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The problem of gravitationally induced spacetime collapse is studied in the framework of quan-
tum cosmology. We find that whether quantum collapse occurs is effectively predetermined, on the
classical level, by the choice of time. The crucial distinction is between "fast" and "slow" times, that
is, between times which give rise to complete or incomplete classical evolution, respectively. We con-
jecture that unitary siow time q-uantum dynamics is always nonsingular, while unitary fast time-quan
turn dynamics inevitably leads to collapse. These contentions are supported by an analysis of the
dust-filled Friedmann-Robertson-Walker universes in two choices of time: a cosmic time defined by
the velocity potential for the dust and an intrinsic time linked to the expansion. Indeed, these quan-
tum models avoid the classical singularity in the slow matter-time gauge but collapse in the fast
geometric-time gauge. We also investigate the qualitatively different forms —unitary and
contractive —that the slow-time quantum evolution may take and explore their implications regard-
ing quantum singularity avoidance. One surprising result is that, contrary to widespread belief, this
phenomenon does not depend upon the choice of boundary conditions.

I. INTRODUCTION

Cosmological singularities are among the most exotic
and puzzling phenomena of contemporary physics, since
they constitute a stage in the evolution of the Universe in
which conditions are so extreme that the presently known
laws of physics must break down. Moreover, according to
the famous theorems of Hawking and Penrose, such singu-
larities are bound to occur in all spacetimes which satisfy
physically plausible restrictions on their causal structure
and matter content.

The inevitability of spacetime collapse poses a funda-
mental dilemma which has yet to be resolved. One view,
that a loss of predictive power is unacceptable, has
prompted an extensive search for physical mechanisms
capable of eliminating the offending singularities. Quan-
tum effects in particular have repeatedly been conjectured
to provide an escape from the classical collapse predica-
ment. On the semiclassical level, for example, attention
has centered on phenomena such as negative vacuum
stresses, particle production, and the presence of massive
scalar fields, all of which induce violations of the various
positive-energy conditions which- appear in the singularity
theorems. While initially promising, such attempts at
preventing the formation of singularities have ultimately
proven ineffectual.

The alternate view, advocated by Misner, is that singu-
larities form an essential element of classical cosmology, a
necessary "absolute zero of time" for the Universe.
Wheeler has extended this to the quantal domain with his
"rule of unanimity": "Given that all solutions of the
equations of motion run into a singularity (or are free of
singularity) except a set of measure zero. Then all solu-
tions of the corresponding quantum-mechanical problem
are singular (or free of singularity). "

A satisfactory solution to the collapse problem must
likely await the development of a complete quantum
theory of gravity. Meanwhile, research has focused upon
the homogeneous cosmologies, since one is then able to in-
clude the quantum effects of both matter and gravity in
the analysis. Although this is achieved at the expense of
"freezing out" all but a finite number of degrees of free-
dom, quantum cosmology has enjoyed considerable suc-
cess (for reviews, see Refs. 4 and 5).

Even within the framework of these simplified models,
the issue of quantum gravitational collapse remains unset-
tled. There are three reasons for this impasse: (1) ambi-
guities inherent in the canonical quantization procedure;
(2) the lack of precise general criteria for determining
whether the quantized models actually collapse; and (3)
different choices of time lead to inequivalent results.

The first problem is particularly vexing, since usually
the minisuperspaces for the homogeneous cosmologies are
curved and the corresponding Hamiltonians are quite com-
plicated. These features give rise to ambiguities in de-
fining the quantum evolution as well as the quantum state
space and its inner product. Devastating factor-ordering
problems also appear. Fortunately, many of these difficul-
ties can be circumvented, or at least controlled, by means
of the geometric Kostant-Souriau quantization procedure.
This technique —-essentially a rigorous global generaliza-
tion of the canonical quantization method —has already
proven useful in quantum cosmology.

Difficulty (1) is essentially a technical matter whereas
(2) is more serious conceptually. The usual criterion for
the nonsingularity of a quantum model is that the wave
function vanishes at the classical singularity. ' " While
intuitively it would seem that this boundary condition

. . makes the probability amplitude for catastrophic
three-geometries vanish, and hence gets the physicist out
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of his classical collapse predicament, " its fundamental
significance has always been clouded in controversy. '
As it turns out (cf. Sec. III C), this boundary condition has
little, if anything, to do with quantum singularity
avoidance. Instead, Blyth and Isham' suggest studying
the transition rate from an initial state to a singular con-
figuration. In practice, however, this does not enable one
to clearly differentiate between a collapsed and a non-
singular situation.

It seems better yet to examine the expectation values of
observables which classically vanish at the singularity, as
proposed by Lund' and Gotay and Isenberg. We there-
fore adopt the definition that a quantum state P is singu-
lar if and only if (g, [Qf]1( ) =0 for any quantum observ-
able Qf whose classical counterpart f vanishes at the
singularity. This test for quantum collapse is at least as
convincing as any other and has the advantage that it is
entirely straightforward to check.

The last obstacle (3) is the most fundamental —and
formidable —of all. Not only do different choices of time
typically result in unitarily inequivalent quantizations,
they also yield divergent answers to the quantum collapse
question. For example, Misner, ' Ryan, and Lapchinskii
and Rubakov, ' using time variables corresponding to the
isotropic part of the expansion of their models, find no
avoidance of the classical singularity whatsoever. The
same is true for Gotay and Isenberg who employ various
clocks tied to the extrinsic geometry and the matter con-
tent of their models. Gn the other hand, DeWitt,
Liang io Lund i3 Lapchinskii and Rubakov is

Demaret' conclude that quantum fluctuations prevent the
occurrence of a singularity in systems quantized in certain
other geometric- and matter-time gauges.

In view of these difficulties, it is hardly surprising that
no consensus regarding quantum singularities has
emerged. In this paper we carefully analyze the quantum
collapse problem in some of the very simplest cosrnologi-
cal models: dust-filled Friedmann-Robertson-Walker
universes. These models are sufficiently straightforward
that (1) above is not a serious problem, enabling us to con-
centrate upon the more interesting issues (2) and (3). We
quantize these models in two choices of time: a cosmic
time defined by the velocity potential for the dust (Sec.
III) and an intrinsic time related to the expansion of these
universes (Sec. V). We find that in the matter-time gauge
the quantum models unquestionably avoid the singularity,
while the models definitely collapse when quantized in the
geometric-time gauge.

The controlling factor here is the choice of time —this
very choice effectively determines, on the classical level,
the qualitative behavior of the quantum models. The
essential difference between these two time gauges which
leads to such incompatible quantum behaviors is that the
matter clock is "slow" in the sense that the corresponding
classical dynamics is incomplete, whereas the intrinsic
clock is "fast," that is, it gives rise to complete classical
dynamics. ' More generally, we conjecture that quantum
dynamics in a slow-time gauge is always nonsingular,
while that in a fast-time gauge inevitably leads to quan-
tum collapse.

%'e also briefly investigate the qualitatively different
forms that the quantum dynamics may take (Sec. III D).

Certain possibilities along these lines, e.g., K.lein-Gordon
versus Schrodinger evolution, are well known and have
been extensively discussed in the literature. ' Here, we
concentrate on a somewhat unfamiliar alternative: that of
"unitary" versus "contractive" quantum dynamics. This
choice also has a significant influence upon quantum
gravitational collapse which, however, is secondary to that
due to the choice of time.

II. THE CLASSICAL DUST-FILLED
FRIEDMANN-ROBERTSON-WALKER MODELS

The cosmological models we will analyze are the dust-
filled Friedmann-Robertson-Walker (FRW) universes.
These classically collapsing spacetimes are ideal for our
purposes, since they are well understood classically and
have been extensively studied quantum mechanical-
ly. ' ' ' ' ' ' Moreover, these models are roughly com-
patible with the current observations and symmetry as-
sumptions of cosmology.

In this section we set up the classical Hamiltonian ap-
paratus for these models and perform several Arnowitt-
Deser-Misner (ADM) reductions. We base our treatment
on Schutz's theory of a relativistic perfect fluid' ' which,
in turn, generalizes Seliger and Whitham's velocity-
potential version of perfect-fluid hydrodynamics. Schutz's
formulation has the attractive feature that it imparts
dynamic degrees of freedom to the fluid. This is particu-
larly important in the case of the FRW models, since oth-
erwise there is no dynamics to discuss. '

A. ADM Hamiltonian formalism {Ref.22)

The homogeneous and isotropic FRW universes are
described by the metrics

u = ——(dy+Ods) .
1

Yl
(2.1)

All thermodynamic quantities may be related to q and s
through the equation of state p =p(g, s), while g itself is
given as a function of the three velocity potentials via the
normalization condition g (u, u ) = —1.

The Lagrangian for the gravitational field and the per-
fect fluid is

where R is the scalar curvature of the spacetime metric g.
A (3 + 1) split followed by the Legendre transform yields
the canonical momenta

g = N(t)dt +e—"'"dX

where dX is the line element for a three-manifold of con-
stant curvature k =+1, 0, or —1. These cases correspond
to spherical, flat, and hyperbolic spacelike sections, respec-
tively.

The matter content will (initially) consist of a perfect
fluid with pressure p, density of total mass-energy p, and
specific enthalpy g. Schutz takes as his basic variables
three scalar fields, y, 0, and s, where only the specific en-
tropy s has any direct physical significance; in terms of
these potentials, the fluid's four-velocity u is written
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12
P

p =—(p+p)u ¹ ", (2.2)

along with two initial-value constraints

pe=0 ~ ps =~pq

on the fluid variables. These constraints may be used to
eliminate the canonical pair (8,ps) from the formalism;
once this is accomplished, the Lagrangian may be written
in ADM form:

W =p„p, +p~j+p, s N(M—+ 8'),
where

(2.3)

M =—( —„e "p„+6ke" )

is the vacuum gravity super-Hamiltonian, and

g N2e3Pt( + )(g0)2+pg00]

(2.4)

(2.5)

B. Choices of time, reductions, and classical dynamics

The vanishing of the Hamiltonian N(A + 8') indicates
that our models are in parametrized form and consequent-
ly admit a reduction via a '*choice of time" followed by an
elimination of the super-Hamiltonian constraint (2.6).
Usually many such reductions are possible, depending
upon the specific. model under consideration and one's ob-
jectives; Blyth and Isham' provide a nice illustration of
this.

For classically collapsing universes it is essential to dif-
ferentiate between various choices of time. We define a
time variable t to be dynamically admissible if it is a priori
bounded neither above nor below. The motive for this dis-
tinction is quantum mechanical: Only reductions corre-
sponding to dynamically admissible time gauges are com-
patible with the requirement that the quantum dynamics
be generated by a self-adjoint Hamiltonian. Indeed, sup-
pose that upon quantization the reduced Hamiltonian
determined by a choice of time t is represented by a self-
adjoint operator. This operator generates the quantum
evolution, which is then parametrized by the classical time
t. By self-adjointness, however, the quantum evolution is
defined for a/l times t, —Oo ~t & ao, and this is incon-

is the coordinate energy density measured by a comoving
observer. Finally, varying the lapse N in (2.3) gives
A +8'=0. Taking this "super-Hamiltonian constraint"
into account, these systems have (in general) two dynamic
degrees of freedom.

We now specialize to the case of dust. Then p =0,
g=1, and y is the only velocity potential different from
zero. Substituting p& given by (2.2) into (2.5), employing
the normalization condition on the four-velocity (2.1) and
combining with (2.4), the super-Hamiltonian constraint
reduces to

p~ —,'4 e I'pp —6ke" =0 .

The dust-filled FRW models are left with a single degree
of freedom.

sistent with the very definition of t unless t is dynamically
admissible. In summary, certain choices of time—
although perfectly acceptable classically —may not be suit-
able quantum mechanically, and for this reason we restrict
consideration to dynamically admissible times henceforth.

It is also convenient to group all dynamically admissible
choices of time into two categories. We call a time vari-
able t a fast time if the singularities always occur at either
t = —~ or t = ~. If this is not the case, then t is said to
be a slow time. Note that fast-time dynamics is necessari-
ly complete, whereas slow-time dynamics is always incom-
p/ete. The dynamics of a system in a fast-time gauge may
thus be viewed as a "regularization" of the dynamics in a
slow-time gauge. The distinction between fast and slow
times will be particularly important on the quantum-
mechanical level.

Returning to the FRW models, one useful clock is pro-
vided by the dust itself: we may choose t = —qr. By (2.3)
and (2.6), this fixes N = —1 so that this time is effectively
cosmic time for these universes. The reduced phase space
is then R with coordinates (p,p„); solving the constraint
(2.6) for the effective Hamiltonian H =p~ yields

H(p, p„)= —,', e "p„+6ke" . (2.7)

H(y, p )=2~6e" (p —6ke')' (2.9)

and is unavoidably time dependent. The k = —1,0 models
have initial singularities at t =—00 and expand thereafter.
The k = + 1 model also hgs a big bang at t = —00, but one
must redefine t at the point of maximum expansion to
keep the time running monotonically.

These two reductions —one corresponding to the
matter-time gauge t = —y and the other to the intrinsic-
time gauge t =p—have the same physical content, at least
classically. In the following sections we will quantize the
FRW models in both choices of time; surprisingly, the re-
sults will differ drastically. In particular, we will see that
the quantization in the t = —y gauge cannot be reconciled
with the unanimity principle, while that in the t =p gauge

Because of (2.2) and (2.1), H must always be non-negative.
This is greatly simplified if we make the canonical tran-

formation R ~(0, oo ) X R given by

x=Tv6e &, p„= e &
p& .4 3 2 v6 —3 2

12

The dynamics of the system then becomes that of a parti-
cle on the half-line (0, ao ) with Hamiltonian

H(x,p„)=p„+Ex i, (2.&)

where K =—, ~6k. From (2.8) it is easy to ascertain the
qualitative features of the dynamics, observing that the
line x =0 represents classically singular states. Depending
upon initial conditions, the k = —1,0 models have either
an initial singularity followed by continual expansion or a
prolonged contractive phase culminating in collapse. The
k =+1 model begins with a big bang, expands to some
maximum radius, and then collapses.

The time t = —y is slow. An example of a fast time is
t =p, for this choice reduction yields the phase space
RX (0, ao ) with coordinates (y,p~). Upon taking the nega-
tive square root, the effective Hamiltonian H = —

p& be-
comes
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can. Ultimately, this anomaly will be traced to the fact
that t = —y is a slow time whereas t =p is fast. This
classically innocuous distinction will actually turn out to
be the single most important factor governing the oc-
currence of quantum gravitational collapse.

III. QUANTIZATION IN THE MATTER-TIME GAUGE

T (t) =exp — t—Q. H

This defines the quantum evolution

g(t, +t)=T (t)P(to)

(3.3)

(3.4)

QH = —A' b, +Kx i3, (3.1)

where h=d /dx .
Our task thus amounts to studying the quantum

mechanics of a particle on a half-line moving in a poten-
tial V(x) =Ex r . This is not as straightforward as it may
appear, however. One problem is due to the form of the
quantum Hamiltonian: Because of the exponent —', in the
potential, little can be said about the properties of QH in
general. In particular, the Schrodinger equation cannot be
analytically solved. Consequently, when explicit illustra-
tions and calculations are required we will set k =0. This
is not that severe a restriction, since we are only interested
in the qualitative behavior of these models near the classi-
cal singularity and in this respect they are roughly similar.
Regardless, our conclusions will ultimately be independent
of the choice of the parameter k.

The second problem is somewhat Inore subtle, and con-
cerns the fact that the configurations of our universe lie
on the half-line. One might offhandedly expect that the
quantum mechanics of such a "particle" would be similar
to that of a particle on the entire line ( —0O, 0O ). This is
actually not the case; the two are substantially different.
A number of the most surprising differences are discussed
as they appear in the text; the point is that one must pay
careful attention to the functional analysis.

A. Unitary quantum dynamics

Although the quantum Hamiltonian (3.1) is not essen-
tially self-adjoint on Co (O, ao), it does have an infinite
number of self-adjoint extensions QH = fi 6+Ex r on-
the domains

D~= I1lt&H (O, oo)
~

g'(0)=a@(0)J,
where aH( —ao, ao]. Here, H (0, 00) denotes the Sobolev
space consisting of those gHL (0, ~) with /AC'(0, oo),

absolutely continuous, 1("H L (0, oo ) locally, and
QH [g]HL (O, ao). Since each QH is self-adjoint, it
generates a one-parameter unitary group I T (t)

~—oo & t & oo ] on L 2(0, oo ), where

We begin our analysis by quantizing the FRW models
in the matter-time gauge t = —y. We work on the classi-
cal phase space (0, ao ) X R with coordinates (x,p„). Since
the configuration space is the half-line (0, oo), the quan-
tum Hilbert space is L (0, oo ) with the inner product

(P,f)= f P(x)1((x)dx .

The quantum "position" and momentum" operators are

Qx =x, Qp„= iKi-d
dx

Note that Qx is a positive self-adjoint operator, in contrast
to Qp„which has no self-adjoint extensions on L (0, ao ).2

Finally, the quantized Hamiltonian (2.8) is

for all g HL (0, oo ).
At this point we make some observations.
(i) Each self-adjoint extension QH generates genuinely

different dynamics. But which value of the parameter
aH( —oo, oo] should one choose? In other words, which
of the boundary conditions (3.2) gives the correct quantum
dynamics? DeWitt, in an effort to avoid the singularity
at x =0, set the boundary condition 11(0)=0 (i.e., o.= oo ).
But, as we shall see shortly, such considerations are largely
irrelevant. In any case, there appears to be no a priori jus-
tification for choosing any one value of cx to the exclusion
of the others and so we shall treat them democratically.
We will return to this point in Sec. III C.

(ii) The time t parametrizing the quantum evolution
(3.4) is none other than the slow classical time —y. But,
by self-adjointness, the quantum evolution persists eternal-
ly. A fundamental "paradox" thus begins to emerge:
How does one reconcile incomplete classical dynamics
with comp/ete quantum dynamics? The fact that the
quantum evolution is defined for all t, —ce & t & ~, is a
strong indication that the Universe cannot collapse quan-
tum mechanically. We will soon find that this is actually
true.

We now turn to the k =0 model. In this case, our prob-
lem becomes that of determining the quantum dynamics
of a free particle on the half-line and consequently we are
able to say more about the properties of the Hamiltonians
QH = —A' b, .

Each operator QH has a continuous spectrum of
[0, oo ) corresponding to the eigendistributions

vX
sinv W+ ——cosv W (3.&)

( 2+ g) 1/2

For aH( —ao, O), there is also a point spectrum consisting
of the single eigenvalue I

—A a ] corresponding to the
bound state e . These states, which have no classical
counterparts, are evidently the k =0 analogs of Misner's
closed FRW "quantum puff" universe. '

Reed and Simon (Sec. X.l of Ref. 26) have given a nice
interpretation of the dynamics generated by each QII .
Following them, consider a plane wave e '" with
momentum 4c moving towards the left. Ignoring the
behavior at infinity, note that this state is not in D for
any a, since it does not satisfy the boundary condition
(3.2). With an eye on (3.5), however, observe that the wave

e
—IKx+Q (~)elKx

is in D~ near zero, where

(3.7)

Since
~

5 (a)
~

= 1, it follows that QH generates the
dynamics in which an incoming plane waue is reflected at
the origin with a phase shift determined by a. In particu-
lar, the boundary condition u= ao corresponds to an infi-
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nite potential wall at x =0, with phase shift m, while a =0
corresponds to a symmetric extension of the half-line
(0, oo ) to the entire line ( —&x&, ao ). '

It is of course difficult to be more explicit about the
quantitative features of the dynamics in such a general set-
ting. To get a better feeling for our quantum universes,
we examine the motion of a wave packet.

B. Motion of a wave packet

Fix p=b +iB, with b &0, and consider the normalized
initial state

f(x,O) =
1/4

8b p„2 (3.8)

To evolve this wave packet we must decide upon an ap-
propriate boundary condition. Since g'(0)=0, geao and
it is natural to choose a =0. Using the spectral theorem in
the guise of the Fourier cosine transform [cf. (3.S) with
u =0], li {x,0) may be expanded:

1/4

y(x, O) = (4~P)-'" e"4tt~--'"cos~~ d~ .
Sb

0

Then (3.3) and (3.4) give
1/4

g(x, t) = (4m p)

)& f exp[ —( I +4ihpt)A/4p]A'r , cosV, Ax dA, ,

which integrates to
1/4

g(x, t) = (1+4iApt)

&(exp[ —px /(I+4i Apt)] . (3.9)

Note that li(x, t)&0 for all x and t.
To extract the physics from this we compute some ex-

pectation values, recalling that the observable x ~ e
measures the expansion of our model universe. From (3.9)
the expectation value ( Qx (t) ) = ( f(t), [Qx]f(t) ) of the
position is

( Qx (t) ) =-(2mb) '~'[ I 88At + 16(b'+8')A't']—'r' .

(3.10)

Similarly one has

(Qp„(t) ) =2'(2trb)

ib +4(b'+8')At 8—
[1—8BAt +16(b +82)A'2t ]'

Since (Qp„(t) ) is complex, the mean value of the momen-
tum is Re(Qp„(t) ); this is in accord with the observation
that (d/dt)(gx(t)) =2Re(gp„(t)).

The initial state P(x, 0) represents a wave packet
centered on ( Qx (0) ) = (2vrb) ' r with momentum
Re(gp„(0) ) = —2k{2m.b) 'r B. If 8 &0 the wave packet
is moving towards the right —that is, the universe is ex-
panding. Equations (3.10) and (3.1 1) imply that this

model will continue to expand with ever increasing
momentum.

For B & 0 the universe is initially contracting. But
( Qx (t) ) is strictly positive always; in fact, ( Qx (t) ) falls
to a minimum value

x (t) =(2vrb) 'r'( I —48A't),

p„(t)= —W(2~b) - '"8
(3.12)

(3.13)

and thus collapses after a time T, = 1 /48%.
Comparing (3.12) with (3.10) for times t=0 one finds

that (Qx (t) ) & x (t), so that in the "classical epoch" t « T
the quantum dynamics mirrors the classical dynamics, just
as one expects. For later times t=T ~ T„however, quan-
turn effects begin to manifest themselves rather forcefully:
the quantum model decelerates, "bounces, " and then ex-
pands while the classical model uniformly contracts to the
singularity. This behavior is displayed in Fig. 1 . Note
that for a very classical initial state (i.e., b~O), the
classical/quantum correspondence becomes quite exact for
t ~ T. In this case the quantum turn-around time T is
very nearly equal to the classical collapse time T„ the
quantum universe bounces at the "last moment

The disparity between the classical and quantum predic-
tions becomes even more vivid when one compares (3.11)
and (3.13). ClassicaHy, of course, momentum is con-
served. But this is clearly impossible on the quantum level
because of the reflection mechanism at the origin which is
built into the dynamics. Nonetheless, in the classical re-
gime the correspondence is not all that bad: for t=0,
(3.1 1) yields

Re(gp. (t) )=—2&(2~b)-'"8 (I —4b'e/8),
which is reasonably consistent with (3.13). The correspon-

(2mb) 'r [1 8 /—(b +8 )]

with t equals the turn-around time

T=8/4(b2+8 )R,

and thereafter increases without bound. This behavior is
reflected by (3.11), since Re(gp„(t)) &0 for 0&t & T,
Re(gp„(T)) =0, and Re(gp„(t)) &0 for t & T.

%'ithout any doubt this wave packet avoids the singu-
larity. Although surprising, perhaps, this behavior is en-
tirely consistent with the physical interpretation of the
dynamics generated by QHo given in subsection A above.
In these terms, the wave packet with 8 ~ 0 starts off mov-
ing towards the singularity at x =0. But all the while the
leading edge of the packet is being reAected at the origin,
and these reflected waves contribute positively to the
momentum which therefore increases from its initial nega-
tive value. For small times very little of the wave packet
has been reflected, so (Qx (t) ) decreases. For longer times
t=T, approximately "half" of the wave packet has been
reflected, (Qx(t)) attains its minimum and Re(gp„(t))
momentarily vanishes. Afterwards, the wave packet has
been almost totally reflected and is now traveling towards
the right; ( Qx (t) ) and Re( gp„(t) ) & 0 are increasing.

This aside, we turn to the classical limit. Correspond-
ing to the wave packet (3.8) with 8 & 0 is the classical ini-
tial state x (0)= (2mb) ' and p„(0)= —2A(2mb) '/ B.
From (2.8), this contracting universe evolves according to
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(2mb j

FIG. 1. Classical/quantum correspondence for the wave
packet (3.9).

C. Quantum singularity avoidance

We now turn to a general discussion of the quantum
dynamics of the FRW models, dropping the restriction
k =0.

Let g(x, to) be any initial state in L (0, 0o) and fix a
self-adjoint Hamiltonian QH . We presume that the cor-
responding evolving state f(x, t) is such that the expecta-
tion value

(Qx(t))= I x
i f(x, t)

i
2dx (3.14)

is defined for all t H R. Since Qx is a positive operator and
since classically x =0 represents the singularity, the expec-
tation value (3.14) is a good indicator of quantum gravita-
tional collapse. That is, we regard the state g(x, t), for
some finite time t, as being quantum mechanically singu-
lar if and only if ( Qx (t) ) =0.

Our first rather unexpected conclusion is that no non-

dence is even better if 1((x,O) is very classical, so that re-
flection at the origin will not be significant until times
t=T. Then Re(Qp~(t))= —2'(2mb) '~ 8 is essentially
constant for t & T.

Some corroboration for this phenomenon of quantum
singularity avoidance was provided by DeWitt when, in
his WKB analysis of the k =+1 dust-filled model, he
found that ". . . the packet rebounds repeatedly from the
collapsed state. . . ." Our findings are further substan-
tiated by Lapchinskii and Rubakov's analysis' of the
k =+ 1 radiation-dominated model in a different, but still
slow, matter-time gauge. One is thus led to wonder
whether this behavior is in any way typical, or rather just
an "accident" ? It turns out, as will be shown in the next
section, that this behavior is typical: Every evolving state
must either "bounce" or at least avoid the singularity in
the sense that (Qx (t) )&0 for all finite t.

trivial initial state P(x, to) can quantum mechanically
evolve into a singularity. Indeed, suppose that (Qx (t) ) =0
for some

~

t
~

& ao. Then (3.14) yields P(x, t)=0 which, by
(3.4) and unitarity, implies that g(x, to) =0. This seeming-
ly trivial result, which was first intimated by Lund, ' has
far-reaching implications. It means that within this
dynamical framework quantum gravitational collapse is
strictly forbidden W. e emphasize that the sole underlying
dynamical cause of this circumstance is the unitarity of
the T (t) or, equivalently, the self-adjointness of the quan-
tum Hamiltonian.

Another surprising fact is that this phenomenon of
quantum singularity avoidance is independent of the partic
ular choice of boundary conditions: the above conclusions
hold for any aH( —Do, ao ]. This observation enables us to
clear up a certain amount of confusion in the literature re-
garding the role of boundary conditions in quantum
cosmology.

Traditionally, boundary conditions of the form
f(O, t)=0 for all times t have been interpreted as a cri-
terion for the nonsingularity of a model " while, con-
versely, a state with g(O, t)&0 for some t was taken to
represent a collapsed state. " These are attractive ideas but
their physical meaning has remained obscure, since

~
f(O, t)

~

is merely a probability density —a point em-
phasized on numerous occasions. ' ' ' ' In view of the
above results, these interpretations of the boundary condi-
tions are now seen to be, if not entirely wrong, then at
least quite misleading. For, consider once again the evolv-
ing state (3.9); certainly this wave packet is nonsingular,
even though g(O, t)~0 for all t.

The upshot is that in this context the boundary condi-
tions arejust not relevant to the issue of quantum gravita
ti,onal collapse. Perhaps the role of the boundary condi-
tions themselves should be put in a somewhat different
perspective. It seems inappropriate to use them as a
means of selecting "physically acceptable" states. Rather,
all states in L (0, ao ) should be thought of as being physi-
cally admissible, not just those belonging to some D
[which is, after all, only dense in L (O, oo)]. From this
standpoint, the boundary conditions properly serve only to
determine the quantum dynamics by fixing a quantum
Hamiltonian.

Our next task is to confront the most important conse-
quence of the above analysis, namely, the breakdown of
the unanimity principle. The most dramatic manifesta-
tion of this failure is that quantum gravitation collapse
cannot occur although, ultimately, the failure originates in
the completeness of the quantum dynamics.

How is one to cope with this state of affairs? If one
views Wheeler's related "rule of unanimity" as being fun-
damental, then the inescapable conclusion is that either
the classical or the quantum models must be "wrong. "

If the quantum models accurately describe nature then,
presumably, Einstein's equations can no longer be valid
near the classical singularity. In this case, one must
search for reasonable alternatives and/or modifications to
Einstein's theory; some possibilities along these lines are
listed in note (1). Even without an entirely new classical
theory, one can still search for a sort of regularization of
the given classical dynamics which will yield results more
in agreement with the unanimity principle. The goal of
such a regularization in this instance would be to produce
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complete classical dynamics.
One such possibility was suggested by DeWitt and ap-

plied to the FRW models by Lund, ' Brill, ' and
Demaret. ' The idea is very simple: To complete the clas-
sical dynamics, it suffices to let the configuration variable
x range over all of R rather than just the half-line (0, ao ).
One then interprets the classical state ( —

~

x ~,p„) as being
physically identical to the state (

~

x ~, —p„). As Lund ex-
plains, "Classically, a particle moving from positive to
negative x represents a collapsing (dust) shell reexploding
back into the same universe from which it came, and not
appearing suddenly into another universe otherwise
disconnected from the first. " This completion has the at-
tractive feature that it effectively incorporates the quan-
tum reflection behavior at the origin —corresponding to
a =0—into the classical dynamics.

Unfortunately, this regularization is fatally flawed. The
problem is still that the classical singularity is not avoided
in any sense: the classical model continuously transits
through x =0, i.e., it actually collapses and then reex-
pands. But x =0 is a real physical infinite density singu-
larity and here one necessarily loses all predictive power.
In effect, this completion gives mathematical life to a
model which has physically perished, and so is unaccept-
able on physical grounds. This type of regularization also
suffers from two other defects: it is coordinate-dependent
and it has a limited range of applicability.

So this straightforward sort of completion will not
work. Nonetheless, as we shall discover in Sec. V, there
exists another type of classical regularization which does,
although the physical implications of this completion will
be much different than one might expect.

Let us consider the other alternative, namely, that the
quantum models are somehow incorrect. To understand
what this might mean, recall that the impossibility of
quantum gravitational collapse is due entirely to the uni-
tarity of the quantum dynamics. If we are to regain the
unanimity principle, it is therefore necessary to drop the
requirement that the quantum Hamiltonian be self-adjoint.

Renounci. ng this postulate opens up a whole Pandora' s
box of possibilities. Even so, non-self-adjoint Hamiltoni-
ans are familiar in other contexts, e.g., decaying systems
and absorption processes. In particular, if one thinks of
the classical dynamics as describing a kind of "absorption
(of the Universe by the singularity) process, " then a non-
self-adjoint quantum Harniltonian is very natural
physically —in fact, more so than a self-adjoint one.

Quantum evolution with a non-self-adjoint Hamiltonian
becomes even more attractive in light of the following ob-
servation. Consider ~&ace again the sample calculation of
subsection B above. The wave packet (3.9) actually
"bounces" in the sense that (Qx(t))~~ as t~ co. As a
first step towards obtaining a more reasonable classical
limit, we ask whether an initially contracting state can
asymptotically co/l 2pse tin the sense that (Qx(t))~0 as
t~ ao. Such an evolving state is still always nonsingular,
strictly speaking, but its behavior is not nearly so outra-
geous as that of a state which bounces. Unfortunately,
conservation of probability may rule out this possibility in
general. For, suppose that the evolving normalized state
P(x, t)~4(x) pointwise as t~ oo and that both

~
g(x, t)

~

and x
~
g(x, t)

~

are dominated in''(O, oo) for all t. Then
by the dominated convergence theorem one has

0= lim x xt dx

= f xX»m lf(xi)l'dx= f
which implies that 0'(x) =0. But then

0=(/4// = f lim
/

z/i(x, t)
/

dx

so that subject to these restrictions an evolving state can-
not asymptotically collapse. However, asymptotic col-
lapse is possible if we do not require that probability be
conserved. For a better classical limit, then, the quantum
Hamiltonian should not generate a unitary one-parameter
group, but rather a contraction semigroup. In the next
subsection we study the "decaying" quantum dynamics so
obtained.

D. Contractive quantum dynamics

We begin by reviewing the properties of contraction
semigroups and then specialize to the FRW models; our
analysis here is intended to be illustrative rather than ex-
haustive. The basic references are Reed and Simon (Sec.
X.8) and Dunford and Schwartz (Sec. VII.1).

Let A be a Hilbert space. A strongly continuous semi-
group is a family of bounded operators [ T(t)

~

0 & t & oo I
on A satisfying

(i) T(0)=I,
(ii} T(s)T(t}=T(s + t), s, t H [0, oo ),
(iii) For each QEP, the map t~T(t)g is continuous

on [O, co) .

If [T(t) ~0&t & ~) is a strongly continuous semigroup
then there exist constants M & 0 and co such that

(3.15)

for all t )0. If co (0 and I=1 the semigroup is said to
be contractive.

Strongly continuous semigroups are thus the natural
generalizations of unitary one-parameter groups. If
P(to)CA represents a quantum state at time to, then it
will still evolve according to P(to+I) = T(t)g(to) for t )0
but now, in view of (3.1S), probability is not necessarily
conserved. In particular, if the sernigroup I T(t) I is strict
ly contractive, i.e., m &0, then the system must "decay" in
the sense that

hm ~[T(r)q~~=o
&~ oo

for all PEA . Finally, note that the dynamics is + com-
plete, that is, defined for all t )0.

As with unitary one-parameter groups, all strongly con-
tinuous semigroups arise as the "exponentials" T(t) =e
of a certain class of operators A on A . Conversely, there
is a general theorem —due to Hille, Yosida, and
Phillips —which delineates the properties which an opera-
tor A must possess if it is to generate a strongly continu-
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ous semigroup e ' . For our purposes, we need only the
following weaker result from Reed and Simon (Sec. X.8):
A closed operator A generates a contraction semigroup if
both 3 and its adjoint 3* are accretive, in which case one
has

P(x, t)= lim
n~oo

P(x,O) (3.18)

Fixing 0. with Imp &0 and denoting the Laplacian on
the domain D by b, , (3.16) gives the evolution

—n

e '"t/i= lim
n —+oo

I+—3
n

—n

(3.16)
To determine g(x, t) we must therefore compute the opera-
tor

Here, A is accretive provided Re(AQ, Q) )0 for all tb in
the domain of A.

For the FRW universes the Hilbert space is I. (0, oo )
and the relevant operator is iQH defined on Co (0, ao ). Its
closure, also denoted by iQH, has domain consisting of
those PHH (0, oo ) with f(0)=0=/'(0). This operator is
accretive, but its adjoint (iQH) = —iQH on H (0, oo) is
not, so we must impose boundary conditions in order to
obtain accretive restrictions of (iQH)'. Since iQH has no
boundary values at infinity these boundary conditions
must take the form

1('(0)=ttf(0), (3.17)

( [ iQH]P, P)—= i [P '(0) —ag(0)]g(0)

+(P, [iQH ]P)
for /AD, one has that (iQH~)' = iQHa on Da —which

is therefore also accretive if Irna & 0. Reintroducing
Planck's constant, it follows that each (i /A') QH
with Ima & 0 generates a contraction semigroup
exp[ —(i/A)tQH ].

These results are very similar to those given in subsec-
tion A above, except now a may be complex. Note that
D &D unless Imp=0, so that the quantum Hamiltoni-
ans QH are not symmetric in general. If Ima=0 we are
back in the self-adjoint case.

We now revert to the k =0 model. To elucidate the
physics of these contraction semigroups, consider once
again a plane wave e '" incident from the right. Mim-
icking the analysis in subsection A, we find that the wave
(3.6) is in D near zero, with 5 (a) given by (3.7). Now,
however, the reflection coefficient is

2 a2+
~

ct
~

+2@(lma)
a. +

~

a
~

—2'(lma)

so that the reflection is no longer total when Imp&0.
Consequently, QH generates the dynamics in which a
plane wave is reflected at the origin with attenuation deter
mined by Ima. This is exactly the behavior we require in
view of the comments at the end of the previous subsec-
tion; it is the partial absorption of the incoming wave at
x =0 that makes asymptotic collapse possible. Once we
have exphcitly described the quantum dynamics we will
work out the details for a wave packet.

where a E C or a = oo. We denote by D those
tPEH (0, 0D) satisfying (3.17) for a fixed a, and by QH
the operator QH with domain D .

Since

Re([iQH ]g,g) = —(Ima)
~

1(j(0)
~

for /CD

iQH will be accretive provided Ima&0. Furthermore,
since

=AR(A, ;6 ), (3.19)

where A. = —(n/ tht)i and 8 (A, ;b, ) is the resolvent of 6 .
From Dunford and Schwartz (Sec. XIII.3), we calculate

R(A, , b. )g(x)= —[e +I (A, )e ]2~A,
—~ax

&( f g(s)e 'ds+

)& 1 g(s)[e ~+I (A)e ]ds (3.20)

for A, E(—oo, O)i, where I (A)=(v A, —a)/(V A, +a).
Now consider the normalized state

p(x, O) =v'2b 1 — p
—pxe

so that (3.18) becomes, not surprisingly,

(3.21)

Then ~~g(x, t)~~ =e " which vanishes as t moo, just as-
we had hoped.

The expectation values of the position and the momen-
tum are

and

(Qx(t))=e ' ~/2b

Re(Qp (t)) = —e b "'BA

(3.22)

(3.23)

Clearly this wave packet asymptotically collapses, in ac-
cord with the contractive nature of the dynamics. It is
worthwhile comparing the behavior of this wave packet
with that of the evolving state (3.9) from the standpoint of
the reflection/attenuation mechanism at the origin. As
with (3.9), the leading edge of (3.21) is reflected at x =0,
but now only partially. Because of this absorption, the
positive momentum carried by the reflected waves is no
longer sufficient to offset the contraction and turn the
wave packet around. The net result is that the model con-
tinually contracts, albeit at an exponentially decreasing
rate.

For the classical evolution with the initial conditions

where both b =ReP and B =ImP are positive, represent-
ing an initially contracting universe. Since g(x, O)ED if
a= —P, it is natural to fix a in this manner (note then
that Ima= —8 ~0). This choice also greatly simplifies
our calculations, since this wave function is then an eigen-
state of QH . Substituting g(x, O) into (3.20) and (3.19)
gives



2410 MARK J. GOTAY AND JACQUES DEMARET 28

Tc

FIG. 2. Classical/quantum correspondence for the wave

packet (3.21).

x (0)= 1/2b and p„(0)=—BA, (2.8) yields

x (t) =(1 4bBfit)/2—b

p„(t)= BA, —
which agree with (3.22} and (3.23) for sufficiently small t.
At the classical collapse time T, =1/4bBA, (Qx(t) & has
fallen to 1/e times its original value. This classical-
quantum correspondence is summarized in Fig. 2.

This analysis demonstrates that it is indeed possible to
obtain a "better" correspondence limit by relaxing the re-
quirement that the quantum dynamics be unitary. Still,
this state of affairs is unsatisfactory, since it is not possi-
ble to guarantee that an initially contracting state will col-
lapse in finite time as demanded by the unanimity princi-
ple.

IV. "PARADOXES" AND "RESOLUTIONS"

We have seen that whether the quantized FRW models
collapse depends significantly upon the qualitative features
of the quantum dynamics. Thus, collapse in finite time is
prohibited as long as one insists upon unitarity, whii=

asymptotic collapse can occur in the contractive case.
Perhaps there exists some other dynamical framework—
based on a notion more general yet than a contraction
semigroup —which would yield an even better classical
correspondence? Although this is a possibility, it seems
unlikely that our problems can really be solved in this
fashion.

A way out of this quandary is provided by the observa-
tion that our results on quantum gravitational collapse are
also influenced by the classica1 choice of time. In fact, the
underlying cause of the disparity between the behaviors of
the classical and quantum models is that the quantum
dynamics persists eternally whereas the classical dynamics
does not. The classical evolution is incomplete simply be-

cause t = —y measures proper time. But quantum
mechanically, the very choice of either unitary or contrac-
tive dynamics guarantees that the evolution is defined for
at least all future times. Since it is therefore difficult to
avoid complete (or at least + complete) quantum dynam-

ics, it is apparent that this paradox of incomplete classical
versus complete quantum evolution will arise whenever
one makes a slow choice of time.

Thus, in the final analysis our problem really originates
at the classical level. To circumvent it, one must choose a
fast time. The corresponding classical dynamics is then
complete and, upon quantization, the quantum dynamics
will be complete as well. One might therefore expect re-
sults more in agreement with the unanimity principle if
one quantizes in a fast-time gauge. This is in keeping with
the suggestion of Lund' that one should always quantize
on a geodesically complete minisuperspace. Here, howev-

er, the regularization necessary to produce complete classi-
cal evolution consists of modifying the choice of time
rather than the minisuperspace itself.

This sort of regularization has profound implications
regarding quantum gravitational collapse. Classically, of
course, such a regularization is more cosmetic than sub-

stantive. The system is still singular, since asymptotic col-
lapse in fast time is physically the same as collapse in fi-
nite slow time. Quantum mechanically, however, com-
pleteness in fast time has a quite different physical mean-

ing than it does in slow time. As we have discovered, eter-
nal quantum evolution in slow time is a strong indication
that quantum collapse is impossible. But quantum com-
pleteness in fast time, being physically equivalent to quan-
tum incompleteness in slow time, can only signal the pres-
ence of a singularity. Put somewhat differently, it is plau-
sible that fast-time quantum dynamics incorporates quan-
turn collapse in much the same way that self-adjoint
slow-time dynamics is always nonsingular.

For the FRW models t=@ is a fast clock; we now
quantize these models in this intrinsic-time gauge and
check for quantum collapse.

QH [g]=2v 6e '/ (p 6ke')'— (5.1)

Note that QH is not a single operator, but rather a time-
dependent family I QH(t) I of operators, one for each
tER. Each QH(t) is a positive self-adjoint operator on
L 2(0, oo } with a purely continuous spectrum
o.(t) = [12

~

k
~

e ', oo ).
We pattern our discussion of the quantum dynamics

after those in Blyth and Isham' and Gotay and Isenberg. s

V. QUANTIZATION IN THE INTRINSIC-TIME GAUGE

Since the choice t =p is really appropriate only for ex-
panding universes, we restrict consideration to the
k = —1,0 models in this section. From Sec. IIB we have
the classical phase space R X (0, 00 ) with coordinates
(p,p~). Quantizing in the momentum representation we
obtain the quantum Hilbert space L (O, ao) with inner
product

&0 0&= 1,"O(p, )e(p, )dp,

This representation diagonalizes the Hamiltonian (2.9} so
that QH is just multiplication by H:
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Since the I QH(t) I commute, we can solve the Schrodinger
equation by expanding in an evolving complete set of
states [QE(t)J which are simultaneous eigendistributions
of QH(t) at all times. Thus, if

Substituting (5.6) into (5.3) then yields

E2
E(t)=2~6e ~ e +6k(e —e )

24

1/2

QH (to)[PE]=EPE (5.2)

at some reference time to, then there will exist numbers
E(t), with E(to)=E, such that

QH(t)[11E]=E(t)PE .

Consequently, the states QE evolve according to

(5.3)

i
QE(t) =exp ——f E (s)ds QE(to) . (5.4)

To evolve an arbitrary state 11 CL (0, 00), one first per-
forms a spectral decomposition

f(p~, to)= f (, )
p(E)QE(p~, to)dE

with respect to QH(to) at time to; then

p(p+, t) = f ~ )
p(E)pE (p+, t)dE,

where QE(p&, t) is given by (5.4).
From (5.1), we find that (5.2) has the distributional solu-

tions

Because E(t) is continuous the integral in (5A) exists for
all t. Equations (5.4) and (5.5) then imply that the quan-
tum dynamics is unitary. In particular, when k =0 (5.4)
becomes

2l 3(t —to)/2
QE(t) =exp E(1—e '

) QE(to) .
3A

lim (f(t), [QH(t)]g(t) ) =0 (5.7)

By unitarity the quantum systems must evolve to the
t = —Oo limit and, since classically t =—00 represents the
initial singularity, it follows that the quantum models
must asymptotically collapse. But asymptotic collapse in
this fast intrinsic time means that the quantum systems
become singular in finite proper time.

This can be verified directly. Since the classical Hamil-
tonian H(t)~0 as t~ —co and as QH(t) is a positive
operator, the expectation value (11(t),[QH(t)]g(t)) is a
good indicator of quantum gravitational collapse. More
precisely, the quantum models asymptotically collapse if

QE(p, tp)=CEe '5 p — 6ke '+ e
24

(5.6)

for all evolving states P(t) HL (0, 0o ) for which the limit
in (5.7) is defined. We show that this is always the case.

Applying (5.5), (5.4), and (5.1), we compute

($(t), [QH(t)]1()(t)) =(g(to), [QH(t)])(((to)) =2~6 f e '~
(p& 6ke') ~

~

p(—p+, to)
~

dp

If k =0 then (5.7) is immediate. For k = —1, consider the
family of functions tI, (p+) I, where I,(p ) is the integrand
in the above expression at time t. This family converges
pointwise to zero as t~ —m and I,(p„)&I, (p~) for each

p+ if t &to. Since in addition I, EL (0, oo) by assump-

tion, the dominated convergence theorem implies that

lim f I,(p~)dp~ = f lim [I,(p+)]dp&

vanishes and (5.7) follows. Thus the FRW models, when
quantized in a fast-time gauge, unquestionably collapse. In
fact, the behavior of these systems is essentially the same
as that of their classical counterparts.

VI. ON QUANTUM GRAVITATIONAL COLLAPSE

Our analysis of the dust-filled Friedmann-Robertson-
Walker models demonstrates that the problem of quantum
gravitational collapse is really rather subtle. The resolu-
tion of this problem and, more generally, the validity of
Wheeler's rule of unanimity, depend critically upon two
factors: the classical choice of time and the qualitative
choice of quantum dynamics.

Although we have concentrated here upon a certain
class of models, the substance of our conclusions holds for
any homogeneous cosmology. For suppose that one quan-
tizes a classically collapsing universe in a slow-time gauge,

and that the resulting dynamics is generated by a self-
adjoint Hamiltonian. Then quantum gravitational col-
lapse is impossible, at least in the sense that the quantum
formalism is well-behaved at the classical singularity and
observables that classically vanished at the singularity
have nonvanishing quantum expectation values there. '

Indeed, if the quantum operators which serve as indicators
of collapse are positive (as any such "good" indicator must
be), then the same arguments as in Sec. III C show that the
expectation values of these operators can never vanish in
finite time. The results of Secs. IV and V, on the other
hand, indicate that unitary fast-time quantum evolution
inexorably leads to collapse. In fact, this version of quan-
tum cosmology does not alter the classical behavior near
the singularity in any significant way.

In light of these observations, we put forward the fol-
lowing conjecture regarding quantum gravitational col-
lapse.

Conjecture: (i) Self-adj oint quantum dynamics in a
slow-time gauge is always nonsingular; within this dynami-
cal framework, quantum gravitational collapse is strictly
forbidden (ii) Self adjoint . quantum dynamics in a fast-
time gauge is always singular; within this dynamical
framework, quantum gravitational collapse is inevitable

Much of the literature on quantum cosmology to date
supports this conjecture. This is especially true of the
work of Misner, Nutku, Ryan, et al. , on various Bianchi
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models which is summarized by Ryan and MacCallum.
These investigations utilize Misners fast intrinsic-time
formalism and without exception conclude that there is, as
Misner' put it, ". . . no suggestion of anything which
would allow a contracting closed universe to pass through
a quantum phase and emerge as an expanding universe. "
Gotay and Isenberg's analyses of quantized Robertson-
Walker universes filled with a scalar field in fast extrinsic-
and matter-time gauges lead to the same conclusion, as
does Brill's study of a certain fast-time FRW model. '

Thus, (ii) above is confirmed for a wide range of both
cosmological models and fast-time gauges.

Within the slow-time dynamical framework, we find
support for (i) above in the work of DeWitt and Lund'
on the FRW universes and Demaret' on several Bianchi
models. In particular, the results of Lapchinskii and
Rubakov's matter-time quantization of a FRW model'
are remarkably consistent with those obtained here. Final-
ly, nice heuristic comparisons of the behavior of the quan-
tized FRW models in both fast and slow choices of time
are given by Ryan and Brill. '

We therefore believe that our conjecture is quite plausi-
ble. Ultimately, it means that one's determination of
whether quantum gravitational collapse occurs depends
crucially upon the manner in which one makes this deter-
mination, that is, how one sets up the classical model and
to what extent one regularizes it prior to quantization, as
well as how one fixes the precise form of the quantum
dynamics.

The decisive factor here is the choice of time; to a large
degree, this very choice classically predetermines whether
quantum gravitational collapse can occur. However. the
picture is not entirely as black and white as this may sug-
gest; the qualitative choice of quantum dynamics intro-
duces some gray. Thus, as illustrated in Secs. IIIC and

III D, it is possible to have asymptotic collapse —a
phenomenon intermediate between the extremes of
outright quantum bounce and quantum collapse —if one
takes the slow-time quantum evolution to be contractive
rather than unitary. Yet finer tuning can be achieved by
setting various boundary conditions. This has quantitative
consequences but does not seem to have a significant bear-
ing on the qualitative behavior of the models. These ob-
servations help to reconcile the heretofore bewildering ar-
ray of different answers to the quantum collapse question.

This brings us to the ultimate issue of which
classical/quantum formalism is actually correct. Without
conclusive physical evidence and beyond very general and
somewhat philosophic considerations, such as requiring a
reasonable classical limit, there are no precise criteria to
help us decide. This circumstance is due in large part to
the very nature of quantum cosmological models —because
of their simplicity, they just do not furnish enough insight
into the physical mechanisms which underlie quantum
gravitational phenomena. Such insight can only be pro-
vided by a much more complete consistent quantum
theory of the gravitational field and its interactions than is
currently available. In the meantime, one must proceed by
"hints, guesses, and model calculations"; quantum cosmol-
ogy must remain speculative rather than definitive. Only
(the choice ofl time will tell.
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We choose units so that c = 1 and 16m 6 = 1.
This restriction simplifies the ADM reductions in the next sub-
section. It is also possible to carry out such reductions for
more general perfect fluids, in particular those obeying the
equation of state p =(y—1)p with 1 & y & 2, but these are
complicated. Details may be found in Ref. 20. The
radiation-dominated case y= 3 is also discussed in Ref. 15.
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dinates (p,p„). In this case (cf. Ref. 7), the quantum Hilbert
space is L (R,e " ) with the inner product

&4 0&= I P(p)e(p)e'""dp

and the operator corresponding to the Hamiltonian (2.7) is

QH = — '" —— +6ke".
24 dp~ 2 dp

This quantization is unitarily equivalent to the one given in
the text. Indeed, the linear transformation U given by

(UP)(p)=(24)' P(3%6e" )

is a unitary isomorphism of L (0, ao ) onto L (R,e ~ ) which

intertwines the quantum Hamiltonians: QH = U '(QH) U.
Although it is a basic tenet of quantum mechanics that a phys-
ical observable should be represented by a self-adjoint opera-
tor, Qp is not and, indeed, should not be self-adjoint. For if it
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adjointness of Qp„.
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