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It is shown that the cosmic background radiation is not at all uniquely or scientifically relatively
economically indicative of a "big bang. " Specifically, essentially any temporally homogeneous
theory in the Einstein universe is consistent with the existence of a cosmic background radiation
(CBR) conforming to the Planck law; in particular, the chronometric cosmology is such. It is noted
that the Einstein universe appears particularly natural as a habitat for photons by virtue of the ab-
sence of infrared divergences and of the absolute convergence of the trace for associated Gibbs-state
density matrices. These features are connected with the closed character of space in the Einstein
universe, and facilitate the use of the latter in modeling local phenomena, in place of Minkowski
space with periodic boundary conditions or the like, with minimal loss of covariance or effect on the
wave functions. In particular, the Einstein universe may be used in the analysis of the perturbation
of a Planck-law spectrum due to a local nonvanishing isotropic angular momentum of the CBR, of
whatever origin. The estimated distortion of the spectrum due to such a kinematically admissible

effect is in very good agreement with that observed by Woody and Richards, which is opposite in

direction to those earlier predicted by big-bang theories. The theoretical analysis involves a prelimi-

nary treatment of equilibria of linear quantum fields with supplementary quasilinear constraints.

I. INTRODUCTION

The cosmic background radiation (CBR) has often been
construed as a very strong indication for, if not actual
proof of, the existence of a "big bang. "' Actual scientific
arguments have, however, been detailed only within the
framework of expanding-universe models. With increas-
ing question as to the validity of the Hubble law, 2 the
basis for this postulate has eroded, and the rapidity and
unexpected character of the evolution that Friedmann
models required for reconciliation with quasar observa-
tions also suggest caution in the acceptance of the
expanding-universe madel, or may even dictate some ur-
gency in the consideration of alternatives.

It should consequently be of interest to return to first
principles and analyze the CBR without any special
cosmological hypotheses, as much as possible on the basis
of general kinematics and universally accepted verities
such as Maxwell's equations.

The Einstein universe is the maximal space-time
within which Maxwell s equations remain intact, and to
which solutions of these equations (or related equations
such as those of Yang and Mills) in Minkowski space
canonically extend. Moreover, it.contains Minkowski, de
Sitter, and anti-de Sitter space-times as open submanifolds
with their given causal structures. It also appears to pro-
vide a satisfactory account of the overall gravitational
structure of the universe. The full causal and covariance
features of the Yang-Mills etc. equations are expressible
only in the Einstein universe, in the conformally invariant
form known as the universal cosmos; in particular, global
covariance under a 15-parameter group of causal transfor-
mations. Finally the Einstein universe represents the
simplest conceptual alteration of ordinary Minkowski
space, since it may be realized by the replacement of Eu-
clidean three-space E by the spherical space S; and in its

causally covariant form as the universal cosmos is the
only space-time other than Minkowski space that em-
bodies spatial and temporal isotropies, together with glo-
bal causality and separability of time from space.

The possible form of background radiation in the Ein-
stein universe is treated without any special assumption
other than the temporal and spatial homogeneities of the
underlying dynamics. Temporal homogeneity is meant
here in the sense not only of the absence of any time ori-
gin, but also of the conventional identification of the ener-

gy with the infinitesimal generator of the time evolution
group. In the latter respect it differs fundamentally from
the "steady-state universe" conception of Hoyle; there is
conservation of energy if temporal homogeneity holds.
Assuming that the total energy of the background radia-
tion in the universe is conserved, and that this radiation is
in a maximally random state as measured by its entropy,
an explicit and rigorous analysis confirms that the spec-
trum will be Planckian, with an assumption in the nature
of ergodicity to the effect that its long-term interaction
with the matter in the universe is not extremely special.
The strength of the interaction is of no consequence (as
long as it is not identically zero) by virtue of the unlimited
time over which it may act in the Einstein universe.

The present treatment is in part an amplification of an
earlier condensed one, ' which was too brief to include
proofs, respond to natural questions that might be raised
from the big-bang point of view, or treat specifically the
interpretation within the chronometric model. Here the
problem is placed in a more general setting in order to
clarify the fundamental issues involved. In particular it
deals with equilibrium states of linear quantum fields with
semiquadratic constraints; this is an abstraction from
physical considerations involved in the analysis of a possi-
ble local conserved isotropic total angular momentum in
the CBR. This kinematically admissible photon state is
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discussed in greater detail, and it is shown that the distor-
tion in the CBR spectrum reported by Woody and
Richards" is consistent with the perturbation of a pure
Planck law by a local effect of this type. The efficiency
from a purely information-theoretic standpoint of the ana-
lytic expression obtained' has in the meantime been treat-
ed. ' Also published in the meantime have been models
for the Woody-Richards effect within the framework of
the big-bang model. ' Purely information-theoretically,
these models involve many more parameters than does
that deriving from a locally nontrivial isotropic angular
momentum in the CBR, in which only a single parameter
is involved, for all possible values of which the predicted
effect is in the direction observed. Typically the big-bang
explanations involve the postulation of highly energetic
processes at large red-shifts, and appear relatively remote
from the possibility of empirical substantiation beyond
that of mere consistency with the Woody-Richards effect.

Ideally of course the state of the CBR would be derived
from that of the total system consisting of the CBR to-
gether with all matter in the universe, which on the usual
statistical basis may be postulated to have a density matrix
of the form D =e /tre, where H is the total energy
Ope atO ~ ~CBR +~matter +~interaction +~other ~ ~other
includes the energies of neutrinos, the x-ray background,
and their interactions, as well as possible unknown com-
ponents. Unfortunately the specification of all the com-
ponents of H other than HcB~ would at best be highly
speculative, in addition to which ultraviolet divergences in
the treatment of interactions that are currently unresolved
would foreclose the possibility of reliable calculations,
even if analytic expressions for the components of H were
given. Fortunately, special features of photons and of the
CBR suggest the feasibility of a separate treatment of the
CBR. Photons appear to lack dii'ect interactions; and
their indirect interaction via pair production appears un-
likely to exert a major effect on the CBR. Another dis-
tinction between the CBR and matter constituents in the
universe that is natural in the Einstein universe, and espe-
cially so in its chronometric interpretation, is that in their
dynamical time scales, which may be very much greater
for the CBR. The natural units in the Einstein universe
are those in which fi=c =R =1, where R is the radius of
the universe; these are conformally invariant. ' The corre-
sponding natural unit of time, which may be called an
"eon," is that in which light traverses a distance of 1 ra™
dius. In Minkowski space 2m cons appears as the time in-
terval from —oo to + m, and appears comparable to the
time scale on which stars and perhaps galaxies may evolve
effectively of an order between 10 and 10" years accord-
ing either to the chronometric or Friedmann cosmologies.
Light however, and especially the components of the
CBR, may circulate around the universe for thousands of
cons before interacting with the diffuse matter therein, as
estimated for one specific possible mechanism. '

Thus the present treatment in which the CBR is treated
as a separate entity that is approximately invariant under
the isometry group of the Einstein universe, with matter
serving only as a source and sink and diffusing mecha-
nism, may be regarded as a quasiphenomenological one
that appears justified by the indicated special features of

photons and the CBR. The CBR is assumed to be itself in
a maximally random state, with density matrix of the
same form as D except for the replacement of H by Hc~R,
which is reflective of its interaction with matter over
many cons of time, and not directly reflective of observ-
able matter during the past eon. Its temperature thus cor-
responds to the temperature of matter averaged over many
cons, rather than over the time scale normally regarded as
appropriate to stars or galaxies, and in addition must be
presumed to involve in an essential way the dark matter in
the universe, which is now fairly thought to be possibly of
much greater mass than the luminous matter. This aver-
age temperature of matter would be expected to be far less
than that of observable, luminous, matter, but appears in-
herently incapable of direct observation.

Finally it is interesting to note that the problems of the
big-bang theory with isotropy and causality, which have
led to the development of the inflationary-universe model,
do not arise in general class of models based on the Ein-
stein universe, including the chronometric theory.

II. MAXIMAL-ENTROPY EQUILIBRIUM STATES
OF QUANTUM FIELDS WITH

QUASILINEAR CONSTRAINTS

The case of a free field illustrates the essential ideas,
and is the only one susceptible to a full and general
mathematical treatment. For succinctness and logical
clarity, a compact formulation' of basic principles is used
here and familiarity with these principles will be assumed.
The treatment is insensitive to the statistics, and only the
case of bosons is considered here.

Let H denote the single-particle complex Hilbert space.
Let G denote the fundamental symmetry group (whether
simply temporal evolution, the Lorentz group, still larger
group, etc.). For present purposes, "particle" is definable
as a given unitary representation, say U, of G on H. Sta-
bility requires that U be a positive-energy representation,
in the sense that if g(t) is an arbitrary temporal one-
parameter subgroup, then the one-parameter unitary
group U(g(t)) has a non-negative generator. It will be as-
sumed that this is the case, the temporal evolution one-
parameter subgroup of G being assumed specified. There
is then a unique free positive-energy quantization, ' whose
Hilbert space will be denoted as K. For any unitary opera-
tor V on H, there is a corresponding unitary operator on

which will be denoted as I ( V). The mapping
V~I ( V) is a representation of the group U( H ) of all uni-
tary operators on H, into the group U(K) of all unitary
operators on K.

Associated with the representations U and I of G and
U(H) are corresponding infinitesimal representations u
and y of the Lie algebras (or infinitesimal groups) P and
k(H) of these groups, defined in the usual way: If X is

any infinitesimal self-adjoint generator of G, then
u(X)= t'(dldt)U(e—" ) ~, 0, and similarly for y. In ad-
dition, as always, ' these infinitesimal representations may
be uniquely extended by associativity and linearity to the
"enveloping algebra" M, i.e., the algebra of all polynomi-
als in the generators of 6, unconstrained except by their
given commutation relations. This extension will be de-
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fined so as to carry Hermitian elements of W into Hermi-
tian operators; by definition it preserves the usual associa-
tive algebraic operations, and hence commutators, within
the requisite factors of i

Now some confusion may arise from the circumstance
that the composition of the representations U and I, i.e.,
the mapping g~l (U(g)) from 6 to operators on K has
the canonical extension to M of the corresponding infini-
tesimal representation of 6 distinct from the application
of y to the extension of u. In other terms, denoting exten-
sions to W by the superscript e, if Q is a Hermitian ele-
ment of W (to be physically interpreted as a quantum
number label), so that u'(Q) is a Hermitian operator in H

and y(u'(Q)) a Hermitian operator in K, this operator is
distinct from (yo u )'(Q). The latter operator will be called
the field Q, and the form the particle Q; they are the same
when Q is simply a generator of 6, and their restrictions
to the single-particle subspace are the same in any event.
Both have canonical features, commute with all sym-
metries that commute with Q, carry positive operators
into positive operators, etc. Which if either is appropriate
to represent Q in a given physical context depends on the
specifics of theory and/or observation.

It may be helpful to reca11 the basic properties of u and
especially its statistical interpretation, as originally
developed in an invariant Hilbert-space context by Cook. '

If B is any given self-adjoint operator in H, representing a
single-particle observable, y(B) is simply the infinitesimal
self-adjoint generator of the one-parameter unitary group
on K, I (e" ). It follows that y(B) is positive when B is,
and that y preserves commutators. If L is any closed
linear subspace of H, the "number of particles with wave
function in L" is the operator y(P), where P is the projec-
tion of H onto L. This representation of the particle num-
ber combines with the spectral resolution of B to exhibit
directly the statistical interpretation of y(B). Taking for
simplicity the case when B has a discrete eigenbasis
e~,e2, . . . , with eigenvalues A, &, A,2, . . . , then the occupa-
tion number nJ of the state eJ is y(P~ ), where PJ is the
operator in H projection onto the one-dimensional sub-
space spanned by ej. The corresponding quantum field
observable is then expressible in the familiar form
y(B)=A, in i +A2np+

It is relevant also that the additivity properties of y ex-
tend to the formation of composite systems. Thus if H

' is
another single-particle space, and I denotes the corre-
sponding representation of U(H') into U(K'), K' being
the state vector space for the quantum field of H'-

particles, then I satisfies an exponential law connected
with the formation of composite systems:
I (US U')=I (U)SI (U'), U and U' being arbitrary uni-
tary operators on H and O'. This exponential law is
equivalent to the additiue property relative to direct sums
of self-adjoint operators fol' y:
y(BIBB')=y(B)SI+ISy(B'), where the Es denote the
identity operators on K and K ', respectively.

On the other hand, despite a fundamental role played
by y as a mapping transferring a given single-particle ob-
servable to a corresponding one on the quantized field of
such particles, its application to the single-particle total
squared angular momentum does not yield the total

squared angular momentum of the quantum field. The re-
sult may rather be described as the total squared angular
momentum of all the quanta of the field. Due to possible
forms of interference between these quanta, this is not the
same as the square of the total angular momentum of the
field as a whole. In states in which such interference is
absent, the expectation values of these distinct operators
will correspondingly coincide. In particular, it is reason-
able to expect that in maximally chaotic states, the quanta
will be stochastically independent and the interference will
cancel out, resulting in the identity of the expectation
values of the operators.

To clarify the relation between the two versions of the
quantum field total squared angular momentum, consider
these operators in the particle representation for K. In
this K appears as the direct sum of the symmetrized ten-
sor powers of H:

K =H'eH eH e'He He'He'H e
where S' denotes the symmetrized tensor (or direct) prod-
uct, and H is a one-dimensional space spanned by the
vacuum state vector. The two operators y{u'(Q)} and
P'(Q), where Q = —R& —Rz —R3 is the element in M
that represents the total squared angular momentum,
agree in the 0- and 1-particle subspaces H and H, but not
in the 2- and higher-particle subspaces. To determine the
difference explicitly, note that for any X in S, p(X) takes
the form, relative to the decomposition of K into n

particle subspaces,

P(X)=y(u (X))

=Ogpu

(X)e(u (X)sI'+Is'u(X) )e

whence noting that u'(X }=u (X),

y(u'(X ))=Oeu (X')e(u (X)zs'I +Is'u (X)2)e

On the other hand,

p(X) =OS u (X) ((u (X) S 'I +2u (X) u (X)

+ISu (X)'}e

Thus

p'(X ) —y {u '(X ) ) =0%0 2u (X)S 'u (X)e
The higher-particle subspaces involve similar terms con-
sisting of symmetrized tensor products of two of the u (X)
with factors consisting of the identity I. Substituting
X=RJ, j=1,2, 3; and summing gives the difference be-
tween the field and particle total squared angular momen-
tum.

In an isotropic (rotationally invariant) state, the u (RJ )
will have spectra that are symmetric around 0, and the
same is true of the u (Ri )S 'u (RJ ); thus the expectation
value of the difference appears a priori to be as likely to be
positive as to be negative. More importantly, if in a given
state E of the quantum field (whether pure or mixed) the
basis vectors e ~, e2, . . . , are stochastically independent in
an appropriate sense, then the two operators do in fact
have identical expectation value. We say the basis vectors
are stochastically independent in case the occupation
numbers n &,n2, . . . , are stochastically independent as
random variables. They are representable as such, relative
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to the given state E, by taking, e.g., the expectation value
of exp[i(niti+nztz+ . . )] where the ti, tz, . . . , are ar-
bitrary variables, to be the characteristic function of the
distribution of n i, nz. . . (for any finite set of nJ). Stochas-
tic independence is equivalent to the factorizability of this
characteristic function into the product of the expectation
values of the exp[injtj ]. In an isotropic state the expecta-
tion values of the u (MJ ) vanish, and so if E has this addi-
tional property, the two distinct versions of the total
squared angular momentum of the field have the same ex-
pectation values.

This result is basically a general one, and may be for-
mulated as such in the following manner. Let Q be a
given element of the enveloping algebra of G, assumed at
most quadratic in the generators of G. Then y(u(Q))
may be termed the field Qand -p(Q) the (total) particle Q-
A state E of the quantum field may be termed factorizable
in case there exists a basis ei, ez, . . . , for the single-
particle space that are stochastically independent relative
to E. Then

Theorem. If E is a factorizable state of the quantum
field in which euery generator of G has uanishing expecta
tion ualue, and if Q is any quadratic element of the en
ueloping algebra of G, then the field Qand th-e total
particle Qhaue the-same expectation ualues in the state E.

We now turn to the question of the form of an equi-
librium state of the quantum field, subject to constraints
in addition to temporal invariance, and determined by
maximal randomness. Under rather general conditions,
given a Hilbert space L, and a non-negative self-adjoint
operator A (physically interpretable as the energy) such
that e ~" has absolutely convergent trace for some non-
vanishing value of p, there exists a density matrix D of ab-
solutely convergent trace that maximizes —tr(D logD)
subject to the constraint trDA =Eo, where Eo is given and
sufficiently large. D may in fact be taken to have the
Gibbs form D =e ~ /tr(e ~ ), where p now depends on
Eo, and is the unique density matrix with the indicated
properties under suitable further general conditions. We
emphasize the generality of this result; it applies irrespec-
tive of any postulated forms of interaction, assuming only
that they are of such a character as to effectively maxim-
ize randomness. In practice, as long as there is a random-
izing influence that is not too special, these special forms
constituting a set of probability zero typically in problems
of this type, the density matrix takes the indicated form.
The Hilbert space L does not need to be that associated
with a quantum field; there need be no connection with
photons or any other specific field or particle.

This is stressed because in the literature the Planck law
is commonly derived with the use of assumptions regard-
ing mechanisms of thermalization, boundary conditions,
special properties of light, etc. It is important here that
no specific property of light is required other than its rep-
resentation by Maxwell s equations, its Bose-Einstein
character, and the fact that it is stochastically emitted and
absorbed by matter via a temporally invariant interaction.

While it might seem supererogatory to discuss the close
relation of the present manifestly invariant [basis-
independent, transforming under the full unitary group
U(H)] approach to quantum statistics to the textbook one,

confusion about this relation appears in some recent litera-
ture, and the treatment will serve also to provide notation
used later. This will be done in the context of an arbitrary
self-adjoint operator A in the single-particle Hilbert space
H. Physically A is to be interpreted as the energy, it will
be assumed to be positive, and that is has the eigenvalues
a&,a2, . . . , arranged in nondecreasing order, with corre-
sponding eigenvectors e &,e2, . . .,' the eigenvalues may
have arbitrary finite multiplicities. The corresponding
Bose-Einstein quantum field has its Hilbert space
representable as the infinite tensor product of the quanti-
zations K for each of the one-dimensional Hilbert spaces
H spanned by ej, in such a way that the total field energy
H =y(A) in K is the direct sum of the energies HJ (tensor
produced with the obvious identity operators on the other
KJ s). This energy IIJ. in KJ is the quantization (via y) of
the simple operator of multiplication by aJ in H J.

By the "harmonic oscillator, " or in rigorous invariant
form, "real wave representation" ' of boson fields, H J is
unitarily equivalent to Lz(R ) in such a way that IIJ. is
unitarily equivalent to

ajar,

where 1V is the one-
dimensional harmonic-oscillator Hamiltonian, having the
eigenvalues 0, 1,2, . . . , each with multiplicity 1. In this
unitary equivalence of K with the infinite
tensor product of the KJ., e ~ is correspondingly the in-—PH
finite tensor product of the e '. It follows that

—PHtre ~ =Q.tre '. From the spectrum of the harmon-
ic oscillator,

—cN 1+ —c+ —zc+. . . (1 —c)—1

Defining p(p) =tre ~, it follows that f(p)= +.p(asap)
where f(c)=(1—e ') . From this the distribution of
the number nj of particles in the state ej is readily deter-
mined: its characteristic function takes the form

f(t)=tr(e" e ' )Itr(e ' ) .

This implies that the expected value of

nj is aj 'P'(a~P) l—g(aJP) =(e ' —1)

which in turn implies that the expected energy spectrum
takes the form AÃ~(e~ —1) ', where Nz is the multipli-
ty for the eigenvalue A, of A. Note that no special assump-
tions regarding wave equations or the spatio-temporal la-
beling of the vectors in H are required here; a still more
general analysis is included in Kon.

Now consider how the foregoing result is modified in
the presence of additional constraints. Using Lagrange
multipliers, the maximal entropy state subject to given
expectation values on the self-adjoint operators
S~,S2, . . . , has a density matrix of the form
Ce " ' "', where C is a normalizing constant,
and p and the cj are to be determined from the given ex-
pectation values. If in particular it is proposed to con-
strain the total angular momentum (isotropically), the
question arises of whether the field or particle quantities
should be substituted for the operator S&, or whether nei-
ther is appropriate. This question can be given a definite
answer only when the physical mechanism by which the
equilibrium is attained is determined, at least to the extent
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of the knowledge of the correlations of the angular mo-
menta of the quanta of the field with those of the system
with which interaction takes place, or with each other.
However, if there are a priori physical indications, wheth-
er empirical or otherwise, that the equilibrium state is fac-
torizable, then by the Theorem, the field and particle con-
straints are equivalent.

Since the particle total square angular momentum is a
linear form in the occupation numbers, its analytical
consequences are derivable by the method just indicated.
If this results in a state that is factorizable, then a fortiori
the resulting state is maximal entropy within the class of
all factorizable states satisfying the given constraints, as
well as within the larger class not constrained to be factor-
izable. The question of whether the field or particle angu-
lar momenta should be substituted for S then becomes
moot, and analytically the particle quantity is more con-
venient. A concrete exemplification of the results is given
for the case of the quantized photon field on the Einstein
universe in the next section.

III. PHOTONS IN THE EINSTEIN UNIVERSE

The previous considerations are here applied to the case
in which the single-particle space consists of all normaliz-
able free photon wave functions. This Hilbert space H is
essentially the same whether one treats photons in Min-
kowski space Mo or the Einstein universe M. ' Howev-
er here we take the Einstein universe as fundamental, and
the quantum numbers that are appropriate in this connec-
tion will be used. Angular momentum quantum numbers
are essentially the same as those in Minkowski space-time,
but otherwise there are differences of order R ', where R
denotes the radius of the universe in laboratory units. ' '

To avoid possible confusion, it should be noted that the
conformal group of present relevance, which is the univer-
sal cover of the matrix group SU(2,2) is that of the four-
dimensional Einstein universe; as an infinitesimal group,
this is the same as that of Minkowski space-time. The
full conformal groups of the spheres S or of R play a
quite limited role because they do not extend to M or M 0,
respectively, except for isometrics and other special
transformations. This may be especially confusing be-
cause of the fortuitous circumstances that the conformal
group of M is locally O(2,4), while that of S3 is O(1,4),
which is obviously a subgroup of O(2,4); however, the iso-
morphism of O(1,4) with this subgroup of O(2,4) does not
necessarily carry a given element of O(1,4) into an element
of O(2,4) that acts in the same way on the spacelike sec-
tion S of Q at Einstein time t =0, or even leaves any
such spacelike section at a fixed Einstein time invariant,
although it does so in certain cases (see below).

It should be recalled that the time &( space separation
in the Einstein universe, and that in the Minkowski
space-time that osculates at a given point, agree only at
the fixed time in question, say t =xo ——0. As time evolves,
the respective time )& space decompositions begin to
differ, and at very large times differ quite considerably.

To summarize the presently essential points regarding
photons in the Einstein universe, we note that this
universe has an Einstein metric of the form dt dsz—

where t ranges over the reals, representing the time, and ds
is the element of distance on the space S, both t and s be-
ing in radians; this entails choosing units so that c =1,
and also the radius R of S is 1; in addition, the remaining
freedom in units will be fixed by choosing 8=1. These
units are invariant under the group 6 of all causality-
preserving transformations on N), a 15-parameter group
locally isomorphic to SU(2,2). The Einstein energy is de-
fined as the self-adjoint generator of time evolution in M,
for any species of field on which time displacement acts
unitarily. This applies in particular to the case of pho-
tons. The normalizable solutions of the Maxwell equa-
tions in M transform unitarily under arbitrary transforma-
tions in 6, and the Einstein energy 3 is discrete with
lowest eigenvalue 2.

A complete set of quantum numbers is given by the
Einstein energy and helicity, and the total angular
momentum and one component thereof. ' Each energy
value n occurs with a multiplicity 2(n —1), so that the to-
tal expected energy at frequency n, in the equilibrium state
of the preceding section, is 2n (n 1)(e~"—1—) '. The en-

ergy in the frequency range from n to n' is given by the
corresponding sum, which is extremely fine grained in the
observable frequency range and consequently differs by an
unobservagly small amount from the corresponding in-
tegral, 2v e~ —1 'dv, i.e., the usual Planck law is

n
obtained.

It is interesting that in the Einstein universe not only is
the quantization of the frequencies enforced by the
discrete spectrum of the Einstein energy, but the photon
has nonvanishing Einstein mass, i.e., infimum of the Ein-
stein energy, of wave functions subjected to arbitrary
causal (conformal) tran sformations. This may appear
paradoxical until it is reahzed that under scale transfor-
mations the Einstein energy does not itself scale. With
R =c =1 this mass is 2A, making possible a conceptual
definition of fi in terms of the Einstein photon rest mass.
This nonvanishing rest mass also accounts for the absence
of infrared divergences in the Einstein universe. The
present analysis shows that in addition the density matrix
under consideration is rigorously of absolute convergent
trace, without limitation of space to a subregion with re-
flecting walls or periodic boundary conditions, such as is
often done in Minkowski space in order to achieve a
discrete spectrum and an absolutely convergent trace.
Elsewhere it is shown that certain interacting quantum
field divergences are absent in the Einstein universe. A
similar analysis applies in the case of inassless fermions.

Now consider how the spectrum is affected by the as-
sumption of the existence of a substantial isotropic con-
served angular momentum, above and beyond that which
follows from the foregoing density matrix. If the south
pole of the Einstein universe is taken as the point of obser-
vation, then the analog of space translations in Minkowski
space are, in the Einstein universe, rotations around the
north pole. Indeed in the vanishing curvature limit in
which the Einstein universe becomes flat and essentially
the Minkowski space-time, these rotations become exactly
space translations. Thus there is no invariant distinction
between rotations and translations in the Einstein
universe; indeed, the antipodal mapping on S, which is in
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the connected group of isometrics, exchanges these
transformations, together with the north and south poles,
and the locally observable angular and linear momenta. It
follows that even the pure Planck law in the Einstein
universe involves a nonvanishing expected squared angu-
lar momentum; its contribution to the energy is precisely
equal to that of the expected squared "linear" momentum,
defined here by the sum of the squares of the generators
of rotations around the antipode of the point of observa-
tion; and the individual components of angular rnomen-
tum have vanishing expectation value. These results fol-
low immediately from the invariance of the Planck law
density matrix under arbitrary rotations on S, or more
exactly, the unique conformal transformations on the Ein-
stein universe that extend space rotations.

However, our concern here is with a total angular
momentum in excess of the level automatically implied by
the Gibbs state of the photon field on M. Such angular
momentum will be considered relative to the point of ob-
servation, taken as the south pole. Isotropy, assumed
here, implies that each component of angular momentum
will have vanishing expectation value. We ask for an
equilibrium state in which the constituent photons are in-
dependent, as they are in the case just considered, and as
might be expected in a maximally chaotic state con-
strained only in energy and angular momentum. This ex-
pectation is however no guarantee of independence; each
concrete physical application must be considered on its
own merits. But such an assumption of independence is
often made, appears natural, and most important, is
kinematically entirely admissible. Once it is made the ex-
pectation values of the field-total angular momentum and
the particle total angular momentum are the same, and
analysis' may be based on a constraint for the latter lead-
ing to the modified spectrum

Here k is a positive constant related to the expected total
angular momentum.

In ihe present theoretical generality, there is no obstacle
to this law being applicable either globally or locally, local
regions being modeled by an Einstein universe in the same
fashion as a local region in Minkowski space may be
modeled by a box with periodic boundary conditions. The
features of a discrete positive-energy spectrum in the Ein-
stein universe together with an absolutely convergent trace
for the putative Gibbs state density matrix make it un-
necessary to enforce any boxlike limitation. The Einstein
universe has besides these advantages one that is especially
relevant here of being rotationally invariant in local usage.
The connection with a local flat observing space may be
made through the stereographic projection, which is con-
formal and does not affect the angular momenta, and car-
ries the origin in Minkowski space into the south pole in
the version applicable here. There is a question here of
scale, of the region considered in relation to the universe
as a whole, of the frequency ranges in which the spectrum
is treated, and of the assumed level of the conserved total
angular momentum in relation to the kinematically admis-

sible maximum. If the region is small, the frequencies
high in natural units, and the level of total angular
momentum is small compared to the maximum, the ap-
proximation of the local space-time region by an Einstein
universe appears physically reasonable. These conditions
will hold in the application made in the following section.

IV. THE VfOODY-RICHARDS ANOMALY

The measurements of Woody and Richards" indicate a
perturbation of the Planck law spectrum opposite in direc-
tion to that predicted within the expanding universe
framework. ' ' The report of Woody and Richards was
concurrent with research directed in part toward the
determination of an upper limit of possible isotropic angu-
lar momentum of the locally observable CBR. This limit
was to be deduced from the apparent agreement within
observable limits of the empirical CBR spectrum with
that for a pure blackbody law, which represented the ob-
servational situation prior to the report of Woody and
Richards. The completion of this research showed that
the predicted effect was a distortion of the spectrum to-
ward an earlier and higher rise followed by a subsequent
earlier decline, in very good agreement with the reported
measurements. The overall level of isotropic angular
momentum is here a free parameter, up to an energy-
dependent limit, but any positive level displaces the spec-
trum in the observed direction; and a level of the order of
10% the kinematically admissible maximum level is quite
sufficient to produce a distortion of the order of that ob-
served.

Many conceivable mechanisms could be involved in the
association of an excess of isotropic angular momentum
with local conditions near the point of observation of the
CBR, on a variety of scales, and it would be dubiously
scientific to speculate on them. It should however be not-
ed that if galaxies are typical sites for such an excess, then
observers (presumably located in galaxies) would tend to
observe the effects throughout the universe, although in
intergalactic regions none would be present. With present
uncertainties regarding galactic evolution, the dominant
mechanism and basic time scale of production of the
CBR, etc., a phenomenological and statistical standpoint
appears preferable to a speculative one. As association of
the Woody-Richards effect with vicinities of galaxies can-
not reliably be either established or disproved at this time,
but it would appear theoretically quite tenable on the
bases of kinematical possibility, maximal entropy statis-
tics, and the reported observations.

The possible association of the Woody-Richards effect
with localized regions of high isotropic angular momen-
tum relative to their centers is obviously physically totally
distinct from a universe wide effect permeating intergalac-
tic space. The mathematical treatment of each of these
hypotheses is however similar. The discussion by
Wright and in part by Goebel of the latter hypothesis
elaborate the evident mathematical feature of association
of angular momentum with a specific origin, and in no
way impugn the former physical hypothesis or the
mathematical treatment of either.

The effect of observation at a point other than the
center of the postulated isotropic angular momentum is



RADIATION IN THE EINSTEIN UNIVERSE AND THE COSMIC. . . 2399

readily computed and seen to be beyond observational lim-
its of detection within a region of the order of magnitude
in size of a galaxy. More specifically, if 0 is the origin
and if P is another point, then P is obtainable from 0 by a
rotation of S that is infinitesimally a linear combination
of the L~4 in the notation of Ref. 9; more exactly, there is
a unique conformal transformation on the Einstein
universe that effects this rotation and does not affect the
time. It should be realized that in the flat limit in which
R becomes oo, the LJ4 deform into the Minkowskian in-
finitesimal space displacements 8/Bxj; by choosing an ap-
propriate system of coordinates it will be no essential loss
of generality to take j=1. Suppose then that the one-
parameter group O(s)=e '" in the universal cover of
SU(2,2) carries 0 into P. The effect on the observed den-
sity matrix D is to transform it by the quantum field ac-
tion I (O(s)) corresponding to O(s). Thus the density ma-
trix as observed at P takes the form D (s)
=I (O(s)) 'Dr(O(s)).

The effect of this on the observed spectrum is to replace
K in the density matrix D =ce ~~ ~~, where c is a con-

sL )4stant, by its transform under O(s). Now e " transforms
I,» into cossI »+sinsL, 2&, and has comparable actions on
the other L,J. It follows that within terms of order s, K
is to be replaced by K+sA +s B, where A is similar to its
negative and will have vanishing expectation value in a
maximally isotropic state, and B is the square of the Ein-
stein linear momentum, or effectively the square of the
frequency. Here natural units are used as earlier indicat-
ed. For small s the linear effect on the spectrum thus
should vanish, and at most a second-order effect in the
distance s be present. But if s is the radius of a galaxy in
units of the radius of the universe, the term proportional
to s would appear far below the limit of measurability.

It may finally be noted that Kapusta has based a criti-
cism of the treatment' of the Woody-Richards anomaly
on the claim that the constraint imposed was nonadditive.
However, as noted in this treatment the angular momen-
tum constraint is indeed additive; see also Sec. II. It ap-
pears quite possible that, mathematically, a constraint on
the expected square of the angular momentum of the
quantum field, and a constraint on the total angular
momentum of the particle constituting the field, yield
similar maximal entropy density matrices, in the presence
of a maximal isotropy assumption, since any difference
would represent physically a correlation between the free
photons into which the overall maximal entropy state
(representing the CBR) may be resolved. Since the context
of the universe is unprecedented, and the gestation times
and/or periods of the CBR and matter in the universe are
not observed and can only be inferred from theoretical
models, an extrapolation from various forms of chemical
thermodynamics or particle theory is relatively uncertain.
The argument of Sec. II together with a quasiphenomeno-
logical and statistical standpoint that recognizes the ap-
parent randomness, isotropy, and lack of material self-
interaction of the CBR, as presently developed, seems
reasonable and more conservative than the elaboration of
scenarios that may be highly model dependent and of rela-
tively limited empirical falsifiability.

V. CAUSALITY AND ISOTROPY
IN THE CHRONOMETRIC THEORY

The chronometric theory can be considered to be based
on the Einstein universe, but at a fundamental level is in-
variant under the full essential group SU(2, 2) of causal
(or conformal) transformations of the Einstein universe,
and not merely its isometry group, and has other special
features. However, the theoretical invariance under
SU(2, 2) of the evolutionary equations is not carried over
to the state of the universe, which determines a particular
inertial frame in which the kinetic energy is minimal, and
thereby a particular decomposition of the space-time into
time & space. This represents the chronometric cosmos
as an Einstein universe, which is static on the time scale
of cons, and thereby makes possible a well-defined red-
shift-distance law, which has been systematically con-
fronted with galaxy and quasar observations, as noted ear-
lier. In principle the inertial frame of the chronometric
cosmos evolves in time, but there is no evidence that its
time scale is sufficiently rapid to be detectable in the ex-
tragalactic observations thus far made. ' The dynamics of
the inertial frame, and the relation to mass and gravitation
have been considered elsewhere, and it will suffice here to
consider aspects particularly relevant to the CBR.

The CBR is supposed to be the equilibrium state of free
photons that have been scattered, reemitted, absorbed, etc.,
many times in the course of possible thousands of cons.
Because of its relation to the matter in the universe, the
inertial frame of the CBR would be expected to agree fair-
ly closely with that of the matter, and indeed, while there
may be some difference, it appears slight. As an equi-
librium state of a system that is invariant under the
isometry group of the Einstein universe, it would be ex-
pected to be rotationally invariant, i.e., isotropic, at every
point of the universe, to the extent that the inertial frame
(of the CBR, or only slightly differently, of matter in the
universe) is constant. This is of course as observed. A
failure of isotropy at a significant level would be a consid-
erable embarassrnent to the theory, as its existence has
been to the big bang theory.

In the course of many cons all parts of the chron-
ometric cosmos have had the time to affect one another
causally, and there is every reason to expect the tempera-
ture of the CBR to be the same throughout the universe.
Statistical fluctuations from place to place as well as from
time to time should be predictable in accordance with the
density matrix given earlier, again disregarding the ap-
parently unmeasurably slow evolution of the inertial
frame of the universe. Alternatively, the constancy of the
temperature is implied by the spatial homogeneity of the
density matrix, which is virtually a priori indicated by the
invariance of the theory under the Einstein universe
isometry group.

The CBR may be contrasted with the x-ray background,
which may well come from discrete sources such as active
galactic nuclei, and develop on a wholly different time
scale, similar in fact to that of the matter from which it
may originate, quite possibly. Instead of a gestation
period of thousands of cons, the x-ray background may
develop over a period of one eon, or perhaps a few cons,
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the observed kink in the spectrum conceivably reflecting a
loss of energy by the x-ray photons on their second and
later circuits of the universe.

In keeping with the quasiphenomenological and statisti-
cal directions of this work, no hypothesis regarding the,
no doubt, significantly interacting evolution of matter (ap-
parently largely in the form of galaxies of one type or
another) and of radiation (the CBR and the x-ray back-
ground) will be proposed, other than its invariance and
causality implicit in the action of the essential group
SU(2, 2) of all causal transformations in the Einstein
universe. Suffice it to write here, as relevant to an overall
evaluation of the chronometric theory in relation to the
CBR, that this theory, although nonparametric and
nonevolutionary, has made numerous predictions regard-
ing observable quantities, and these appear consistent with
all clearly objective and statistically unbiased extragalactic
observations.

VI. DISCUSSION

The CBR is consistent with the big bang hypothesis,
but this hypothesis, or some variant thereof such as the in-

flationary universe, is not at all uniquely indicated by it.
A temporally homogeneous universe with conservation of
energy and consequent attainment of a large-scale equi-
librium state of the universe would appear to be scientifi-
cally a relatively economical explanation of an observed
approximately Planck law CBR. The nonvanishing cou-
pling between matter and radiation, irrespective of the
precise details of its mechanisms and strength, would be
expected to thermalize the radiation in the course of the
unlimited time that would be available for this process.

The chronometric cosmological theory is temporally
homogeneous (nonevolutionary) and is quite consistent
with systematic red-shift and other extragalactic observa-
tions; and it is a priori quite conceivable that there may be
other such theories based on the Einstein universe. Unless
it can be shown that a temporally homogeneous universe
is not physically sustainable, and this has not been possi-
ble even in the specific, nonparametric case of the chron-
ometric cosmology, a claim for the big bang theory that it
is the natural or logical explanation for the CBR and its
apparently Planck law spectrum would appear untenable.
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