e., the generator of canonical transformations) is not
equal to the action functional (i.e., the integral of the La-
grangian along the classical path defined by the momenta),
but to the action functional plus appropriate end-point
contributions (Ref. 2, Appendix).

(ii) We shall compare the Airy regiine of
~(p/, oo,p;, —oo) with the results derived by Ford and
Wheeler for spherically symmetric potentials. ' They ex-
amine the cases where ae/aM =2a 5~/aM =0 (rain-
bow), sine(M) =0 (glory), 8(M) is singular (orbiting), and
8(M) is multivalued (interferences). In the first three
cases, they expand 8(M) around the appropriate value of
M, integrate the equation 2a5M/aM =8(M), and analyze
the corresponding scattering amplitudes.

We shall compute the Airy function I(v, c) of
M(PI, oo',p;, —oo) explicitly when V is a spherically sym-
metric potential. According to the method outlined in
subsection C, we construct a one-parameter family of clas-
sical paths Iq(a):a=PI parametrized by the impact pa-
rameter 8 which satisfies the conditions (4.19) [we use

q (8)(&)=q (&,8)]:
2pw~B —25~ —2(M + ~ )a5~™——,

' ~ .

lim 2A
R~oo

lim 2R
R —woo

lim 2A
R~oo

R
2m E — I ' dr —2kR

Rf 2(E —V)dt —(2mE) '~28

f I. dr +E(r~ —r, )
Ep

—(2mE)'"J~

lim 5 (p~, tI„'p;, t, )
—+ —oo, tb ~ oo

+ f 'Edr

Inserting (4.26) into (4.35), one obtains

2PwxB= 2kro+2f—i f 2m (E —V)F '~2dr
Pp

—2k I„",

(4.35)

(4.36)
lim g&(ti, )a q"(ti„B)/aB

2A ~b-
(4.38)

q(BO) is the path defined by

(p;, —oo )(p/, oo ),
aq(8)laB s s ——i( is the Jacobi field such

that g( —~)=i)'( ~)=0,

q( —~,B)=p; for all 8 and

q( —oo,B)= lim q (t„B),
—+ —ooa

where q (t, 8) is given in cylindrical

coordinates by (z„8,$) .

It follows that aq (t„B)/aB = (0, 1,0) and
a q(t„B)/aB =(0,0,0). By virtue of (4.20), the scaling
factor v of the Airy function is

We have already shown [(4.10) and (4.12)] that this limit is
finite for potentials V(r) decreasing faster than r at in-
finity.

In conclusion, according to (4.34) and (4.36) on the one
hand, and Eq. (44), paper I and (4.9) on the other hand,

~WKB(pf) + ~ ~pi ~ ~ ) ~pf I
~

I pi &WKB (4.37)

Remark. There are two sources of confusion which
sometimes lead to erroneous statements concerning the
WKB approximation of the S matrix.

A nearby scattering angle 0 can be written

8=8,+ -,'(8 8, )'a'e/aB'+ —. . . (4.39)

For large values of tb we choose the following axes: the z
axis makes an angle L90 with the direction of the initial
momentum p;, the x axis is perpendicular to the z axis in
the plane of motion, the y axis completes the coordinate
system to make an orthonormal frame. Then

Let Ho be the caustic angle, i.e., the classical scattering an-
gle corresponding to the impact parameter Bo such that

BH/BB g g ——0.

mq "(~,8)=
I pI I

cos(e —e, ) =
I pI I [1——,

' [-,'(8 8,)'a'e/aB'—]'+
» =

I p/ I
»n(8 —eo) =

I pI I [—'(8 —8.)'a'8/aB, '+ ],
q'~'( oo,B)=0 .

(4.40)
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Hence

(4.41)

Moreover, f'"'(oo ) =Bq'"'( oo,B)/M= 1; thus

(4.42)

Thus, if

BO/BB =0,

for the x axis perpendicular to the z axis asymptotic

to the rainbow path ~

i.e., if 8 5M /BM =0, the transition amplitude A (pf, ~,p;, —~) is proportional to an Airy function I (v, c) with

c (Pf Pf )(x)
Am

This is the result obtained by Ford and Wheeler for rain-
bow scattering by spherically symmetric potentials. In ad-
dition, (4.41) gives an explicit value for 8 0/BB .

E. Comparisons with other path-integral results

Because it bypasses the circuitous route "partial-wave
decomposition followed by stationary phase approxima-
tion for the summation over I'*, the path-integral formal-
ism is a natural vehicle for the computation of semiclassi-
cal expansions of scattering amplitude. Previous path-
integral calculations have been hampered by one or the
other of the following issues which have since been
resolved.

(1) The role of classical conservation laws in semiclassi-
cal approximations of path integrals.

(2) The caustic problem for scattering theory using
momentum-to-momentum amplitudes. Without a
Feynman-Kac formula for such amplitudes, one had to
approach the caustic problem in terms of position-to-
position, or momentum-to-position amplitudes.

V. CONCLUSION

The intuitive character of the path-integration formal--
ism has been widely exploited for the analysis of WKB ap-
proximations. If the path integrals are expressed in terms
of Gaussian integrators whose covariance is the appropri-
ate Green's function of the Jacobi operator of the system,
the pat¹integral formalism has the same intuitive charac-
ter for the analysis of the Airy regime. We can now relate
the successive terms in a power expansion in A&&2 to a
more and more refined analysis of the classical flow corre-
sponding to the initial wave function:

Terms of order A
' are obtained from a classical path q.

Terms of order A ' give no contribution by virtue of
the Euler-Lagrange equation.

Terms of order A are obtained from a Jacobi field h
along q.

Terms of order A' are obtained from the solutions of
the small disturbances of the Jacobi operator.

These latter terms occur in different contexts:
Momentum-to-position transitions expressed in terms of

the K matrix, momentum-to-momentum transitions ex-
pressed in terms of the L,-matrix, and Airy regime of all
types of transitions.
Since a caustic is signaled by the existence of a nonzero
Jacobi field with vanishing boundary conditions, the expli-
cit appearance of the Jacobi fields in the covariance of the
integrator makes the calculation of caustics intuitively
clear.
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