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If the initial and the final states of a system have classical limits, and if the classical limits cannot

be chosen independently from each other without violating classical conservations laws, the JWKB
approximation of the probability amplitude for the transition between such initial and final states re-

quires special care. We compute it explicitly for momentum to momentum transitions and for angu-

lar momentum to angular momentum transitions. It is shown how the classical conservation laws

make their appearance in the limit Pi=0. The statements are illustrated by applications to potential

scattering theory.

I. INTRODUCTION II. WKB AMPLITUDES SUBJECT
TO CONSERVATION LAWS (REF. 1}

In the operator formalism of quantum physics, a
dynamical variable is a constant of the motion if it does
not depend explicitly on time and if it commutes with the
Hamiltonian of the system. The quantum concept of con-
stant of the motion corresponds to the classical concept by
the "commutator-Poisson bracket" correspondence. How
are these basic ideas translated in the path-integral formal-
ism of quantum physics? Somehow the WKB calculations
must give vanishingly small values to probabilities for
transitions between states whose classical limits are incom-
patible because they violate the constraints imposed on
them by the classical conservation laws. For example, let
M(pb, tb ,x, t) be th'e probability amplitude that a particle
being at x EM at time t C T=[t„tb] be found with the
momentum pb at time tb, and let Pi"(x,t;p„t, ) be defined
similarly. What is the quantity

We shall compute the WKB approximation of
A (pb, tb,p„t, ) defined by (1) for the system

I. (q, q ) = —,
' m

~ q
~

—V(q)

defined on M =R". That is, we shall compute

I:Mw Ka(P»,—tb'Pe, t, )

dx ~wKB(pb tb x t)~wKB(x t P
p M

where MwKs(x, t;p, te ) is the WKB approximation of

~(x,t;p„t, )=f dw+(y)exp ——f V(x+py(s))ds

M(pb&tb&pe&t, )=f dx A (pb&tb&x&t)M(x&t;p, &t, ) '?

XP,(x+py(t, )) (4)

It often happens that p, and p~ can be treated as indepen-
dent variables on the right-hand side of (1), but that they
have to be treated as constrained variables on the left-hand
side because of conservation laws. We shall show that in
the limit Pi=0, the integrations in (1) bring out the conser-
vation laws. Mathematically, the problem is the calcula-
tion of an integral by the stationary-phase approximation
when the set of critical points, all of which are degenerate,
form a submanifold of M.

Indeed the critical points of the action functional S de-
fined on the space X of paths f:T~M are the solutions of
the Euler-Lagrange equation. Let q(p„pb) be a solution
of the Euler-Lagrange equation characterized by its initial
and final momenta. If S is invariant under a continuous
group 6 of transformations W, then the critical values of
S are constant on the submanifold YCX consisting of the
paths q(P P„Ppb) for any P HG.

for P, a plane wave of momentum p„and
MwKB(pb, tb,'x, t) is the WKB approximation of

tb

M(pb, tb, x, t) =f dw (y)exp ——f V(x ~py(s)}ds

Xpb(x+py(tb))

for p» a plane wave of momentum pb, where p = (A/m) '

, and Y+ are the spaces of continuous paths vanishing,
respectively, at t, and tb, m, and m+ are the complex
Wiener integrators defined by their Fourier transforms

(Ww z )(p) =exp ——f dp, (t)f d hatt(s)G ~ a(t, s)
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G+(t,s)=inf(tb t,—tb —s)1 .

MwKB( Pb r tb ix ~ t )
T

1=exp —S(pb, tb, x, t)

The initial and final wave functions are chosen to be
X ( deQ S(pb, tb,'x, t)/dpbgx

(

& T (q (t ))

p, =exp —S, T, , and similarly for pb,

where S„Sb, T„and Tb are well-behaved functions on the
configuration space. The support of T, or Tb determines
the localization of the system. The associated classical
problem to ihe quantum system (4) [(5)] is the flow of
classical trajectories of (2) with boundary conditions at
t = t~ [at t = tb],

p, (x)=VS, (x) [pb(x)=VSb(x)] .

If the classical Aow is a one-one mapping on the domain
of the wave function, then

MwKB(x~t~ka~tz )

l=exp S(x,t;p„t, )—
fi

where the action functions are defined by the action func-
tional

S(q)= f L(q(t), q(t))dt

and the endpoint contributions introduced by the initial or
final wave function:

S(x,t;p„t, ) = S (q, ) +S,(q, ( t, ) } for q, the classical path

defined by (p„t, )(x,t),
(12)

S(pb, tb, x, t)=S(qb) Sb(qb(tb—)}for qb the classical path

defined by (x, t)(pb, tb) .

(13)

The expression "the classical path defined by (p„t, }(x,t)"
is to be understood as follows (see Fig. 1). Let N, :M~M
be the classical flow defined by

&&
~

det d S(x,t;p„t, )/r}x&r)p,
~

'~ T, (q, (t, )},
4, (a)= —VV(4, (a)} with @,=d2@,/ds2,

'Po(a) =a, ko(a) =VS, (a);
(14)

(10) then the classical path defined by (p„t, )(x, t) is

ity

FICx. 1. Family of classical paths having the same initial momentum at t = —tx) in a repulsive Coulomb potential. Let~ =—«/rrtUo', B=—impact parameter. For a given A, the B family of Coulomb paths satisfy B(y —B)=p [z+(z2+y2) i'2] in they z
plane with the potential at the origin of the coordinates. This flow is caustic forming in configuration space, but is not caustic form
ing in momentum space. For A negative (attractive potential), the flow is not caustic forming (Ref. 7).
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FIG. 2. Two classical flows of Coulomb paths: one having the same initial momentum p, at t, = —00 in the z direction, the other
having the same final momentum pq at tq ——+ 00 in a direction making an angle 0=70' with the z direction. The norms of p, and pq
are equal, and there is one path (the dot-dash line) which belongs to both flows.

C,-,.oC', ', (x) .

The classical path defined by (x,t)(ps, tb) is

, o%, ,,(x), (16)

A path can belong to both flows (see Fig. 2) if there is a
point xo and a time to such that

t~(xo) =~'t —~,0@i, ~, (xo)

With the WKB approximations being given by (10) and
(11),Eq. (3) can be written

where 4, is the classical flow defined by

%,(b) = VV(+g(b)), —

%,(b)=b, %,(b)=VS&(b) .
(17)

I—:lim J dx exp F(x) A(x)—l

a=o

with

(19)

F(x)=S(ps, ts, x, t ) +S(x,t;p„t, ),
A(x)=

~
detB S(p, ts,x, t)IBpsp'Bx

~

'
~

detB S(x,t;p„t, )IBx Bp,
~

' T,{q,(t, )}T&(q&(t&)) .
aP aP

(20)

(21)

The critical points xo of F satisfy the equations

BF(xo)IBxo=—F (xo)=0, a=1, . . . , n . (22)

The x~ derivative of the action function defined by (12)
[by (13)] is the momentum p, (t) along the classical q,
[minus the momentum ps (t) along the classical path qs].
Equations (22) say that if xo is a critical point,

p (t)=pb (t) . (23)

Equations (23) are satisfied if and only if the homotopic
product path q =—qbq, is a classica1 path, that is to say if q

I=0(fi") for n an arbitrary integer . (24)

The essence of the proof of this we11-known result can be
stated for the one-dimensional integral

belongs both to the flow (15) and to the flow (16). We
shall say in brief that q is defined by (p„t, )(pb, ts) We.
have two cases to consider according to whether or not
F (xo) =0 has a solution on the support of A.

(I) There is no classical path q belonging to both flows.
Then, for T, or Tb of compact support, I tends to zero
faster than any power of A
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T

f dxA(x)exp F—(x) =f dxA(x)l i BF
R R X ax

—1

exp F—(x)
l

dX
, for BF/Ox&0 on supp',

=i%f dx A (x)d BF
R dX

exp F—(x)
l

(25)

since A is of compact support. By repeated usage of in-
tegration by parts one obtains (24). Q.E.D.

In the limit A=O, the probability amplitude for finding
in the state Pb at tb the system known to be in the state P,
at t vanishes if there is no classical path belonging both
to the classical flows defined by P, and Pb.

(2) There is at least one classical path q belonging to
both flows. If Eqs. (22) have a solution, they are likely to
have an infinite number of solutions, namely any point xp
on a path belonging to both flows. We shall assume that
there is only one classical path belonging to both flows.

If, for instance, p„(t) and pb &(t) are constant and equal,
respectively, to p, &(t, ) and pb&(ts), then Eq. (23) says
p, ~(t, )=ps, (tb). This equation does not impose a condi-
tion on xp but a constraint on the choice of initial and fi-
nal states. We shall refer, in brief, to such an equation as
a "conservation equation". In general, possibly after a
change of coordinates, the equations F (xp) =0 split into

with

( ) f 'dG(sy)
d

ds

=f ' aG(sy)
'B(y)

g~(y)=y h~s(y) for h~s(y)= (sy)ds
o ay~

g (y)—=f ds, g (0)= (0) .
~ aG(sy) aG

p B(sy )
'

B(sy )

g (0) vanishes by virtue of (27) and (28). But, according
to (27a), BG/By' is independent of [y:a= 1, . . . , n j, oth-
erwise we would be back in case (1), Eq. (24); hence G is
linear in y'; that is, g, does not depend on [y j and g„de-
pends only on [y":A=1+1, . . . , n j. We can, for y in the
subspace of M parametrized by [y"j, repeat for g„ the ar-
gument made for G:

l conservation equations, (26a) and

F,=0, a =1, . . . , l are the conservation

equations,

F z ——0, A =l+ 1, . . . , narc the remaining

equations .

(27a)

(27b)

It is now necessary to generalize the lemma of Morse. '

Set

g =X —Xp

G(y) =F(y+x, ) S(pb, t&,p„t.)— (28)

$(pb, tb,p„t, ) =S(pb, tbixo, to)

n —l equations which determine n components of xp .

(26b}

We shall assume that (26b) has a unique solution for n —1

components of xp, i.e., (26b) defines a connected 1-

dimensional submanifold NC:M. Let [x j~[x j be the
change of coordinates, if any, which splits the set
[F (xo)j into (26a) and (26b). Let p=BL/dq be the cor-
responding generalized momenta. Set F(x ) =F(x (x ) ) and
order the coordinates so that

1 BG
hgs(0) = — „s(0)

1 O'F(xp)s, deth„s(0)~0 .
2 ()xp ()xp

Hence
I

G(y) = gy'g. + g y"y'h (y'+', . . . , y "}.
a=1 A =1+1

y is a nondegenerate critical point in the subspace of M
parametrized by [y"j; the diagonalization of gy"y hqs
can be done as usual" and (31) is brought into the form
(30). Q.E.D.

It follows from the fact that (22) can be split into (27a)
and (27b) that the set of critical points, all of which are
degenerate, form a submanifold. We shall call [y j the
coordinates which bring G (y) into the form (30}. Then

I=lim f dy det(Bx /By~)
fi=p R" ap

Xexp [G(y)+S(pb, tb,p„t,—)) XA(x(y)) .

(32)

Set ye=Au and det(Bx /By~)A(x(y))=D(y). Then

+S(xp, tp', p~, t~) . (29)

Lemma. There is a local system of coordinates in a
neighborhood of xp such that

G (y) gyag & g (yA)2+ & g (yA)2 (30}
u =1 W =1+1 A =p+1

where g, does not depend on y.
Proof. For any 0 function G such that G(0)=0,

lI=limexp $(pb, ts,p„t, ) A'"—
g=p

X f du exp —G(Au) [D(0)+O(R)]

with
I n

'G(A'u)= gu'g, + —,h' g (+)(u )
a =1 A =1+1

(33)
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In the limit A=O, the integrations over u', . . . , u contri-
bute a factor (2m)'5(gi) 5(gt); the integrations over
Au'+'=y'+', . . . , A'u"=y can be done by the stationary-
phase approximation. It remains to compute

D(0) —=det(Bx /By~)A(x(y}) at y =0 .
ap

The change of variables [x j into Ix I into Iy ] diago-
nalizes the Hessian of 6,

$26
a~ asap ay' ay~ ay'ay&

0. '0

D(0) carried out in terms of e limits rather than schemati-
cally as in (38)]. Equation (35) can be rewritten as follows,
with D(0) given by (34) and (21) and T, and Tb set tem-
porarily equal to 1,

[(detN ~(t, tb)] 'detB F/Bx Bxt'[detN tr(t„t)] 'D
ap ap ap

=0'( —1) (1)~ . (36)

On the other hand, by virtue of (A30), (A35), and (A65),

d'F/dx Bx~=[L(t,t, )N(t„t) —L(t, t )N(t, t)] tt

=[N(t, tb)L(tb, t, )N(t„t)] P. (37)

Inserting this expression for d F/dx dx~ into (36) gives
[see Appendix A, particularly (A6), (AS), (A15b), (A30),
(A35), and (A65)]

detL~tt(tb, t, )[D(0)] =0'( —l }i'( l)~,
ap

(35)

n
O' Q A, ,„, [D(0)] = IO'( —l}t'(1)~I,

A =I+1
(38)

Let N~r(t, t) be the matrix inverse of K tt( t, t, )

=dq (t)/dqI(t, ) and let L tt(t, t, ) =Bq (t)/Bq~(t, ) for q
defined by (p„t, )(pb, tb) [see Eq. (43}, the calculation of

I

I= (2m%)'" "~ exp[(q p)in/4]—exp . S(pb, tb,p„t, )—

Set

A =I+1

—1/2

T, (q(t, ))Tb(q(tb))(2 Ar)t'5(g, ) 5(g, ) .

(39)

where A,~z] are the nonzero eigenvalues of I. p. Finally,
for T, and Tb not necessarily constant mappings,

~wKB(pb tb p» t ) =(2M)'" " exp[(q —p)i'ir/4]exp S(pb, tb;p„t, )—
fi A =1+1

T, (q(t~))Tb(q(tb)) . (40)

In conclusion,

Mw K B(Pb & tb &Pa & t» )

~wKB(pb, tb,P„t, )(2vrfi} 5(gi ) . 5(gi ), (41)

where the set Ig =0:a =1, . . . , II is the set of conserva-
tion laws (27a).

III. EXAMPLES

I

and

M(Pb & tb 'P» & t» )

=(2mB) 5(p, —pb)exp ——
I p, I (tb —t, )

l

B. Scattering by a central field

(42)

A. Free particle

This is an example where the initial and final wave
functions are not of compact support and Eq. (24) is not
valid. The WKB approximation is exact,

~
'

fb

M(pb, tb, x, t) =exp —f, z I pb I

'«

—Pb~ [x+Pb(tb —t}]

Consider a particle of mass m in a spherically-
symmetric potential V(r). The choice of the initial and fi-
nal wave functions p, and pb is dictated by the transition
we are interested in. For instance, we may want
the momentum-to-momentum transition amplitude
M(pb, tb,p„t, ) characterized by the vectors p, and pb, or
we may want the angular momentum-to-angular
momentum-transition amplitude

~(Prb &PSb&P&t&b& b &Pra

&Pea�

&P&t&a& ta )

=exp
&

[ —
z I pb I

'(tb ') pb~ ]——

A (x, t;p„t, )=exp —[——,
'

Ip, I
(t —t, )+p,~ ]

or we may want a momentum-to-angular momentum tran-
sition, or vice versa. In the first case, the flows have to be
made of parallel paths in the distant past and future. In
the second case, the flows have to be made of radial paths
in the distant past and future (see Figs. 3 and 4). Indeed,
"given p, " means "given an incident plane. " "Given
p„,p@„p~

" means "given an incident spherical wave, "
since the radial paths have constant p@, and constant p~,'
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FIG. 3. Incoming and outgoing flows corresponding to a
momentum-to-momentum transition A"(pb, tb,p, i, ).

in the distant past
I p, I

=
I p,„ I

= (2mE, )'
Note first that for t, and tb sufficiently large one can

characterize the classical path q either by

(P„t, )(Pb, tb )

(Pra&peaippa~ta )(Prb~peb~pbb~tb )

and the corresponding action functions are the same: The
contributions from the Lagrangian are obviously the same,
the contributions from the boundary terms are the same
because

p, q (tb)= —d
I
q(t)

I
Idt I,

dr'"(t)Idt
I .—

=p,„r(tb)=(2mE, )'~ r(tb) .

(i) Momentum to momentu-m -transition A (pb, tb, p„
t, ). To compare (40) with the classical results we shall use
cylindrical coordinates at t~,

and polar coordinates at tb in momentum space:

Ipb J =I
I pb I

0 @I .

FKx. 4. Incoming and outgoing flows corresponding to an
angular-momentum-to-angular-momentum transition M(p, b,
Pgb~Pyb~tb Prtt Pg~ Py tg ).

and

detBa~/Ba~= b
jp

(43)

where e~0 when tb ~ ao. On the other hand (38),

eOOI
detL tt(tb, t, )D =det 0 I 0

0 0 l

I:D(0)]'=«e
I pb I'»neb '(&&I&b)

=b(
I pb I

sinOBOIBb)

Then the bivector L tt(tb, t, ) =Bpb IBa~ in Cartesian
coordinates can be written

~Pba Fbi Baj
L tt(tb, t, )=

~pb BaJ BQ~

with

detBpb IBpb =
I pb I

sin8,

le ao
A wKB(pb, tb,p„t, ) =(2M)exp exp S(pb, tb,p, t, ) —sing

—1/2

T, (q(t, ))Tb(q(tb))2mh6( Ipt, I

—Ip, I
) .

(44)

{45)

The conservation law can be read off the first row of Bpb; IBa (namely,
I pb I

does not depend on the initial position of
the particle, provided t and tb are large enough).

(ii) Angular momentum to angu-lar moment-um -transiti-on, M(p„b,peb, p„b, tb,p„,pe„p„„t,).
If, in (20), we change coordinates from Cartesian Ix I to polar Ix I = Ir, 8,gI, we change the state representation

from momentum Ip~ I to angular momentum Ip„,pe,p~j. In polar coordinates,

rb Ob f'b fbf Pbrdrb + e Pb8 ~b +f Pbydq b Pbrrb(tb ) f Ebdt

+f p „dr, +f p, edg, +f p, &dip, +p, r (t, ) —f, E,dt .

The change from Cartesian to polar coordinates does not fully bring the Hessian of I' in the form {35). But it is not
necessary to do so.
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(a) It is clear that F g=0 and F ~=0 are conservation laws. (b) F „=0says pb„(r)=p„(r), it does not determine r oth-
er than saying r is on the classical path defined by the initial conditions at t, and the final conditions at tb. p, is not a
constant of the motion but an asymptotic constant of the motion, p„(tb )=p, (t, ) for t, and tb sufficiently large. F „„=0at
any r which makes F „=0. All the eigenvalues of L tt(tb, t, ) are either zero or vanishing in the remote past and future.
Thus

l
~wKB(prb Pgb P&t&b b Pra&pga&p&t&a&ta ) Xp( tr/4)exp S (prb&pgb&P&I&b&tb&pra Pga Pya ta) Ta(q(t, )Tb(q(tb))

L

X(2~)'5(p„b —p„, )&(pgb pg, )—o(p b p, )—.

Equations (44) and (46) can be compared with the classical
equations obtained via angular decomposition (partial-
wave decomposition). For instance, the 5 functions in (44)
are the same as the 5 functions in the equation derived by
Mott and Massey' [their equations (66) and (57), pp.
97—102] and the 5 functions in (46) can be obtained, in the
limit t, = —~, t~ ——oo, from the 5 functions in the equa-
tion derived by Schiff'3 (his pages 322—323) for

~WKB( I Pb ~
Lb&lb& ao & I Pa I &La&la &

Since the Mott and Massey, and the Schiff formulas are
valid for t, = —oo and t~ ——+ oo, we postpone the compar-
ison of the WKB scattering amplitudes obtained via path
integration and via the Schrodinger formalism to the third
paper which deals with these limits.

d2
g (q)= —L2p + L)2 —L~)—

dt2

dL22

dt dt

dLp]+ L11
dt

(A 1)

where L
~

and L2 are the derivatives of L with respect to
its first and second arguments, respectively, and L», L ]z,
L2~, and L2q are defined similarly; for example,
(Lz, )„„=dL/Bq"c)q".

The Jacobi fields are the solutions of the Jacobi equa-
tion (also called the small disturbance equation, or the
equation of geodetic deviation in the context of Riemanni-
an geometry):

g (q)h(t) =0 . (A2)
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This equation has, in general, 2n linearly independent
solutions. Each one can be obtained through a one-
parameter variation through classical paths.

Let I q(t, a) ), with ct a 2n index, be the family of classi-
cal paths. For instance, a could be the 2n constants of in-
tegration of the Euler-Lagrange equations. The Zn one-
parameter variations IBq(t, a)/Oct;:i =1 . . 2n I define 2n
Jacobi fields. Note that the velocity field Bq(t, a)/c)t is
also a Jacobi field if L has no explicit time dependence; it
can be expressed as a linear combination' of
I Bq(t, a)/Ba; I.

In the case of a velocity-dependent potential we shall set

APPENDIX: JACOBI FIELDS
AND WKB APPROXIMATIONS

A self-contained supplement to "Jacobi fields and relat-
ed topics"' leading to WKB approximations for different
boundary conditions is presented in this appendix.

(l) The Jacobi fields Let.
tb

S(q, tb, t, )—:f L (q(t), q (t) )dt

be the action of a system S, and let its configuration space
be a Riemannian manifold M with metric tensor
gz„dL /Bq "Bq"; we ——use

~ ~ ~ ~

for the corresponding
norm and

~ ~

for the Euclidean norm. ' Thus if

V(q(t), q(t)) =~(q(t))+ (&(q(t)),q(t) )

for A(q(t)) E Tq(, )M . (A3)

The terms quadratic in j contribute to the kinetic energy.
Velocity-dependent potentials have been investigated by
Nelson and Sheeks.

(2) The small a'isturbance of the small disturbances.
If we take the derivatives with respect to a; or to t of

the Jacobi equations

L=—
~q ~

—V(q),

The Jacobi operator +(q) along a classical path q of the
system is

g (q(a) )Bq(t, a)/Bt =0,
we obtain the equations satisfied by the variations of the
Jacobi fields. For instance, if L(q, q) = —,m

~ ~q ~ ~

—V(q),
then
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" Ba;Bc' Ba; Baj

Bt Bt

(A4)

These equations can be solved with the Green's functions
of the Jacobi equation which has the appropriate boundary
conditions.

(3) The Jacobi matrices.
J" (t, t ) and K" (t, t, ) are bivectors defined as follows.

J(t, t, ) and K(t, t, ) are mappings from Tz~, PI into T~~,~M

such that, for v H T~~, Pf,

(A9)

Bq"(t,a, u, ) Bp,(s,a, u, )K"„(t,s) =
Bap ~pgp

Bq"(t,a, v, ) Bp„(s,a, u, )

~p p Rap

It can be proved that K(t, t, )
K „(t,t, )=K I'(t„t) satisfies

(A 10)

defined by

K „(t,t, )=V',Jt' (t, t, )

dq"(t, a, u, ) Bq (s,a, u, )J" (t,s)=
~p, aap

Bq"(t,a, u, ) Bq'(s, a, u, )

Bap Bp,p
so that J(t,s) is the commutator function. Also,

J"„(t,t, )v"=j"(t),
where j is a Jacobi field along q with Cauchy data

j I'(t, ) =0,j (t, ) =u";

Kt' (t, t, )v"=kl'(t),

=Bq"(t, ;a u)/B "u, .
It is convenient also to introduce

L" (t, t, ) =V,KI' (t, t, )

=Bq "(t,a, u, )/Ba

(Al 1)

(A12)

K&„(t,t~ ) =Bq"(t,a, u, )/Ba" .

Note" that

(A8)

where k is a Jacobi field along q with Cauchy data'
k"(t, ) =u",

k (t, )= ,' g""IA„p[q(t,—)] Ap „[q(—t, )]Iut',
.P

where A is defined by (A3). Note that k (t, )=0 for
velocity-independent potentials.

Each column of J" (t, t, ) consists of the components
j ~„~ of the n Jacobi field Ij~„~] with the boundary condi-

:P
tions j "~„~(t,) =0, and j ~ ~(t, ) =P' .

Each column of K&„(t,t, ) consists of the components
k"~„~ of the n Jacobi field [k~„~ I with the boundary condi-

'IJ
tions k "~ ~(t, ) =&", and k ~„~(t, ) =0 for velocity-
independent potentials.

If we specify a classical path q (t,a, v, ) by its initial po-
sition q(t„a,v, ) =a and its initial velocity q(t„a, u, ) =u„
then

J"„(t,t, ) =Bq"(t,a, v, )/Bu, ", (A7)

E(t, t, ) and L(t, t, ) are solutions of the small disturbances
of the small disturbances of (A4). Note that L can be
written as

Bp„(t,a, v, ) Bp„(s,a, u, )I„(t,s) =
aa p

asap

Bp„(t,a, u, ) Bp„(s,a, v, )

~p, aap
The symmetry properties of J,E,L are the following:

{i) J(t,s)= J(t,s), i.e., J (t,s—) = J~(s, t). Proof: In-
subsection (4) of this appendix, we prove the antisymmetry
property of its "inverse. "

(ii) In general, E has no symmetry property.
(iii) L(t,s)= L(t,s), i.e., L—~(t,s) = L~ (s, t). Proof:—

Follows from the definition, together with (Al 1).
(A14)

J,E,K,I. make a matrix which is the solution of the Jacobi
operator in phase space. Let H be the Hamiltonian, then

2~ggqagqP

Sy/at a'II/ap. aqt'— aq happ
r( ) + ri, s)

a'a/ap. aptt — K.r(t, s) I.,(t,s)

(4) J, K, and L are biuectors It is sometime. s convenient
to treat them as matrices. Their "inverses" M, X, and P,
defined by

q(a)(t) =—q(t, a) .

I.et the boundary values of q(0) be

Mt'„(t„t)J"~(t,t, ) =5",
Xt',{t„t)K'~(t,t, ) =&",

P"„(t„t)L"~(t, t, ) =+~,

(A15a)

(A15b)

(A15c)

q (t„O)=a, q~(t„O) =pg,

q(tI,„,O)=b, q~(tb, O) =pg .

are the Van Vleck determinants corresponding to the vari-
ous action functions.

Proof: I.et [q(a)] be a one-parameter variation through
classical paths

The action functions S corresponding to the different
boundary conditions chosen to define q(a) are, respective-
ly,
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final position,

S(q(tb, a),q(t„a))—S,(q(t„a),q(t„a) )

(A17a)

S(q(tb, a),q(t„a))=S(q(a), tb, t, )

for q(a) defined by the initial position,

S(q(tb, a),q(t„a))+Sb(q(tb, a),q(tb, a))

S,—(q(t„a),q(t„a))
=S(q(a), tb, t, ) for q(a) defined by initial

momentum, final momentum .

=S(q(a), tb, t, ) for q(a) defined by the

initial momentum,

final position, (A17b) S,(q(t„a),q(t„a))=q (t„a)q (t„a)
= —,'d

~
q(t, )

~
/dt,

Sb(q(tb, a),q(tb, a))= ,'d ~

q—(tb)
~

'/dt, .

S(q(tb, a),q(t„a) )+ Sb(q(tb, a),q(tb, a) ) (Alga)

(A18b)
=S(q(a), tb, t, ) forq(a) defined by the and

initial position,

(A17d)
The end-point contributions are such that both sides of
these equations vanish when tb ——t, . %'e can take

and

final momentum,
(A17c)

To prove that the inverses M, N, P defined by (A15) are
Van Vleck matrices, we expand both sides of (A17) in
powers of a. Since [q(a) I is a variation through classi-
cal paths, the expansion of the right-hand side gives

2 I fbS(q(a))=S(q(0)) +aL2h(t), + —,'a2 L2i ———L22 h(t)h(t),
a

tb fb

+ —,a —[L22h(t)h(t)], + —,'a L2B q(t, a)/Ba', +.
a

{A19)

where h (t) =Bq(a, t)/Ba
~ 0 is a Jacobi field along q(0). For

L(q, q) = —,
'

f /q / /

—V(q),

Cb 2
~

S(q(a))=S(q(0))+aL2h(t), +a (h(t) ~h(t)), + —,a L2 ', +

(A20)

(A21)

The zero-order terms of the expansion of (A17) give the relations between the various action functions S and the action
functional S.

(i) For q(a) defined by initial position, final position, the terms of order a give

as
(b, tb;a, t, )h(tb)+ (b, tb;a, t, )h(t, )=pbh(tb) p, h(t. ), —as

aa (A22)

which shows that the action function is the generating function of a canonical transformation, namely the time-
dependent point transformation where the a's are the old variables, and the b's are the new ones.

To compare the terms of order a, we need to express h(t ) and h(tb ) in terms of h {t,) and h(tb ) in (A19):

h (t) =J(t, t, )M(t„tb)h(tb)+ J(t, tb)M(tb, t, )h(t, ),
h(t) =K(t, t, )M(t„tb)h(tb)+K(t, tb)M(tb, t, )h(tg),

(h(tb)
~
h(tb)) =(K(tb, t, )M(t„tb)h(tb)

~
h(tb))+(M(tb, t, )h(t, )

~
h(tb)),

(h(t, )
~
h(t, ))=(M(t„tb)h(tb)

~
h(t, ))+(K(t„tb)M(tb, t, )h(t, )

~
h(t, )) .

(A23)

(A24)

Equating the cross terms h(t, )h(tb) on both sides of
(A17a) gives

a2S(b, tb,.a, t, )/Bb~aa =M~(II„t, )

and

d S(b, tb, a, t, )/Ba Ba = Ktt (t„tb)Mr (tb, t, )—.

(A27)

M&(t„tb) . —(A25)

8 S(b, tb,'a, t )/Bb~db =K&r(tb, t )M& (t„tb) (A26)

For systems with constant metric tensor and velocity-
independent potentials (A20),

For arbitrary systems, one uses the Jacobi matrix E satis-
fying the boundary conditions given by Nelson and
Sheeks and one proceeds as before using the full expres-
sion (A19) rather than the simplified equation (A21).

(ii) For q(a) defined by initial momentum, final posi-
tion, the terms of order a in the expansion of (A17b) give
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as ash(tb)+ h(t, ) — h(t, )
ap, aa

BS(pb, tb, a, t, ) /Bp, .= B—S,(p, ,b )/Bp,.
BSb(pb tb'b tb)IBb =Pb

(A32b)

(A32c)

as~

apa
h(t, ) =pbh(t, ) —p, h(t, ) .

Here, the inner roduct (
l

) is defined with the metric

g @=a h/aq aq; and juxtaposition implies a contrac-
tion, e.g., (BSIBb)h=(BSIBb )h . The argument of S, is
(a,p, ), where a =4, ', (b) with 4 the classical flow de-

fined by (15):

as.
(b, tb,p„t, )= (a,p, ),

B S(pb, tb, a, t, )IBpb Ba = N—(tb, t, )

N t'—(t„tb ), (A33)

B'S(p, , t„;a,t, )IBpb Bpb = J(t„—t, )N t3(t„tb),

(A34)

If we choose Sb(pb, b) =b pb, then S ~ (pb, tb,'a, t, ) = b.—
With this choice for Sb and for Lagrangians of type (A20),
a similar analysis gives

as
tbipa ita ) Pb (A28b)

B S(p, t;a, t, )IBa~Ba = Lr(t„t—„)N t(t, t, ) .

(A35)
as,
aa

(a,p, )=p, .

If S,(a,p, ) =a p, , then

(A28c)

BS(pb, tb.,a, t, )IBa = —p, {A32a)

as
(b, tb', p, t, )=a .

apa

To compare the terms of order n, we need to express

h (t, ) and h(tb) in terms of h(t, ) and h (tb):

h (t) =K(r, t, )N(t„tb)h(tb)

+J (t, tb )N(tb, t, )h(t, ),
h (t) =L (t, t, )N(t„tb )h (tb )

+K(t, tb )N(tb, t, )h (t, ),
(h(tb)

l
h(tb»=(L(tb ta)N(ta tb)h(tb)

l
h(tb»

+(N(tb, t, )h(t, )
l
h(t, )),

(h(t, )
l
h(t, )) =(h(t, )

l
N(tg, tb)h(tb))

+(h(t, )
l
J(t., t, )N(tb, t, )h(t, )) .

To simplify matters we shall take S,(a,p, )=a p, and
consider Lagrangians of type (A20). For the general case
we refer to the papers of Nelson and Sheeks. Equating the
terms of order a in (A17b) gives

B S(b, tb,p„t, )IBb dp, ~=Nt3 (tb, t, )

=N P(t„tb), (A29)

B2S(b, tb,p„t, )IBbt'Bb =L r(tb, t )N~t'(t„tb),

(A30)

a'~(&, tb,p, t, )/ap, ap, p ——J (t, tb) p(t$, t, ) .

(A31)

The matrix inverse X{tb,t, ) of K(t„tb) is the Van Vleck
matrix S bz . It is a bivector which in general has no sym-

metry property.
(iii) For q(a) defined by initial position, final momen-

tum, a similar analysis gives

The matrix inverse N(tb, t, )—of —K(tb, t, ) is the Van
Vleck matrix a 5/apbaa. It is a bivector which, in gen-
eral, has no symmetry property.

(iv) For q(a) defined by initial momentum, final
momentum, a similar analysis gives

and

BS(pb, tb',p„t, ) IBpb —— b—
BS(pb, tb',p, t ) IBp =a

B S(pb, tb ,'p„ t, ) /Bpb Bp,p Pp( tb, t——,)—

(A36a)

(A36b)

=Pt3 (t. ,tb),

B'S(p, t;p„t, )IBp Bp» Kr(t, t,——)P—&(t„t ),
(A37)

(A38)

B'S(p, ,t, ;p„t, )IBp, Bp,& K'(t„tb)P»——(tb, t, ) .

(A39)

A similar analysis can be done in phase space (Ref. 1, p.
323). One introduces a two-parameter variation through
classical paths Iq(a),p(a, P)I and expands the action
function S and the action functional

—0(t —s)J(t, tb )M(tb, t, )J(t„s), (A40)

where 0 is the step function equal to 1 for positive argu-
ments, 0 for negative arguments, and undefined otherwise.

S(q(a),p(a, P), tb, t, )

tb=j [p(t, a,p)dq(t, a) H(q(t ),p(t, a—,p))dt]

in powers of a and p. Equating terms of the same order
in a and P give the same equations as the configuration
space analysis.

(5) The Jacobi Green s functions.
The Jacobi fields can be used to construct the Green's

functions G(s, t) of the Jacobi operators with Dirichlet,
von Neurnann, and mixed boundary conditions. Since
G(s, t) =G(t,s), it is sufficient to check the two boundary
conditions for one of the variables, say t =t, and t =tb.

(i) Dirichlet boundary conditions G (s, t, ) =0,
G(s, tI, ) =0:

G (t,s) =0(s t)J(t, t, )M(t„—, tb )J(t, ,s)
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(ii) Mixed boundary conditions '

dG+(s, t, )ldt, =0:

G+ (t,s) =8(s t)K—(t, t, )N(t„tb )J(tb, s )

G+(s, tb ) =0, +,(q)G (t,s) =5(s t)—[(K(s,t, )P(t„tb )K(tb, s )

K(—s, tb )P(t, , t. )E(t„s)]
=5(s t)—

8(—t s)J—(t, tb)N(tb, t. )K(t„s) . (A41)

8(t —s)K(—t, tb)N(tb, t, )J(t„s) . (A42)

(iv) von Neumann boundary conditions' dG(s, t, )I
dt, =0, dG(s, tb )/dtb =0:

G(t, s}=8(s t)K (t—,t, )P(t„tb )K(tb, s )

+8(t s)K(t,—tb)P(tb t, )K(t, s) . (A43)

The proof of Eqs. (A40)—(A42) can be found in DeWitt-
Morette. ' The proof of (A43) is similar, but requires a
new relationship between the Jacobi fields, namely,

K(t, t, )p(t„tb )K(tb, s) K(t, t, )—P(tb, t. )K(t. ,s) =J(t,s) .

(A44)

Proof of (A44). Both sides satisfy the Jacobi equation in

t and s. Since both sides are antisymmetric in s and t, it is
sufficient to check that the boundary conditions of both
sides are equal for t=t, and t=tb. The derivatives of
both sides at t=tb are equal by virtue of (All). The
derivatives of both sides at t=t, are equal by virtue of
L (t,s) = L(s, t) toge—ther with (Al 1). We are now in a
position to prove (A43). Since K(t, t, } and K(t, tb) satisfy
the Jacobi equation in t,

(iii) Mixed boundary conditions ' dG (s, tb)Idtb ——0,
G (s, t, ) =0:

G (t,s) =8(s t)J(—t, t, )N(t„tb )K(tb, s )

by virtue of (A44). Q.E.D.
It has been shown in Ref. 1 that the first three Green's

functions can be used in the path-integral representation
of position-to-position propagator, position-to-momentum
propagator, and momentum-to-position propagator,
respectively. Although we can postulate a path-integral
representation of the momentum-to-momentum propaga-
tor in terms of the fourth Careen's function, we have not
yet been able to derive it from first principles.

WKB approximations for different boundary conditions
The WKB approximation of a wave function is given in
terms of an action function and a Van Vleck determinant,
i.e., in terms of an associated classical problem. The ques-
tion is, how does one relate the boundary conditions of the
associated classical problem to the given initial or final
wave function, or vice versa? This question is difficult to
answer when the WKB approximation is obtained in the
most commonly used method, which consists in applying
Schrodinger equation to an "appropriate" ansatz. But the
question can be answered straightforwardly if one com-
putes the WKB approximation of the wave function
as given by a Feynman-Kac formula. To simplify the
presentation, we shall consider the system L (q, q )
= —,m

~ q ~

—V(q) defined on an arbitrary Riemannian
manifold. The results presented here are valid for arbi-
trary Lagrangians which do not depend on powers of q
higher than 2. Given an initial (final) wave function P,
(pb) at time t, (tb), the path-integral representation of the
wave function g, (gb) at time t for this Lagrangian is
given by the Feynman-Kac formulas

g, (x, t)= f„dw+(y)e xp ——f V(x+py(s))ds P, (x+py(t, )),
+

(A45)

f~

gb(x, t)= I dto (y)exp —I V(x+py(s))ds pb(x+py(tb)), (A46)

where p=(A'/m)'~ 7', and F+ are the spaces of con-
tinuous aths vanishing, respectively, at t, and at tb, w

and w+ are the complex Wiener integrators defined by
their Fourier transforms

(Wwg )(p, )=exp ——f dp (t)f dptt(s)G~ (t,s}

(A47)

l l
(i) f =exp —S T ol Qb =exp Sb Tb

fi ' ' fi
(A49)

where S„Sb,T„and Tb are well-behaved functions on the
configuration space. The support of T, or Tb determines
the localization of the system.

(ii) P, (x+py(t, ))=5(x+py(t, ) —a)
or

where 4b(x+py(tb))=5(x+py(tb) b) . — (A50)

G (t,s) =inf(t —t~, s —t, )I,
G+(t,s)=inf(tb t, tb —s)I . — (A48)

The WKB approximations of (A45) and (A46) have been
computed in Ref. 1 for the following choices of initial, or
final wave functions:

The methods developed in Ref. 1 can be used to corn-
pute WKB approximations of more general wave func-
tions than (A45) and (A46) and for choices of initial or fi-
nal wave functions other than (A49) and (A50). We shall
not repeat these calculations here but only analyze the
connection between the initial, or final, wave functions
and the boundary conditions of the associated classical
problem.
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(i) The initial wave functions p, and pb given by (A49)
generalizes plane waves. Indeed, if S(x)=p,~ and
T, (x)=1, then P is the plane wave of momentum p, .
Choosing (A49) for the initial or final wave function is
particularly convenient for the semiclassical approxima-
tion because, in the limit A'=0, the initial and final current
densities Xexp S(b—, tb, a, t, )

l
(A55)

classical Aows define one-one maps in the subspace of the
configuration space where the waves functions are defined,
then either (A45) or (A46) gives

~wKB(»tb o t )=(2~'&) "
I
detM p(t„tb)

I

'

j =A'[P"VP (V—P)*$]/2im

are, respectively,

limj, (x)=
I
T(x)

I
~VS, (x)/m,

A=O

limjb(x)=
I
Tb(x)

I
~VSb(x)lm .

Pi=0

(A51)

where S is the action function (A17a) and 3f the Van
Vleck matrix (A25). It is usually much easier to compute
the determinant of the inverse matrix, namely the Jacobi
matrix J (A5). The case when classical Aows are caustic
forming is treated in Ref. 1.

Remarks. If, in (A45}, we replace 5(x +py(t, ) —a }by

Hence, given an initial (final) wave function (A49), the as-
sociated classical problem is the classical flour of trajec-
tories whose initial (final) momenta are

then

(2m)-"f dp, exp —p, [x+l y(t, ) —a]

p, (x)=VS,(x), [pb(x) =V'Sb(x)] (A52)

If p, or pb are plane waves, the wave functions f, or gb
are the probability amplitude for momentum-to-position
transition A (x, t;p„t, ) or the probability amplitude for
position-to-momentum transition A (x, t;pb, tb). We shall
still use the notation MwKB(x, t;p„t, ) for g,wKB(x, t)
with P, an arbitrary initial wave function of type (A49),
and use similarly the notation MwKB(pb, tb, x, t). But it
should be remembered that when p~ or pb is not a plane
wave the associated classical flow (A52) cannot be "re-
placed" by an associated classical trajectory defined by
(p„t, )(x, t) or (x, t )(pb, tb ).

If the classical flow defined by the initial or final wave
function defines a one-one map in the subspace of the con-
figuration space where the wave function is defined, then

4 (x, t;a, t~ }=(2rrll) " dp, exp ——p,~Rn

X M(x, t;p„t.), (A56)

where M(x, t;p„t, ) is given by (A45) with P, a plane
wave. Equation (A56) is the equation used in Feynman
and Hibbs (p. 102) to define A (x, t;p„t ).

(7) Composition laws of the 8'EB approximations.
The properties of the Jacobi fields provide a proof of

the composition laws of the %'KB approximations. All
WKB approximations are of the form

A (p, t2;a, t, ) =C(a,p)[deta S(p, t2,'a, ti)lapaa]'

~WKB(X s ter a ~ ta ) l
Xexp S(P,t2, a, t,)— (A57)

=
I
detN p(t„t)

I

' exp S(x,t;p„—t, ) T, (q(t, )),

~wKB(pb tb'» t}=
I
detN (t, tb}

I

'"
l

Xexp S(pb, t„.x, t) Tb(—q(tb)),

(A54)

where the action functions are given by (A17b) and (A17c)
and the Van Vleck determinants are given by (A29) and
(A33). It is usually easier to compute the determinant of
the inverse matrix, namely, the Jacobi matrix K (A6). The
case in which classical Aows are caustic forming will ap-
pear in paper II (see Ref. 3, p. 3).

(ii) The wave functions given by (A45) or (A46) with the
initial or final wave functions (A50) are the probability
amplitudes M(x, t;a, t, ) that the particle known to be at a
at t, be found at x at t, and M(b, tb, x, t) that the particle
known to be at b at tb was at x at t. The associated classi-
cal problems are, respectively, the associated classical
flows of trajectories which originate at a, or terminate at
b. They can be reduced to associated classical paths de-
fined, respectively, by (a, t, )(x, t) or (x, t)(b, t~). If the

S(y, t, ;P,t)+S(P, t;a, t, ) =S(y, tb, a, t, ) . (A58)

Indeed, for P a critical point the piecewise classical path
characterized by (a, t, ), (p, t), and (y, tb) must be the classi-
cal path characterized by (a, t, )(y, tb) The additive .prop-
erty of the different action functions follows from (A17).

It remains to prove that, for p a critical point,

det a'S(y, t;a, t, )/ay aa

= —deta S(y, tb, p, t)Iay ap[det[a S(y, tb, p, t}Iapap
+a's(p, t;a, t. )/apap]]

Xd ta eS(p, t;a, t, )/apaa .

where p characterizes the state of the system at time t2
and a characterizes it at time ti, and C(a,p) is a constant.
The composition law says that, for t, & t & tb,

~wKB(y, tb, a, t, )

=stationary-phase approximation

x f~WKB(y, tb P t)~WKB(p t a t )dP

This is true whether or not a, p, and y belong to the same
representation. It is clear that for P a critical point
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If the critical point is not degenerate, the most direct
proof of (A59) consists in computing the second deriva-
tives of both sides of (A58) when P is a function of ct and
y. This can be done in different ways, by changing the or-
der of differentiation and using, or not using, the fact that
the derivatives of (A58) with respect to the components of
P vanishes. The resulting equation (AS9) is meaningless if
P is a degenerate critical point. We shall instead give
Jacobi field identities which are equivalent to (A59), but
which remain valid when P is a degenerate critical point.
The correspondence between the Jacobi field identities and
(A59) follows from (A26), (A27}, (A30), (A31), (A34),
(A35), (A37}, and (A38), where we have obtained the Hes-
sian of the action functions in terms of the Jacobi fields.

(a) If a=q(t, ), 13=q(t), and y=q(tb), then (A59) can
be written

M(tb, t, ) =M(tb, t)[K(t, t, )M(t„t)

K(t, tb—)M(tb, t)] 'M(t, t ) .

This equation follows from

K ( t ~ tg )M ( tg ~ t ) K ( t~ tb )™(tb ~ t ) ™( t~ tg )J( t~ ~ tb )Af ( tb ~ t )

(A61)

when the left-hand side is invertible. Equation (A61) is
valid whether or not the left-hand side is invertible.

Proof of (A61). From

J(t,s) =J(t—, t, )M(t„tb )J(tb, s)

—I =K(t, t, )M(t„tb )J(tb, t)+K(t, tb )M(tb, t, )J(t„t),
which, inserted in (A63), gives

K(t, t, ) K(t—, tb )M(tb, t)J(t, t, )= M(—t, tb )J(tb, t, ) .

Then

K(t, t, )M(t„t) K(t—, tb )M(tb, t)

M—(t, tb)J(tb, t, )M(t„t) . (A64)

(b} If a=p(t, ), p=q(t), and y=p(tb), then (A59) can
be written

P(tb, t, ) =N(tb, t )[ L(t, t, )—N(t„t)

L(t—, tb)N(tb, t)] 'N(t, t, ) . (A65)

This equation follows from

L (t, t, )N(t„t} L(t, tb)N—(t„,t) =N(t, tb)L(tb, t, )N(t„t)

(A66)

when the left-hand side is invertible. Equation (A65) is
valid whether or not the left-hand side is invertible.

Proof of (A66). Taking the derivative of (A44) with
respect to t, and setting t =s gives

L (t, t, )P (t„t,)K(t, , t) L(t, t, )P(t—„,t, )K(t„t)= jl .

(A67)

and if t=s,

+J(t, tb )M(tb, t, )J(t„s), (A62) Setting t =s in (A44) gives

P(tb, t, )K(t„t)=N(tb, t)K(t, t, )P(t„tb )K(tb, t),

J (t, t, )M(t„tb )J(tb, t ) = J(t, tb )M(tb, t,—)J(t„t ) .
which, inserted in (A67), gives

(A63)

Taking the derivative of (A62) with respect to t, and set-
ting t =s, one obtains

[L (t, t, ) L(t, tb )N(tb, t—)K(t, t, ))P(t„tb )K(tb, t) =I, .

from which (A66) follows.
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~The results are valid for arbitrary Lagrangians or arbitrary
Riemannian manifolds. See Ref. 1 for the appropriate
changes, e.g. , Eq. (4) is to be replaced by Ref. 1, Eq. (3.7), etc.
For systems with time-dependent metric and velocity-
dependent potentials, use the results of B. Nelson and B.
Sheeks, J. Math. Phys. 22, 1944 (1981); Commun. Math.
Phys. 84, 515 (1982).

If, as it will turn out, I-A", lim~ 0 is to be understood as the
dominating term when fi tends to 0.

See the Appendix, pp. 14—15. This choice of initial wave func-
tion and the analysis of the corresponding classical flow has
been used in K. D. Elworthy and A. Truman, J. Math. Phys.
22, 2144 (1981).

5The case when the classical flows are caustic forming is dis-

cussed in C. DeWitt-Morette, B. Nelson, and T.-R. Zhang,
second following paper, Phys. Rev. 0 28, 2526 (1983).

See Ref. 1 for the detailed calculations leading from (4) and (5)
to (10) and (11).

"W. Gordon, Z. Schweisstech. 48, 180 (1928). Illustrated by A.
Young and translated. Center for Relativity, University of
Texas, Austin.

8See the Appendix, Eqs. (A28a) and (A32a). This property
would not be true without the end-point contributions.

9q:[t„tb]~R"by q, :[t„t] R", qb [t,tb]~R".
See, for instance, J. Milnor, Morse Theory, Annals of Math.
Studies No. 51 (Princeton University Press, Princeton, New
Jersey, 1969), pp. 5—6.
See J. Milnor, Morse Theory, Ref. 10, p. 7.

~2N. F. Mott and H. S. W. Massey, The Theory of Atomic Col-
lisions, 3rd ed. (Oxford University Press, London, 1965).

'3L. R. I. Schiff, Quantum Mechanics, 3rd ed. (Met&raw-Hill,
New York, 1968).

~4Jacobi fields and related topics is Appendix B in Ref. 1. To-



2516 CECILE DEWITT-MORETTE AND TIAN-RONG ZHANG
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