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Runaway particle production in de Sitter space
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We examine a particle-production mechanism for scalar A,y theory in de Sitter space which has
the feature that the rate of particle production is proportional to the number of particles present,
yielding an exponentially increasing rate of production. General arguments strongly suggest that
this process is generic to any renormalizable interacting theory on de Sitter space. The interpreta-
tion of this process and its relation to the response of freely falling "particle detectors" is discussed.

I. INTRODUCTION

The topic of particle creation in curved space-times has
held considerable theoretical interest in recent years, be-
cause of its application to cosmological and astrophysical
problems as well as its potential for illuminating "zeroth-
order" aspects of quantum gravity. As a result, a consid-
erable body of literature devoted to its study has sprung
up, the prototypical exainple of which is Hawking's calcu-
lation of black-hole radiance. '

This paper will focus on a particular particle-creation
process in de Sitter space-time for a self-interacting scalar
field with interaction A,q& . The mechanism in question
has the interesting feature that it is a runaway process
which produces an exponentially increasing number of
particles. It is therefore expected to dominate other
modes of particle production which have been studied for
Lp theory. ' Although the example studied here is that
of a self-interacting scalar field, general arguments strong-
ly suggest that the basic process is generic to any interact-
ing field of any spin in de Sitter space.

Because of its generic nature and runaway production
rate, this process has important implications for the phys-
ics of the very early universe. In particular, it suggests
that de Sitter space is dynamically unstable, and a recent
examination of the back reaction of this process on the
space-time metric shows, modulo the usual uncertainties
of semiclassical back-reaction calculations, that it will
lead to a decay or diminution of the effective cosmological
"constant. "

The plan of this paper is as follows. Section II
motivates the quantum-field-theory calculation by dis-
cussing the treatment by Gibbons and Hawking of a
quantum-mechanical model "atom" which interacts with
a free scalar field in a de Sitter space. Section III presents
the particle-production calculation. Section IV examines
the choice of "vacuuin" state used in Secs. II and III. Fi-
nally, Sec. V concludes the paper and discusses the rela-
tion of this particle-production mechanism to radiation
from electrons accelerating in Minkowski space.

The units used are such that fi=c =6 =k = 1, and the
sign conventions follow those of Misner, Thorne, and
Wheeler.

De Sitter space is defined as a vacuum solution of
Einstein's equations with a cosmological constant A

II. MODEL "ATOMS"

As a first step toward understanding particle produc-
tion in de Sitter space we can consider the effects of plac-
ing a simple model "atom" in a de Sitter space in which a
free scalar quantum field cp has been defined. We shall as-
sume that the "atom" is a nonrelativistic quantum system
with the following properties:

(a) Its Hamiltonian has a discrete set of energy levels
E„. A good example of this sort of system would be a
simple harmonic oscillator.

(b) The "atom" moves semiclassically along the
prescribed world line x (t).

(c) The "atom" couples linearly to the scalar field via
the interaction Lagrangian I.;„,=A,Zy, where X is a cou-
pling constant and Z corresponds to the monopole mo-
ment of the "atom. "

The details of constructing a scalar quantum field in de
Sitter space have been treated at length ' by several au-
thors, and will only be briefly outlined here.

We shall assume that the field has the wave equation

(CI+gR +I )p=O . (2.1)

We shall use g= —,', which is the value for conformally in-
variant fields. One can construct solutions to (2.1)
without any technical difficulty, and proceed with canoni-
cal quantization in the usual fashion. ' ' When one at-
tempts to construct a Hilbert space and set up a Fock
basis of particle states, however, problems arise because
there is no generally covariant way to define particle
states. This is equivalent to saying that there is no covari-

which is positive. The properties of de Sitter space are
discussed in Refs. 6, 7, and 8. The form of the metric
most relevant to this paper is

ds = —dt +(3/A)cosh [(A/3)' t]dQ

where dQ is the metric on a three-sphere. However, the
results derived in the following sections do not specifically
depend on this choice. We remark in passing that the de
Sitter space can be physically viewed as a four-
dimensional hyperboloid embedded in a five-dimensional
flat Lorentzian space. Under the "Euclidean-type"
transformation t~ i r, this —simply becomes a four-
sphere in R, as can be seen from the metric above.
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ant way to define the vacuum. In order to proceed, we
shall adopt the de Sitter —invariant vacuum investigated
by Nachtmann and Chernikov and Tagirov and used by
many other authors. This choice is crucial to our re-
sults and will be discussed in Sec. IV. This vacuum will
be labeled

I
0;„„)to distinguish it from other nonequiva-

lent vacuums.
Having chosen a vacuum we can now decompose y into

positive-and negative-frequency solutions:

g(x)=g(a, fkI, +akf„+, )
k

with

p =[(A/3)M ——,]'

The case when (A/3)M ( c is discussed by Tagirov.
The two-point or Wightman functions have been calculat-
ed by many authors using different techniques with
the result

S-(x, ,x, )=i(0,„„Iq(x,)q(x, ) 0,„„)
=iA[24wcosh(mp)] '(r)/BG)P ~~2+,z(G)

(2.2)

with

6 =cosh[(A/3)'i o(xi,x2)] .

Here, o. is t~ice the world function, and is equal to the
geodesic time interval between x] and x2 in de Sitter
space. The function P &&2+;~ is a Legendre function
of complex order and is related to the conal harmonic
functions. Using Eq. (2.2) one can obtain the other
Green's functions of the theory in the usual manner.

The response of the model "atom" as it moves along a
geodesic world line in de Sitter space has been calculated
by Gibbons and Hawking with the result that it becomes
excited with a thermal spectrum of excitations at a tem-
perature

Td, s;„„——(2m ) '(A/3)'~

Recall, however, that we started with a supposed Uacuum
state for the field.

This appears somewhat paradoxical at first, and has
previously been discussed in terms of "observer-
dependent" particles and the many-worlds interpretation
of quantum mechanics. The question of "observer-
dependent" particle& is, however, largely semantic in con-
tent and arises because the notion of positive and negative
frequency, and hence that of a vacuum, is basis dependent.
Observers which have different rest-frame coordinate sys-

tems will in general have Fock bases for the field y which
are related by a frequency-mixing Bogoliubov transforma-
tion. '"' ' ' A given state, such as that we have labeled

0;„„),can therefore appear as a vacuum to some ob-
servers and as a many-particle state to others. We shall
refer to the Fock basis for which 0;„„)is a vacuum or
no-particle state as the

I 0;„„)vacuum basis.
Sciama and his collaborators ' have elegantly demon-

strated that the correct interpretation is that the excita-
tions come from interactions between the "atom" and
zero-point fluctuations in the state

I
0;„„). Attempts to

naively treat these fluctuations on the same footing as par-
ticle states like 1;„„),defined with respect to the

I
0;„„)

vacuum basis, are doomed from the start.
The "thermal" nature of de Sitter space, which was first

discovered in a slightly different context by Figari,
Hoegh-Krohn, and Nappi, " is often discussed in terms of
the periodicity of (2.2) in Euclidean time (o~ icr—) Th. is
fact is mathematically responsible for the "atom" result
and indeed it makes the situation formally identical to a
thermal state in flat space. We must reiterate, however,
that the field is not in a thermal state with respect to the
Fock basis we have chosen. These issues will be discussed
in Sec. IV; at present it will suffice to point out that the
response of the model "atoms" is basis independent given
a specified initial state and world line x (t). Thus, all ob-
servers will agree that the "atom" becomes excited.

A previously neglected consequence of the excitation is
that the "atom" will also spontaneously drop in energy
and emit a particle. The calculation will only be sketched
here as it is similar to that for excitation. ' ' ' ' As-
sume that the "atom" is a harmonic oscillator with the
I.;„, above. We wish to find the transition probability for
the "atom" to go from a state

I
E„) to a state

I
E ) with

the excess energy E =E„—E~ ~0 being emitted in a par-
ticle state

I
1;„„)defined with respect to the

I 0;„„)vacu-
um Fock basis. This is

2
PD ~ =+g (E0, 1;„„exp —i fL;„,(t)ch E„,O;„,

1;„„E„

(2.3)

The matrix element in (2.3) is understood to be that for
the combined system of q& and the "atom. " We are only
interested in showing that there is a finite transition prob-
ability for some particle to be produced, hence the sum
over all one-particle states. The calculation for a specific
particle may be found in Ref. 25. After using first-order
perturbation theory to expand (2.3), we can use the well-
known transition amplitudes for the forced harmonic os-
cillator to reduce the problem to

Po-~=-'~'2 f fexp[iEo(x x')]&1-Iv(x) Io..&«-Iv(x')
I l., &( —g)'"d'x( —g')'"d'x'

inv

=1, (2E) ' f fexp[iEo(x, x')](0;„„
I
y(x)y(x')

I
0;„„)(—g)'~ d x( g')'~ d"x' . — (2.4)

A.fter a simple change of variables and use of (2.2) we obtain a similar integral to that found in the excitation calcula-
tion ' with the result (for effectively massless)

dPO, /di =A. (2E) 'exp[2'(3/A)~~ ](exp[2'(3/A)'~ ]—1I
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This is the same as the probability per unit proper time
for the "atom" to go from

I E„& to
I
E & at the tempera-

ture Td, s;«„. This shows that there is probability 1 for a
particle to be omitted when this transition occurs. There
is no room in the formalism for anything else to occur. If
we initially prepare the "atom" in its ground state and the
field in the vacuum state IO;„„&, then the system will
evolve so that in the future the "atom" will be found in an
excited state and the field will be in some many-particle
state. This demonstrates that "atoms" in the de Sitter
"vacuum"

I 0;„„&will act to dynamically destabilize it by
emitting particles.

Once again there is nothing paradoxical going on.
Under the Sciama interpretation, the space-time curvature
is doing work on the "atom" by bumping it into vacuum
fluctuations, and this is dissipated as particles. The situa-
tion is quite similar to that of an "atom" which is being
accelerated through the Minkowski vacuum state in flat
space, which also becomes thermally excited. ' In that
case the work is done by the source of energy providing
the acceleration and the "atom" emits particles de-
fined with respect to the usual Minkowski Fock basis.

Although the above result is important as a matter of
principle, it is rather contrived as a physical process and
should be considered more as a Gedanken experiment.
The physics that it has illuminated is that the effect of the
geometry of de Sitter space on the field p is to make its
vacuum fluctuations or vacuum polarization interact with
freely falling observables. The new feature we have
focused on here is that this interaction leads to particle
creation.

III. RUNAWAY PARTICLE PRGDUCTIGN

. The basic physics behind the results of the previous sec-
tion is that inertial (i.e., geodesic) observers effectively
"see" a thermal Green's function despite the fact that

I
0;„„& is a no-particle state with respect to the basis we

have chosen. Following Gibbons and Perry, we expect
that the periodicity in imaginary time of the propagator
will hold true for any renormalizable field theory on de Si-
tter space, regardless of its spin or interactions. This is

FIG. 1. Runaway A,y graph in de Sitter space.

because we can use perturbation theory to relate the n-
point functions of the theory in question to the free —field
two-point function (2.3). This is entirely consistent with
the intuitive notion that this is basically a geometric ef-
fect.

The next logical generalization to make is to replace the
"atom" of Sec. II by a quantum field. To do this we will
consider a scalar field with the self-interaction Lagrangian
L;„,=:A,y:, where k is a coupling constant, and the nor-
mal ordering is done with respect to the

I 0;„„& vacuum
basis. Once again we shall skip over the further details
because they are well known. ' ' '

The preceding heuristic arguments suggest that we con-
sider pair creation catalyzed by a single particle which
takes the role of the "atom" of Sec. II. To lowest order in
perturbation theory this process is represented by the
Feynman graph in Fig. 1, which we will proceed to evalu-
ate. Remarkably, a parallel calculation was done for two-
dimensional de Sitter space by Nachtmann' in 1967. He
was unable to interpret his result in the manner done here
because, among other things, the discovery of the de Sitter
temperature occurred nearly ten years later. The calcula-
tion sketched below follows Nachtmann's treatment with
the improvement of working in a four-dimensional de Si-
tter space.

The first-order matrix element for the process of Fig. 1

is given formally by & 3;„,I
5&

I 1;„„&,which is

t f &3;„„I:Ap:
I

1;„„&(—g)'i d x=4ilf&3;„„,
I
[y+(x)] 0;„„&fjz(x)( g)'i d x, — (3.1)

where
I

1;„„&=aj-
I
0;„„&, etc., and p is the positive-frequency component of the field. The transition probability

summed over the final three-particle states is

inv

=16~'f fy I &0,„„I [m
—(x)]'

I
3., & & 3 ..I

[v+(x')]'
I
0;..& If)+,,(x)f, ,(x')( —g)'"d'x( —g')'"d'x'

inv

=96~'f f [—i~ (x,x')]'fg~(x)f, ~(x')( —g)' 'd x( —g')' 'd x' . (3.2)

In order to proceed we will use the following spectral representation:

[ id (x,x')—]"=f o„(p )[ i b, (x,x',p)]dp— (3.3)

The derivative of o„(p ) for the Green's function (2.2) involves the generalized Mehler-Fock integral transform ' ' and
is omitted due to its length. The answer for odd n is
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o~ +i(p ) =( —, +p ) +'2 'sinh(harp)[cosh(np)] '(A/24m. ) f [P,/2+ p '(z)] + (zz —1)™dz (3.4)

2
P ' i/i+, p(z) =(z —1) ' P i/2+, p(z)dz .

Equation (3.3) can be used to write (3.2) as

3 =97~'f dp'o3(p') f fg[ft,,p (x)fop (x')]fjp(x)fj p(x')( —g)'/'d4x( g')—'/2d4x' .
k

(3.5)

dP, i/dt =48k, ~ 'oi(p ), (3.6)

where o.i(p ) is given by Eq. (3.4).
Since P, /2+, p(y) is real for all y H [1,oo ), o i is real and

non-negative. If we take the limit as A~O, then

p ~+i /2 and o.
3 goes to zero. This simply tells us that no

pairs will be created in the flat-space limit. We can also
follow Nachtmann' and look at the limit in which A is
large compared to the mass M of scalar particles and
(AM)/3» —,'. Then for the case of a single pair being
created we have

dPi 3 /dt =A, exp[ —2irM ( 3/A) '
] (3.7)

This is a Boltzm ann distribution at the temperature
Tdc sjttgI' This result reProduces the heuristic Picture one
would expect on the basis of the results of Sec. II.

The most important feature of this process is that it
leads to runaway particle production. This is immediately
apparent from Fig. 1, since each of the three particles left
will itself undergo the process leading to nine particles in
the next generation. As long as the probability per unit
proper time given by Eqs. (3.6) or (3.7) is nonzero, we can
expect the total rate of particle production in the space-
time to be proportional to the total number of particles
present. Physically this means that de Sitter space is un-
stable in the presence of a particle and the rate of particle
production in the space-time wi11 grow exponentially with
time. A more detailed interpretation of this process will
be considered in Secs. IV and V.

Mention should be made, however, of the time-reversed
process to Fig. 1 which could be called particle destruc-
tion. Although the transition amplitudes for the two pro-
cesses are the same, the actual rates are quite different be-
cause of the phase-space factors involved with getting the
three particles to come together.

The creation process will obviously be more vigorous
than destruction in the early stages when the particle den-
sity is negligible. Strangely enough, this will also be the
case at aII times since the destruction rate depends upon
the density of particles whereas the creation rate depends
upon the total number of particles. The density, however,
is subject to gravitational red-shifting with the expansion
of the Universe so it is not possible to form an equilibrium.
state where the two rates will be equal. The creation rate
will always dominate the destruction rate.

The eigenfunctions f+, f are orthonormal in both j and

p when p is real. " This produces the expression for P&

Pi 3= f, dp'~3(p')[t'(p' —p')]'
The transition probability for unit proper time is therefore

The physical reason for the different dependence of the
two rates is that the apparent "heat bath" which drives
the creation is actually a bath of vacuum fluctuations
which does not red-shift. ' The phase factors for de-
struction on the other hand depend on "real" particles
(i.e., those defined with respect to the ~0;„„) vacuum
basis) which do red-shift.

IV. THE VACUUM STATE

The particle-creation calculations in Secs. II and III de-
pend upon a particular choice for the initial "vacuum"
state of the field. Since this is perhaps the most basic and
crucial assumption in this paper, it bears further scrutiny.
There are several well-known ways to approach the con-
struction of a vacuum state in flat space-time, and it is
equally well known that all of these methods fail when
they are applied to curved space-times. An extensive, and
often contradictory, literature has sprouted concerning
these issues (see Ref. 15 for a review). We shall only
present the briefest summary here, as a more complete
treatment of particle and vacuum definition will appear
elsewhere.

The essential physics behind these difficulties is that
any atteinpt to define particles or vacuum ultimately de-
pends on a decomposition of the field into positive- and
negative-frequency modes, and unfortunately the notion
of positive and negative frequency is not covariant. ' '
Mathematically this is reflected in the fact that decompo-
sitions based on different coordinate systems for the same
space-time manifold are in general related by frequency
mixing Bogoliubov transformations. A "vacuum" for one
coordinate system, which is a state defined to have no
positive-frequency modes, can appear as a many-particle
state possessing positive-frequency modes in a second
coordinate system. Thus a given "vacuum" state will be a
no-particle state only with respect to a particular set of
coordinate systems or observers.

Sciama and his co-workers ' have shown that such
behavior is neither paradoxical nor pathological, but in-
stead is an intrinsic property of relativistic quantum fields
in flat or curved space-time. The new "particles" found in
the second coordinate system of the above example are
simply the physical manifestation of vacuum fluctuations
in the "vacuum" of the first coordinate system. Although
these vacuum fluctuation "particles" can appear
mathematically in a Fock basis, or even physically act to
excite appropriately moving model "atoms, " they do not
possess all of the properties of ordinary Minkowski parti-
cles. This is amply demonstrated by the "particles" ob-
served by the model "atoms" of Sec. II, or by constantly
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accelerated "Rindler" observers in Minkowski space,
since in both cases the apparent "particles" do not
Doppler shift.

The main lesson to be learned from the Rindler-space
field-theory calculations is that the two main methods of
defining particles operationally using model "particle"
detectors or "atoms" ' or mathematically via canonical
quantization' ' ' —are insufficient conditions for defin-
ing the properties of ordinary particles euen in Minkowski
space. In order to obtain a suitable generalization of the
usual Minkowski-space concept of particle one must evi-
dently make the further requirement that particles
transform properly under infinitesimal I.orentz transfor-
mations.

From the discussion above it is clear that the question
of which "vacuum" to use for de Sitter space is not simply
answered by finding a no-"particle" state for a given coor-
dinate system. The most physically reasonable and useful
choice would be a state which is closely analogous to the
Minkowski vacuum, and which reduces to it in the limit
A~O. This means that the candidate vacuum" state
should satisfy the following requirements:

(a) It be invariant under the de Sitter group in accord
with the invariance of the Minkowski vacuum under the
Poincare group.

(b) Particles defined with respect to the Fock basis for
which the "vacuum" is a no-particle state should be "real"
in the sense that they have the infinitesimal transforma-
tion properties of ordinary Minkowski particles.

These two conditions are satisfied by the state labeled
~
0;„„) in Sec. II. This state has been defined from dif-

ferent points of view by several authors ' ' and applied
to various calculations by many authors. ' The state

~
0;„„)is a member of the one-parameter family of states

which are invariant under the de Sitter group. ' ' It may
be specified up to nonmixing Bogoliubov transformation
by using any one of its other properties such as follows:

(1) Covariance and analyticity. '6

(2) The wave functions (0;„„~q&
~
1;„„)move along time-

like (M & 0) or null (M =0) geodesics in the geometric op-
tics limit.

(3) The positive- and negative-frequency modes associ-
ated with

~
0;„„)reduce to exp(+i tot) in the flat-space lim-

it A O.' '4

(4) It is the natural vacuum or no-particle state for
Gaussian normal coordinates on de Sitter space. '

(5) It is the natural vacuuin for Euclidean field theory
done on the Euclidean version of de Sitter space ' '
which is the four-sphere S .

In view of those characteristics and the arguments
above, ~0;„„) appears to be the most reasonable initial
state for the calculations in Secs. II and III. We should
mention that it is possible to define a state

~
0„„;,) on de

Sitter space such that a particular observer carrying a
proper "atom" will not experience excitations in the
"atom" so the mechanism of Sec. II fails to occur. This
case requires, however, that one abandon the viewpoint
espoused above, and instead try to make sense of
"observer-dependent particles" which carry no energy
(since they do nat Doppler shift), and a stress-energy ten-
sor which will diverge to negative infinity at any point in

de Sitter space for some observer. ' '

V. CONCLUSION

The basic result of this paper is to exhibit a runaway-
particle-production mechanism for interacting field
theories in de Sitter space using the specific example of
scalar Lp theory. The general arguments about the
periodic nature of the propagator mentioned previously
strongly suggest that this sort of behavior is generic to a
wide range of theories. Investigation of black-hole —de Si-
tter spaces suggests futher that the process does not cru-
cially depend on the space-time being exactly de Sitter in
form. The situation for a "decaying de Sitter" space-time
with a time-varying scalar curvature and effective cosmo-
logical constant, may be guessed at by the closely similar
case of "atoms" in Minkowski space which are given non-
constant accelerations. The result is that the spectrum of
excitations loses its exact thermal form, but particles con-
tinue to be created.

It is interesting to compare the de Sitter space particle
production with the somewhat less esoteric situation of
particle production in a constant electric field. A charged
particle falling in a constant electric field has many for-
mal and physical similarities ta a freely falling particle in
a de Sitter space:

(a) In both cases there is an apparent "event horizon"
associated with the classical world lines of the particles.

(b) The classical world line of the charged particle has
constant acceleration. Thus a QED treatment of this case
is a fully field-theoretic version of the accelerated "atom"
in the same way that the ky example is to the de Sitter
"atom."

These similarities lead one to expect that runaway parti-
cle production should also occur for a charged particle in
a constant electric field. Recent calculations confirm that
this is indeed the case. The QED analog of the process
of Sec. 111 is depicted in Fig. 2. Here Schwinger's exact
electron Green's function in a constant electric field
(represented by the double lines) takes the place of the de
Sitter Careen's function (2.2). The formal relation between
the twa has been explored in Ref. 16.

The simple phaton emission from the electron can be
shown to have a thermal component at a temperature
compatible with that measured by the model "atom"

FIG. 2. Runaway QED graph in constant E field.
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above. Since any photon in a constant electric field is un-
stable to pair production, one will get a runaway produc-
tion of electrons and positrons via the graph of Fig. 2.
This example shows that "real" particles are produced as
a result of interactions with vacuum fluctuations, lending
credence to the interpretations of the de Sitter case in pre-
vious sections of the paper. A calculation of the QED
graph in Fig. 2 for de Sitter space will be the subject of a
future publication.

The runaway nature of the de Sitter —particle-
production process argues strongly for its importance in
any calculation of the dynamics and evolution of the early

universe with a cosmological constant. A study of the
back reaction of the runaway particle production on the
space-time metric is presented elsewhere.
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