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A model of a cloud formed by massive strings is studied in the context of the usual general rela-
tivity. This model is used as a source of Bianchi type I and “Kantowski-Sachs” type of cosmological
models. Some global properties of the above-mentioned cosmological models are studied for the
equation of state (energy density) o (tension density). Particular models that can be explicitly in-
tegrated are also studied. The possibility that during the evolution of the Universe the strings disap-

pear leaving only particles is examined.

I. INTRODUCTION

Recently we studied a gauge-invariant model of a cloud
formed by geometric strings and used this model as a
source of the gravitational field. In particular, we solved
the Einstein equations for a plane-symmetric, a spherically
symmetric, and particular cases of cylindrically symmetric
space-times."”> We had two main reasons to study the
above-mentioned model. First, as a test of consistency, for
some particular field theories based on string models and
other models that use strings as basic elements we must
have a reasonable behavior of the gravitational field pro-
duced by these strings. Second, we point out that the
universe can be represented by a collection of extended ob-
jects (galaxies). So a “string dust” cosmology gives us a
model to investigate this fact. Also, the existence of
strings in the early universe can be used to introduce den-
sity fluctuations that might shed some light on the prob-
lem of galaxy formation.’

The presence of the strings in the early universe can be
explained using grand unified theories*® (GUTs). In
spontaneously broken gauge theories the spontaneously
broken symmetry can be restored at a temperature T
greater than some critical temperature 7,. In standard
“big bang” cosmological models T, will be exceeded in the
very earliest stages of the evolution of the universe. A
phase transition will occur, as the universe cools below T,
in which a multiplet of scalar fields (Higgs fields) develops
a vacuum expectation value (¢)=m. Such phase transi-
tion can result in the development of different kinds of
vacuum structures depending on the structure and topolo-
gy of the gauge group. One possibility is that these vac-
uum structures give origin to strings in spacetime; these
strings sometimes are called vortices.®

In this paper we study a new model of a string cloud, in
which the strings that form the cloud are massive strings
instead of geometrical strings. Each massive string is
formed by a geometric string with particles attached along
its extension. Hence, the strings that form the cloud are
the generalization of Takabayasi’s realistic model of
strings’ that we call p strings.® This is the simplest model
wherein we have particles and strings together. In princi-
ple we can eliminate the strings and end up with a cloud
of particles. This is a desirable property of a model of a
string cloud to be used in cosmology, since the strings are
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not observed at the present time of the evolution of the
universe.

The cosmological models that we study are of the Bian-
chi type I and of the “Kantowski-Sachs” type. We have
chosen these models because they are supposed to be a
reasonable representation of the universe in early epochs
and they are simple enough that many of their features
can be studied exactly.

In Sec. II we present the model of a string cloud, in par-
ticular, we study the energy-momentum tensor for the
cloud. In Sec. III we examine the integrability condition
and the reality conditions (energy conditions) for a cloud
of strings coupled to the Einstein equations. In Secs. IV
and V we study some global properties as well as particu-
lar solutions to the Einstein equations coupled to a cloud
of massive strings for Bianchi type I and Kantowski-Sachs
type of cosmological models, respectively. Special atten-
tion is paid to the evolution of the density of particles and
the density of tension for each particular case. Finally in
Sec. VI we discuss some of the results obtained.

II. THE STRING-CLOUD MODEL

In this section we present a generalization of the model
of string clouds studied in Ref. 1. The energy-momentum
tensor for a cloud of geometric strings is’

T =AZHe3 ", (2.1)

where A is the geometric string’s proper-energy density'°
and 3 is the simple-surface-forming bivector that spans
the string’s world sheet. The conditions for Z*¥ to be sim-
ple and surface forming are,!! respectively,

sulasyBrl—q ,
VMX'“["‘E&”] =0,

(2.2)
(2.3)

where the square brackets denote antisymmetrization in
the enclosed indices. Also, we have

345, <0. 2.4)

The energy-momentum tensor for a cloud of particles is
TH=p,utu”, 2.5)
where p, and u" are the cloud rest energy density and the

ﬁloud of particle’s four-velocity, respectively. Also, we
ave

2414 ©1983 The American Physical Society



28 STRING COSMOLOGIES

ubu,=1. (2.6)

From the fact that the strings’ world sheets are two-

dimensional timelike surfaces and (2.2) we get!?
SH=ptx V-0 H, (2.7a)
v, >0, X¥x,<0. (2.7b)

It is always possible to define a new vector i* such that

747, >0, (2.82)

THE, =0 . (2.8b)
The vector v# is related to v* and X * by

TH =0k —(F,0°/% PXg)xH . 2.9)

Note that (2.8a) follows from (2.9), (2.4), and (2.7).
The energy-momentum tensor for a system formed by a
cloud of particles and a cloud of strings is

TH=TH+TH . (2.10)
From (2.1), (2.5), (2.7), (2.9), and (2.8) we get
T*=pyuru’+M—X XTI —D,0 "% 4% ") .
(2.11)

Now we shall specialize (2.11) for the case that the parti-
cles are attached to the strings. In this case we have that
the particles four-velocity u* is parallel to the four-vector
that describes the motion of each element of strings, i.e.,
#. In other words, we have particles placed at the same
position of each string element moving with the same
velocity. For a discussion of this point see Ref. 8. From
the condition u*||7* and (2.6) we get

ut=uk/(5%7,)'? . 2.12)
Defining

XP=FH/(—X%,)?, (2.13)

=—Ax,% g0 #, (2.14)

p=pp,+A, (2.15)
we can cast the energy-momentum (2.11) as

TH=putu¥—AxFx" . (2.16)
Note that A >0 and p >0; we also have

ubu,=—xkx,=1, (2.17)

utx,=0. (2.18)

The density p is the rest energy density of the cloud of
strings with particles attached to them (p strings). The
vector u* describes the cloud four-velocity and x*
represents a direction of anisotropy, i.e., the strings’ direc-
tion. A is the cloud strings’ tension density.

To end this section we want to point out that the condi-
tion (2.3) is equivalent to any of the following relations:

€sapt PxT(u'*—% 9)=0, (2.19a)
XH—u'P=y,x *ut+x,u' “x*, (2.19v)
H:(uPdgx*—xPgu®)=0, (2.190)
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where €,g,5 is the Levi-Civita symbol. The overdot and
prime denote directional derivatives in the directions of u*
and x*, respectively, ie, ( ~ ) =utV, ( ) and
()'=x#V, (). The tensor Hf is the projection “opera-
tor” that projects in the directions that are perpendicular
to both x* and u¥, i.e., in the directions that are perpen-
dicular to the string’s world sheets,

HY =86 —utu,+xtx, . (2.20)
Some properties of this operator are

Hu =H%Y=0, (2.21a)

HLH;=HY, H,,=H,, , (2.21b)

H$=2, det(H%)=0. (2.21¢)

III. EINSTEIN EQUATIONS COUPLED

TO A CLOUD OF STRINGS
The Einstein equations for a cloud of strings are
R”v—%gsz—(pu”uv—kx,‘xv) . (3.1)

The contracted Bianchi identity for (3.1) is equivalent to

V. (pu*)—Ax""u,=0, (3.2a)
V. (Ax#)—pu*x,=0, (3.2b)
HY(pu*—Ax'*)=0 . (3.2¢)

Equations (3.2) are the evolution equations for the cloud
of strings; these equations are also the integrability condi-
tions for Eq. (3.1).

Equation (3.1) and its integrability condition (3.2) are a
system of 14 equations for the unknowns g,,, p, A, u¥,
and x#, i.e., 17 unknowns [u* and x* have only five in-
dependent components due to Egs. (2.17) and (2.18)]. Two
additional equations are obtained from the fact that u*
and x*, at each point, fit together to form a world sheet,
this fact is described by any of Egs. (2.19). So, we still
need one more equation to have a well-defined mathemati-
cal problem. An example of an equation that we can
choose to close the system is a state equation for the string
cloud. Examples of state equations for strings are the fol-
lowing: (a) the state equation for a cloud of geometric
(Nambu) strings’ is

(3.3)

(b) The equation of state for a cloud of Takabayasi
strings is

p=A (p,=0).

p=(1+0 (p,=wl), (3.4)

where o is a constant, such that o >0. This equation is a
direct consequence of Takabayasi’s model of “realistic”
strings.’

(c) A more general “barotropic” equation is

p=pA) (pp=p—2A). (3.5)

The equations of state are restricted by the energy con-
ditions.!> We find that the weak energy condition as well
as the strong energy condition give us p>A with A>0 or
p >0 with A <0. The dominant energy condition implies
p >0 and p?> A% Thus, these energy conditions do not re-
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strict the sign of A. For A <0, Eq. (3.1) is the Einstein
equation for an anisotropic fluid with pressure different
from zero only along the direction x*.

IV. BIANCHI TYPE-I COSMOLOGICAL MODELS

The metric for Bianchi type-I cosmological models is!*
ds’=dt?*—a?d&*— Brdn*—dE?, 4.1)

where @, 3, and y are functions of ¢ only. For the metric
(4.1) we have

R;w__';'g;wR =0, uFEv . 4.2)

From Egs. (4.2), (3.1), (2.17), (2.18), and (4.1) we conclude
that

ub=u,=(1,0,0,0) 4.3)

and that x* must be taken along either of the directions
9/9€, /97, or 3/3&. Thus, without losing generality we
choose x#||9/3¢, i.e.,

x*=(0,a~1,0,0) . (4.4

Equations (4.1), (4.3), and (4.4) tell us that the Bianchi
identities (3.2) reduce to the single equation

o1+ %#}f p=0, .5)

where the overdots indicate differentiation with respect to
t. Note that as a consequence of the Einstein equation p
and A are functions of # only. The condition (2.19) is satis-
fied identically.

The Einstein equations (3.1) with u =v are equivalent to

L'Z_B. _@K i‘.lz (4.6)
aB+By+m P, :
B.7 By

S+l 45 L), 4.7
B v By @7
ay+ay+ay=0, (4.8)
aB+af+aB=0. 4.9)

Equation (4.5) is a consequence of (4.6)—(4.9). Thus, we
have four equations for the five unknowns a, B, 7, A, and
p- We have two simple ways to close the system of equa-
tions (4.6)—(4.9): first, to assume an equation of state that
relates p with A in any of the forms discussed in the
preceding section; and second, to give an explicit function-
al form one of the functions, p, A, a, B, or ¥ and then to
solve the system (4.6)—(4.9) for the rest of the unknowns.
We shall follow both approaches in this section.

Let us assume that p and A are related by Takabayasi’s
equation of state, p=(14+w)A. The system of Egs.
(4.6)—(4.9) can be better studied by making the change of
functions

_a B ,_ 1
x 2’ Yy g’ ¥
After some simple algebra one finds that the system of
equations (4.6)—(4.9) is equivalent to

(4.10)

p=xy+yz+zx >0, 4.11)
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s .2 [2) 24w 4.1
x X +2(1 w)yz 21 w)x(y+z), (4.12)
. 2 24w [2)

_ — +x), 4.13
Y Y 2(1+w)zx 2(1+w)y(z x) ( )
. 2 24w 9] 4

= — +y) . .14
z z°+ 20 w)xy R w)z(x y) ( )

Thus, we have that (4.6)—(4.9) for Takabayasi’s equation
of state reduces to an autonomous system of differential
equations of the quadratic type.!”> Note that (4.12)—(4.14)
has only the critical point (x,y,z)=(0,0,0). This system of
equations can be easily studied numerically. The limit
cases ®—0 and w— o are interesting. In the first case we
have geometric strings and in the second [(4.12)—(4.14)]
reduces to the case of a cloud of pure particles that can be
explicitly integrated.!® It is also interesting to write Eq.
(4.5) using the new functions (4.10), we find

fl;l=_ x4yt 4.15)
From equations (4.13), (4.14), and (4.10) we get
(y —2)R3=C,, (4.16)
where Cj, is an arbitrary constant and
R3=afBy. (4.17)

R can be interpreted as the universe mean radius.'® Thus
(4.16) tells us that when the universe expands the anisotro-
py decreases in the directions that are perpendicular to the
strings.

Equation (4.15) can be integrated and we get

pa~*PR3=C, , (4.18)

where C; is another arbitrary constant. Thus, when the
radius of the universe increases pa ~*/? decreases.

From Egs. (4.12) and (4.13), and Egs. (4.12) and (4.14)
we obtain, respectively,

[(y —x)R3]" =AR3, (4.192)

[(z—x)R?]" =AR>. (4.19b)
Equations (4.19) tell us how the anisotropy on the planes
(§,m) and (£,5) evolves.

Particular exact solutions to the Einstein equations
(4.6)—(4.9) can be found using the second method
described above, i.e., first a is given as an explicit function
of ¢, then 8 and y are computed from (4.8) and (4.9). The
densities p and A are determined by (4.6) and (4.7). Note
that in this case the integration of the Einstein equations
reduces to the integration of a single second-order linear
equation, Eq. (4.8) or Eq. (4.9). The fact that p and A are
computed from (4.6) and (4.7) does not guarantee that the
energy conditions studied in Sec. IIT will be satisfied, they
must be checked case by case.

Let us assume

a=at +b, a#0, (4.20)
where @ and b are arbitrary constants. The general solu-
tions to (4.8) and (4.9) with an a given by (4.20) are
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c
B=7lln(at +b)+d, , 4.21a)

y=%2-ln(at +b)+d, (4.21b)
where ¢, ¢,, di, and d, are arbitrary constants. The
metric (4.1) as well as Eqgs. (4.6)—(4.9) are invariant under
a change of the origin of time. Equations (4.6)—(4.9) are
also invariant under the multiplication of the metric coef-
ficients a, B, and ¥ by constants. Note that, in the metric
(4.1), these constants can be absorbed by redefining the
variables &, 7, and {. Thus without losing generality we
can redefine the constants a, b, ¢y, ¢,, dq, and d, to end
up with

a=t, (4.22)
B=In(t/t,), (4.23a)
y=In(t/t,) , (4.23b)

where ¢; and ?, are new arbitrary constants. From (4.6)
and (4.7) we get

1+1In(22/t4t,)
P L (4.24)
t“In(t /t)In(z /t;)
1—In(22/t,ty)
=—2——I‘1—12— . (4.25)
t°In(z /t)In(t /t,)

For this model the expansion coefficient, the scalar
shear, and the scalar vorticity reduce to!’

1 In(t2/t,t,)
0= " it /einGe /ey | “.26)
02=—t1;g1+[1n<t/t1)]—2+[1n<z/z2)]-2—%(te)z} ,
4.27)
w=0. (4.28)

The determinant associated with the metric (4.1), i.e.,
—(aBy)?, is null for t =0, ¢, and t,. These three instants
represent not only metric singularities, but real singulari-
ties as the behavior of p, A, 6, and o indicates. Alas, this
solution does not satisfy the energy conditions for all
t€]0,0[. When ty=t;=t, we have B=7. In this case
the spacetime has plane symmetry and Egs. (4.24) and
(4.25) reduce to

1421n(z/ty)

_ 142In(/t0) 4.29)
P o in(e /ty) P (

1—21n(t /ty)
T In(t /1))

For a value of the constant ¢, such that 0 <#, <e, the evo-
lution of the matter during V ety >t > t, presents the fol-
lowing properties: (a) All the energy conditions are satis-
fied during the considered time interval. (b) For t~t, we
have p~A, i.e., the matter behaves as a cloud of geometric
strings. (c) When t—1/et, the cloud of strings tension
density A goes to zero. Thus we remain only with a cloud
of particles, and p—p,. When ¢ >V et,, the string phase
of the universe disappears because A becomes negative, i.e.,

(4.30)
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we have an anisotropic fluid of particles. For ¢ >1/et, we
also have that all the energy conditions are satisfied, since
p>0and p> |A|. The critical instant of time f. =V ety
may be calculated by knowing the critical temperature T,
given by GUTs.

Let us assume a =0 and bs40 in (4.20) or better let us
take b =1 since we do not lose generality in doing so.
Solutions to (4.8) and (4.9) are

B=t; y=t—t,.
The dynamical quantities p and A for this case reduce to

I S
Tt —tg)

(4.31)

p=A (4.32)
This particular model presents two essential singularities
at t =0 and t =¢;. Equation (4.32) tells us that the cloud
is formed by geometric strings only.

V. KANTOWSKI-SACHS-TYPE
COSMOLOGICAL MODELS

The metric for Kantowski-Sachs-type cosmological

models is'®
ds?>=dt*— A’dr’—K*d6*+sin’0 d¢?) , (5.1

where A and K are functions of ¢ only. As in the preced-
ing case we find that the Einstein equations (3.1) for the
metric (5.1) impose on u* and x* the restrictions

ut=u,=(1,0,0,0), (5.2)
x*=(0,A~1,0,0) . (5.3)

Equations (5.1)—(5.3) tell us that the Bianchi identities
(3.2) reduce to the single equation

p+rp—n+2%,-0. (5.4)

A K

The condition (2.19) is satisfied identically and Eq. (3.1)
can be written as

A K 14K?

27\‘7{‘+—+‘E‘2’—=p , (5.5)
) .

2—§—+-“I'<—If=x, (5.6)

KA+KA+KA=0. (5.7)

Equation (5.4) is a consequence of Egs. (5.5) and (5.6).
Thus, we have three equations for the four unknowns K,
A, p, and A. Hence, as in the preceding case, to close the
system of differential equations (5.5)—(5.7) we need either
a new equation, e.g., an equation of state, or to know a
function, e.g., K. In this section we shall follow both ap-
proaches to solve the above-mentioned system of equa-
tions.

Defining new variables, the system of equations
(5.5)—(5.7) together with Takabayasi’s equation of state
can be reduced to a plane autonomous system of differen-

tial equations. These new variables are defined by!%?°
—Q+B=InA, (5.8
Q+B/2=—InkK . (5.9)
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The variable Q is related to the universe mean radius
R3=K?A, by

Ri=e30, (5.10)
And the variable S is related to the scalar shear o, by
o=(2)172 [%_% (5.11)
=—(3)N"73. (5.12)
The variable x is defined by
x=3p/6*=p/30 . (5.13)

This variable is the dynamical importance of the string
cloud.’® The dynamical importance of the shear is'®

o 1

0 x/EB' ’
where the prime denotes differentiation with respect to the
variable () that will be used as a new time variable.

From Eqgs. (3.4) and (5.4)—(5.14), after some algebra, we
find?!

(5.14)

vr 1 o y__ o _—_.._zx —

B'=3B l4+ﬁ 1+w"}+ 1o 2, (5.15)

x'=x 248 —(BP+—2—(1—p—x)| . (5.16)
14w

Thus, the system of Egs. (3.4) and (5.4)—(5.7) is equivalent
to the plane autonomous system of differential equations??
(5.15) and (5.16) in the variables (x,’). The system (5.15)
and (5.16), in the general case w40, has three nodal criti-
cal points: P,(0, —2), P,(0,1), and P4(0,2). But, for ©=0
the last point is a degenerate critical point. The existence
of these critical points can be used to visualize the solu-
tions to (5.15) and (5.16) as integral curves in the Poincaré
phase plane’®? (x,B'). Numerical integration of (5.15)
and (5.16) can be easily performed.

For the particular case of a cloud of geometric strings,
i.e., =0, the integral curves of (5.15) and (5.16) can be
explicitly found, they are

x=x0(1—-B) 43248723,

Exact particular solutions to the Einstein equations
(5.5)—(5.7) can be found by using a method similar to the
one described in Sec. IV, i.e., first one gives a function K
in an explicit way, this function must be such that Eq.
(5.7) allows an explicit integration for A. Then, from (5.5)
and (5.6) one can compute A and p. Equation (5.7) is
equivalent to the corresponding equation for Bianchi
type-1 cosmological models, but the densities p and A are
given by different expressions, so the behavior of these
quantities will be different.

Let us assume

K=t/a,

where a denotes an arbitrary constant. Also, the constants
b, ¢, and ¢, will be used in this section. From (5.18) and
(3.7) we get

(5.17)

(5.18)
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A=b+Int, (5.19)
and from (5.5) and (5.6) we obtain
=2 2
p=t [1+a +3 T | (5.20)
A=(1+a?)t72. (5.21)
The scalar kinematical quantities for this model reduce to
_ 142b+21Int
o= t(b+Int) ’ 622
2 & b—1+Int
— n
= |= _—, 5.23
o 3 t(b +1Int) (5.23)
0=0. (5.24)

Now we have a model with two essential singularities at
t=0 and t =e b The density of particles for this model
is

pp=2t"%b +Int)"". (5.25)

Near the singularity ¢ =e ~% the particles will “dominate”
the strings (p, >>A) and near ¢t =0 we have p~A4, i.e,
geometric strings. Hence, we have a model of geometric
strings that evolves to a particle-dominated era.

Let us assume

K=a. (5.26)
From (5.7) we find
A=t . (5.27)

Note that the Eqgs. (5.5) and (5.6) are invariant under the
transformations ¢t—t—t; and A—cA. Thus, there is no
loss of generality in choosing the particular solution (5.27).
From (5.5) and (5.6) we get

p=A= L . (5.28)
a
And, from (5.26) and (5.27) we find
NV,
0=(3) 0=—t— , (5.29)
w=0. (5.30)

This particular solution represents a cloud of geometric
strings with constant density and a singularity at ¢ =0.

V1. DISCUSSION

We have studied cosmological models generated by a
cloud of strings with particles attached to them. For some
particular models, we have that a certain “critical” instant
of time, the density of tension that characterizes the
strings is zero or it is completely dominated by the density
of particles. Thus, we have models of a universe that
evolve from a pure geometric string-dominated era or a
massive string-dominated era to a particle-dominated era,
with or without a remnant of strings.

In the early universe (string-dominated era) the strings
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might produce fluctuations in the density of particles.
One may speculate that as the strings vanish and the parti-
cles become important, the fluctuations will grow in such
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a way that finally we shall end up with galaxies. As the
strings disappear the spacetime anisotropy introduced by
them will also disappear.
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