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Propagation of gravitational waves in a magnetized plasma
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The propagation of gravitational waves parallel and perpendicular to a magnetic field in a col-
lisionless plasma is considered. In the parallel case weak cyclotron damping of the gravitational
waves exists, while in the perpendicular case there is coupling between gravitational and electromag-
netic waves due to the generation of currents by the gravitational wave.

I. INTRODUCTION

In this paper we study the propagation of gravitational
waves in a tenuous plasma containing a constant uniform
magnetic field. We use a kinetic description for the plas-
ma, and point out the existence of small cyclotron damp-
ing of the gravitational waves, as well as coupling with
electromagnetic waves.

Two cases are considered: the case where the wave per-
turbation propagates in the direction parallel to the mag-
netic field and the case of the perpendicular propagation.
There have been several studies using a kinetic theory for-
mulation of the propagation of gravitational waves in ma-
terial media, ' as well as studies of the coupling between
gravitational and electromagnetic waves in a magnetized
vacuum ' and near charged black holes, but to our
knowledge there has been no analysis of the propagation
of these waves in a magnetized plasma.

As well as the coupling found in a magnetized vacuum
we find another type of coupling, which involves the gen-
eration of electric currents in the plasma by the perturba-
tion in the charged-particle trajectories due to the gravita-
tional wave.

II. THE FORMALISM

We consider a tenuous collisionless plasma containing a
constant uniform magnetic field B0.

We describe the plasma by a particle distribution func-
tion from each species, labeled with index j (j =i,e for the
ions and electrons, respectively), viz. , fj(x,p ), where x
and p are the four-position and four-momentum coordi-
nates in phase space. The particles move in the fields
described by the metric g&„(x ) and the electromagnetic
field tensor F&„(x ), which together with the distribution
-functions obey the set of coupled Einstein, Vlasov, and
Maxwell equations.

In the unperturbed state, we assume the characteristic
length of the background curvature (due to the energy-
momentum of the plasma plus the unperturbed elec-
tromagnetic field) to be much larger than the wavelength
(A, ) of the waves considered, which means that for the pur-
poses of this study we can consider the unperturbed space
to be flat, i.e.,

(0)
gpv ='9@v ~

where n„ is the Minkowski metric.
Using a reference frame where the unperturbed magnet-

ic field B0 is in the xz plane, and makes an angle 0 with
the z direction, the unperturbed Maxwell tensor will be
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where the overbar denotes a perturbation, and we use the
usual symbol h& for the perturbation of the metric.

Einstein's weak-field equations, using a I.orentz gauge,
are then

SING
U h~„——— T„C4

where

T(em) + (matter) gap+ 4 tv ap

(4)

+& fj j
and where f denotes integration over all the four-
momentum space and

fj*.(x,p')=f~(x, p )5(p"p„mj c ) . —
Here mj and ej are, respectively, the rest mass and charge
of the j-species particles. Maxwell's equations are

We also assume the unperturbed distribution functions are
Maxwellian, i.e.,

p &a
fo ——Ae

where

U

kT

U is the four-velocity of the rest frame of the plasma, k
is Boltzmann's constant, and T is the temperature of the
plasma.

If we consider the plasma to be perturbed slightly, we
can write
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v' —g equations with respect to all four-coordinates x, then one
Fourier component of the solution will be

+—g'y I p (7)

~Xfj =gj(p )e

ik x
Fpv cpve (10)

and

BF„„BF„ i3F„P + P + 0 (8)

where g=detg&„———1+O(h2) in the transverse traceless
(TT) gauge which we will use. Note that provided the
phase velocity of the wave in the plasma is only slightly
different from c, the use of the TT gauge is a good approx-
imation.

Finally Vlasov's equations are

ik x~a
~pe eave

c&„and e& being constants, corresponding to a plane
wave. We assume (without loss of generality} that the
plane wave propagates in the x =z direction, i.e.,

k =(k,O, O, k ) .

c&„has the components

E E

P + F pP —~pyPP

where I p& is the Christoffel symbol.
There have been many ' studies of the propagation of

electromagnetic waves in magnetized plasmas using a ki-
netic description, including the effects of both Landau and
cyclotron dampings. They fall into two categories, those
using a method due to Landau which involves a Fourier
transform in space coordinates and a Laplace transform in
time to consider the initial-value problem, ' and those
due to van Kampen which uses a "method of stationary
solutions, "which essentially involves a Fourier analysis in
both space and time coordinates but which can solve the
initial-value problem as well. ' ""

In this paper we use this second m.ethod, which seems
to us more appropriate in that it retains the symmetry be-
tween space and time.

If we Fourier analyze the solution of the linearized
I

—Er —cB, cB„

0 0
0 A+
OA

0 0

0 0
~x 0
—A+ 0

0 0

(13)

Linearizing Eqs. (5), (7), (8), and (9) with respect to the
perturbed quantities, the first-order equations in the per-
turbations are then

(12)—E„cB, 0 —cB„
—E —cB& cB„O

where E and B are the amplitudes of the perturbation in
the electric and magnetic fields.

Also, using the Lorentz-gauge condition h& =0 and
since we can, to the approximation of this analysis, use the
TT gauge conditions, e& reduces to an approximate form

[(k3) (k()} ]hqv g f fJP PPd P+FqaF(0)v +F(0)q F
j j

ap ap ap ap
Y 9@v aPF(0) +h F(0)paF(0)vP Y'9pvh F(0)ayF(0)P —

4 h pvF(0)aPF(0) (14)

ej
i(korl~+k3ri )(r)"PF p+h "PF(()) p)= —Q fJP"d"P,

j j
k~F~ +k "Fgp+k"F g ——0,

and

0
i (kop +k3p )fj+ F(o) pp = I p rp—p — (h F(()) p+rI F—p) (17)

Owing to the axial symmetry of the physics around the direction of the unperturbed magnetic field, we make a coordi-
nate transformation in p space to cylindrical coordinates po, p ~(, p~, and ((, i.e.,

p( =p~(sin6)+p) cos8cos((,

p2 =p).»n(t'

p 3
—

p(~ cosg —p) sing cos(( .

Using (18), (12), and (13) in (14), (15), (16), and (17), we obtain the set of equations

(18)
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A+ —— , g (p~~slnO+pzcosOcosg) d p —c BoB„sinOx 2 4 2

[(ko) —(kp) ]+ Xc Bo cos 8 j ~j

A x ——
, , g (p~~sinO+pzcosOcosg)posing d p —c BoB&sinO, (20)x ~ 4 2

[(ko) —(kq) ]+Xc Bo ( —,
' cos 8+ —,

' sin28)

B,=O,

k 3E„=kpcBy,

k 3' ———kpcB„,

(21)

(22)

(23)

E„=— kp ej 4i g gj. (p~~sinO+pqcosOcosg)d p ckgBo—A)&sinO
(ko) —(k&) . cmj

(24)

kp ej 4
Ez ———

z 2 i g gjpj sing d p+ckqBoA+sinO
(ko) —(kz ) z cmi

(25)

E,= g gj (p~~cosO —pzsinOcosg)d p,
ckp . m.

Bgj
& [kop + kq (p

~ ~

cosO —p~smO cosg )]gj +eJBo ——
P& (p ),—

where we have used (21) in (19) and

(26)

(27)

gj*=gj5(p p ™Jc ), d p=p~dp d(j}dp~~dpg

since the unperturbed distribution functions foj are assumed to be isotropic and we take U =( —c,0,0,0), it follows that

~fo, r}foj ~foj
(28)

1 g 2 g 3

Therefore the only nonvanishing component of de&lr}p is Bfoj/Bp, so that the function QJ(p ) appearing on the right-
hand side of (27), which is the third term of the left-hand side of (17), becomes

@z(p )= —[E„(p~~si On+pic sOoc sgo)+E~p i jsPn+E, (p~~ scOo—pjsinOcosg)]
c

ikp 2 2'2 ~fo,+ IA+ [(p~~sinO+pzcosOcosp) —pz sin p]+2A„posing(p~~sinO+pgcosOcosp) I2 happ

(29)

Now, following Bernstein, Vlasov's equation (27) can
be integrated by dividing it by eBp and multiplying by the
integrating factor

kpp +k3p~~cos0 k3pzsine
GJ(p )=exp i sing

eJBp eJBp

obtain a set of coupled equations in A+, 3x, E„,E„, and
E, which can be written as

so that it becomes

GJ QJ.

(30)

(31)

D Ex =0

E

(33)

and therefore the solution of Vlasov's equation is

f GJ&jd&.
eJBpG~

(32)

Now, substituting (32) into (19), (20), and (24)—(26), we

where D is a 5X5 matrix. From the determinant of D we
obtain the dispersion relation of the waves, and hence any
possible damping, while Eq. {33) yields the coupling be-
tween the gravitational and electromagnetic waves for
each mode.
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III. CASE OF PARALLEL PROPAGATION

When the wave travels parallel to the unperturbed magnetic field Bo (i.e., 8=0), Eqs. (19), (20), and (24)—(26) become

~, =ay f" f" f"f ' p, 'cos'ydydp, dp„dp', (34)

~, =ay f f f f ' p,
'"" dydp, dp„~dpo, (35)

E'„= ip—ge f f f f pq cospdpdpqdp~~dp (36)

~y ———ipse' f"f" f"f ' p, 'sinydydp, dp„dp', (37)

E,= iyg—eq f f fo fo p~~~dpdp~dp~~dp
J

(3g)

where

xn=
(ko) —(k3) + —'gc Bo

ko

(ko) —(kp) ko

{39)

l

Using k for k3, and defining the wave frequency
co= —koc, we can define the new parameters, u =co/k
(phase velocity of the waves) and ul j ——corj/k, where coLJ.

is the Larmor frequency of species j, i.e.,

e,Bo
cuL J ——

mJ

eJ
gJ=l '

C

p E(

g
pli+

g
e +

ko A( . A„2 e2ig+ "
e

—2ig

4 VJ.

and from (29), (30), and (32) we have

afo,
Bp

Equations (43) then become

fj km, (u~~
—u ), g, =kmj(U~~ —u +ul )

77) = km J ( U
i i

—u —u LJ )

pj. =kmj(U() —u+2uL) ),

v~ =kmj(U~~ —u —2uLJ ) .

(44)

In Eq. (40) we have used

E) ——E„—i', E„=E„+i',
~r =~+ —&~ x ~.=~++&~x

(40)

(41)

(42)

3/2
(U~~ +Ul )

exp —m.
2i-

mJ.
foj n, ——

2i7i-

In the nonrelativistic case, the Maxwellian distribution
functions f~ take the usual form.

with the subscripts r and h denoting right and left circular-
ly polarized modes, respectively, and

g~=kpp +kpp', g~=kop +kgp~+eJBp,

g. =kop +k3p —e.Bo ~

0 3

pJ- ——kop +k3p +2eJ-Bo, vJ
——kop +k3p —2eJB0 .

(43)

0
P J

——mJ Uj, P[) ——mJ U((, P =cmJ- .

If now we assume the plasma to be nonrelativistic (i.e.,
the random velocity of a particle v «c), we can write

with

~=kT,

+U~
exp —m.

2i- (46)

where nJ is the number density of particles of species j.
Hence the derivative of foj with respect to p is

dfo,F.=
Bp

3/2
nJ c mJ.

i- 2iTi-
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00 00 277 A IAt=a+ f f f Fvjpi dgdpidpll,
Substituting (46) into (40) and taking account of the func-
tion foj(vll, ui) being even both in ui and vll, the integrals
over some of the terms in Eqs. (34)—(38) vanish and we
are left with a system of equations whose matrix D is
quasidiagonal, i.e.,

(49)

where only nonzero terms are retained.
If we define HJ ( u

l l

) by

HJ(vll)= f Foj(ull vi)vi dui ~

0 0
(50}0 00

0 D33

0 D34

0 0

(47) whereD43 0

D44

0 D55
j ll~ "i =

Oj pll~pi

using this, together with o. defined in (39} in (49), we ob-
tain the dispersion relation from this mode by canceling
AI,

(51)

Since the integral in (51) is singular, we have to analytical-
ly continue the integrand Hj /p j into the region where the
poles exist in order to employ contour integration. "

Equivalently we can use the following representation of
the integrand (see Asseo et al. ):

0 0 ArD) 0 0

0 D2 0 0 0

0 0 D3 0 0 Hj H=P +i vr5(pj ),
Pg PJ

(48)=0.
(52)

0 0 0 D4 0

Its form shows that there is no coupling between the elec-
tromagnetic and gravitational modes. This is due to the
fact that a gravitational wave propagating along the direc-
tion of the unperturbed magnetic field does not generate
electric currents in the plasma.

If we use the circularly polarized modes E„E~,A„and
AI, then we have a diagonal matrix D', i.e., the system of
equations becomes

0 0 0 0 D5 where P denotes the principal part. The integral in (51)
then becomes

The components of the matrix D contain singular in-
tegrals which give rise to Landau damping (D5) and cy-
clotron damping [D (i = 1,. . .,4)]. The electromagnetic
modes have been considered by Van Kampen and Felder-
hoff, among others, ' and we consider only the gravita-
tional modes.

Qwing to the similarity of the two circularly polarized
modes, we calculate explicitly the frequency and damping
for A„only, and simply quote the result for AI.

Substituting (40) into (34) and (35) and then using (42),
we obtain

I~I~
~~

~ j I I

~
JIHJ m HJ(ull )'dU =I dv—~ p. —~ kmj(vll —u+2u )

+imHj(u —2uLj) .

The Hilbert transform of HOJ(ull ) is defined by

m HJ(ull)HJ*(iv)= P f dullle —cc
Uii

—M

and the dispersion relation (51) can then be written as

(53)

, cBO im. cmjc2 —u2=+ —' + g —u[H*(u —2uL. )+H.(u —2uL )] - .J
J

We assume that the modes are slowly decaying so that

u =u, +iu;

with u; &&u, . The dispersion relation can then be written in the approximate form
4 2 3, cBo l 7T cmj

c —u„—2iu;u„=X —, + g u, [HJ*(u, 2ulj)+Hj(—u„2uL j)] . —
k j 2k

(55}

(56)

(57)

and from the real and imaginary parts we get for the right
circularly polarized mode

0

k c

and

u. =—
l

2m G g mj. Hj(uq —2ut j- ) .
k c

For the left circularly polarized mode, AI, the same pro-
cedure yields



PROPAGATION OF GRAVITATIONAL WAVES IN A. . .

c~—u„~= 3B0~+ u, g mj HJ*(u„+2ul, )
k c J

ug = — g mj. HJ(up +2ul j )
2m 6

3 J J (61)

resonant damping for left and right circular polarizations
occurs only for antiparallel magnetic field directions. In
both cases the resonant damping factor is given by

1/2 3/2

u= —78- — c 2

QPLj

We find therefore that the normal modes (which in a
vacuum were A+ and A x) have been changed due to the
presence of the magnetic field into the circularly polarized
modes A, and AI, propagating at slightly different phase
velocities [compare (58) and (60}], and both slightly
damped.

From Eqs. (59}and (61) we can calculate the strength of
the damping. Evaluating the integral (50) using (46), we
obtain

HJ(u, +2uIJ)

nC
3/2

27
exp

&mJ

mJ(up+2uif )
(62)

2v

To obtain resonant damping we require u„=-+2uJj in
order that the exponential in (62) is not very small, i.e.,

I

2m' oo oo

A+ =(X E&+(X g f f f pll pygj~dplldpjdp,
j J

or, in CGS units we obtain the following damping time
for the waves:

Q)Lj
ID — -7&&10 }/2 3/2 sec .

mLju; pf T mj

The damping is almost negligible; for instance, in the
interstellar medium (B0=10 G, n =10 cm ), the
damping time will be of the order of 10 ' sec for waves
with frequency near the ion resonance, and 10 sec for
waves near the electron resonance.

IV. CASE OP PERPENDICULAR PROPAGATION

In the case when the wave perturbations travel in a
direction perpendicular to the unperturbed magnetic field
Bp(8=m.j2), Eqs. (19)—(27) become

(63)

77 QO QO

A x — S E +S g f f f pllpJ sinpgj' dplldpJ dp
j J

e 2m' oo oo

E-=pAx —&pX f f f Pllpigjdplldpidd,
j J

2m'

E„= p"A+ ~py— f, f, f P.'».vgj*dplldpide ~

j J
~ 2'

Ez —Spy f f f pg cos(() gj dpi ldpydf,
j J

with

x x ck3Bo ck3$0S'=, , a"= u', S"= S', P"=ck3BpP,
(kp)' —(k3}' (k, )'—(k, )'+ —,' Xc'B,' kp ko

(64)

(65)

(66)

(68)

with gJ given by

df pj 1 e kpq
2

px
2

kp~ p~~~i
2

gJ —
o

——pll«~+, , (roi Ey —mgEz) —— pll' A++ iA
Qp mc cg 2m(N —till ) ' 2 2 m(~ o, 2)

1 2 kpllpi+ —tE„—— Ey tE, —
mc 2 m co(co —Q)L ) co —col

co kpl+—
2 2m(co —col )

p~~
—p~/2 pi p(~pi+ + + &~x

4(CO —26)L ) QP —ML

1 e+
mc 2

kPllpi .— Pi
mes(co+col )



P. G. MACEDO AND A. H. NELSON 28

QP kJ l+—
2 2m (~+~, )

P~I
—P~ ~ P~+ + + &~ x .e-

CO 4(CO+2rdL, ) co+~L,

2lf+ C 2lf+ C e 3lf+ C (69)

where c4 to c7 are functions of p~r, pz, k, m, 2+, 2x, E» Ey and E If we now define the quantities I „~J~ as being the
integrals

(j)= f f U~jvjI'oj'dU~~dvs (70)

with

Oj
FPJ =

Bp

then, since FOJ are even functions on the variables Uz and U~~, I,J~~~ will be zero when n is odd:

I2n + lm (j)

I2„~j~&0, m, n integers .

If we substitute (69) into Eqs. (63)—(68) taking this fact into account, then the system of equations becomes

(71)

(72)

A+ a"E»+2ma' ——g
~ C

ek~~j iek—mjI23 + + 2 2 I23JEy —
2 2 I23JE,

J
J $(N —SL ) 6 —

COL,
.

J
(73)

mJ 2 coLjA „= 5"E„—m5+ — m. co Iq3 A ~ lk Iq3 E„—
c ' ' coJ

eJ mJ keel j eJE„=P"Ax 2mPQ —
~ q q Ip3jA x + Ip)~E„

mJ co

(74}

E» ———P"A+ +n.PQ
C (CO —

COL& )

kcoL&(co +2coij ) 2ej
I23jA+ — I21j(d»E» ~rdLjEs}co' —4coL, .

J
(76)

2e m- cocoLj k 2ej
E,= ivy'— — I~3jA+ + I~,j(djLjE» icoE,)—

C (Cd —NLj ) Cd —4COL& mj
(77)

with

nc
2''m J-

and in this case the matrix D" is quasidiagonal of the
form

AC 7
(78} Di"i Die

D2') D22 0

0 0

0 0

In this case we can write the matrix equation (33) in a dif-
ferent form by exchanging rows and columns in matrix D
in such a way that the system can be written as

D"= 0

0

0

0 D3'3 D34 D3'5

0 D4'3 D44 D4

D53 D54 D55

(80)

D"= 3+ —0

From the theory of the propagation of electromagnetic
waves in a magnetized plasma, we know that for waves
propagating in a perpendicular direction to the unper-
turbed magnetic field, there are two wave modes: the or-
dinary wave which is a purely transverse mode linearly po-
larized with the wave electric field in the direction of the
unperturbed magnetic field and the extraordinary wave
which is an elliptically polarized mode with the plane of
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the electric field ellipse perpendicular to the direction of
the unperturbed magnetic field.

The structure of the matrix D" shows that there is a
coupling between the A x gravitational mode and the ordi-
nary electromagnetic wave, and also between the A+ mode
and the extraordinary electromagnetic wave.

The two new types of coupled modes will be referred to
as the gravi-electro ordinary mode and gravi-electro ex-
traordinary mode, respectively.

Physically, the existence of each coupling is connected
with the fact that the anisotropic perturbations of the dis-
tribution function induce drifts in the electrons and ions,
which in turn generate an electric current and hence a per-
turbation in the electromagnetic field. In addition, as
mentioned by Gerlach, the existence of an unperturbed
magnetic field on its own couples the two fields.

We can see from Eqs. {73)—{79)that for high-frequency
waves (co »coLJ ) the contribution of the ions to the disper-
sion relations is negligible compared with the contribution

of the electrons, since the terms due to the ions are much
smaller than those due to the electrons in view of
nz; ))I,.

D&'i D&z
det D" D"

21 22
=0

from now on, we will be considering only the propagation
of high-frequency waves, and therefore we will use coL,~&
instead of mL,, and ~~.

Now, substituting for D &'i, D &z, D2'&, and D22 from Eqs.
(74) and (75) and calculating the determinant we obtain
the dispersion relation

A. The gravi-electro ordinary (GEO) modes

The dispersion relation for these modes is obtained from
the condition for nontriviality of the first subsystem of
Eqs. (74) and (75), i.e.,

(co —co& —c k )(co —c k + —,cicoL )(co —coL, )
2 2 2 2 2 2 2 l 2 2 2

C2

where (co&
——plasma frequency)

I IC
C) =47TG

2 ' C2 =
e 7"

l

and Lifshitz' )

cO2C2 A X

4G
(84)

We can obtain the ratio of the amplitudes of the perturba-
tions 3x and E„ from Eq. (75), viz. ,

e(co —co~ —k c )
(83)

rkcocoL [c2+2co& l(co —coL )]

From this we obtain the ratios of energy fluxes of the
perturbed gravitational and electromagnetic fields (Landau

I

c] is a dimensionless number of the order of 10 ", so, in
order to understand better the behavior of these modes, we
will expand the dispersion relation as a power series in c~.
To first order in c~ we have two solutions for k corre-
sponding to the two different types of wave modes.

1. Quasielectromagnetic mode To firs. t order in c~ its
dispersion relation is given by

CO

c k =(co —co ) 1 —ci22= 2 2 COI

t 2( 2 2)

2 4
2 co&

(co —coL ) — +
C2 CO —COI

2 2 2 (85)

(86)

We can see from this dispersion relation that this mode behaves almost as an electromagnetic mode due to the smallness
of ci, except for the case when co-~I in which case the electromagnetic-gravitational coupling becomes stronger and the
expansion in powers of c ~ ceases to be valid.

Using Eqs. (85) and (83) in (84) for the case of co away from the near vicinity of COL and provided co »co&, we obtain

ws coL, (co —cop )[co —cot, —cop Ic —co~ Ic2 (co —coL )]2 2 2 2 2 2 2 4 2 2 2 2

co~ (co —COL ) [1+(2/c2)co~ /(co —coL, )]

We can see from (86) that the relative energy flux of the
perturbation in the gravitational field compared with the
energy carried in the electromagnetic field grows when co

approaches coL and goes to zero when co approaches co&.

Defining the coupling width (CW) for a wave mode as
the width of the frequency band 5co for which

wg/wem = 1 (87)

at co =coR +5co/2 (where coR„ is the resonance frequency)
then, the coupling width for this mode is obtained from

Eq. (86) and is

C2
(88)

For example, in the interstellar medium col —10 Hz and
C2 —10, so we obtain for 5co a value of 10 Hz. This
frequency band is too narrow for this coupling to be phys-
ically significant.

2. Quasigrauitational modes. To first order in c&, the
dispersion relation for this mode is



2390 P. G. MACEDO AND A. H. NELSON

2

k c =co + coL (co —COL ) co +
co& (Co —COL )

6) CO&

(COL, +co& )
C2

2+ ~
C2 6) —6)L

(89)

This mode has a dispersion relation which nearly corre-
sponds to the dispersion relation for a gravitational wave
propagating in a nondispersive medium. In general they
behave almost like gravitational waves in a nondispersive
medium except in a very narrow frequency band near the
Larmor frequency ~L, where the coupling is stronger.

Using (89) in (83) we obtain for this type of mode, away
from the near vicinity of coL,

D3'3 D3'4 D3'5

det D43 D4'4 D4'5 ——0 .

s3 D54 Dss

(91)

We can see from (90) that in this type of mode, the cou-
pling is stronger where the temperature is higher. It also
increases when ~ approaches ~1 in the sense that the rela-
tive amplitude and therefore the relative flux of energy in
the perturbation of the gravitational field decreases when
co approaches col . The CW for this mode can be calculat-
ed using (90) and is the same as for the previous mode and
given therefore by (88). This effect is therefore also negli-
gible in the interstellar plasma.

B. The gravi-electro extraordinary modes

The dispersion relation for these modes is obtained from
the nontriviality condition of the second subsystem of Eqs.
(73), (76), and (77), viz. ,

Ng 2 4
COp

e 462 co COL [c +22 &col(co —COL )]
(90)

If we now substitute for D33 D34 D35 D43 D44 D45 D53,
Ds4, and Ds's from Eqs. (73), (76), and (77), and calculate
the determinant we obtain the following dispersion rela-
tion for these modes:

2 k2 2

(c k —0)
2

Ct)p

2 2 2 2
2 z 3 2 2 2 2 z ' '3(~ ck)+~a—4 (Co —COL —

CO& )(Co —COL )+2C k COL CO& ) +-
C2 C2 C2 Q7 —4@PL

where

2 2

1—COp

CO

2
COL

CO

+C k COL Ci(CO COL )+2 Co—2 2 2 2 2 I 2

2
COL

CO

N —coL —co& $ cg) +2col —co
2 2 2 2 2 2

+——, ,
' =0, (92)

COp C 2 Qj —4Q)L

We obtain the ratios Ey/3+ and E, /3+ from Eqs. {76)and {77),viz. ,

me cokcoL (3/c2)coL co~ +(co cot cop—)[(co—COI )(co —4coL )+(—1/c2)(co +2cot )cop ]
e(co —4~L )

2 2
coL co& +(co —COL —co& )[co co& —(co —k c )(co —cot )]2 4 2 2 2 2 2 2 2 2 2 2

and

E, mc kcot cop 3/cp[(co ck )(co COL ) co co—]—[(co —coL )(c—o 4COL —)+1/C2(co—+2coL )co ]
e(co —4cuL )

2 2
Co& +(Co —

COL,
—

CO& )[Co co& —(Co —k C )(Co —COL )]2 4 2 2 2 2 2 2 2 2 2 2

(94)

Prom these ratios, we can calculate the ratios of the energy Auxes in the gravitational and electromagnetic fields as be-
fore, viz. ,

ling CO2C 2 ~ +
m, 46 (95)

Now, for the modes whose dispersion relation is given by (92) we can use the same procedure as used for the GEO modes,
i.e., expand in powers of c~.

Again we have two types of modes.
1. Quasi electromagne-tic mode.
For this mode the expansion yields
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ck=Q 1—
PCO —CO

2 2 2
CO —COL —COP

2
COP

CO +2COL —
COP

2 2 2

2+ 2 2C2 CO —46)1

26)P 3COP M +2COI —
COP

C2 (Co —COL )(Cd —4COL ) (CO —COL —
Cdp )(Co —4COL )

2 2 2 2 2 2 2 2 2 2 (96)

We can see using (96) in (95) that the ratio of energy fluxes for this mode is

n.co (co —co ) 0P P

C ~co COL (Co —4COL ) [(Cd —
Co& ) —Co COL )]

coL'+4co~' t

2 2 2
PCO —COI —CO

3cOP cO +2coL —6)P

(co —coL )(co —4coL ) (co —coL —cd~ )(co —4coL )
2 2 2 2 2 2 2 2 2

2 2 2 2
COP Ql —

COL
—

COP
CO —COI —COP c2 ~ —4~L2 2

2cOP

c 2

2 4

(M ML —M—)(& —4ML )+ (M +2&L —& ) & — & (& —4&L )+ 1—2 2 2 2 2 'P 2 2 2 2 2 2 2
P c2

P P
C 2

COL
2

In general this mode behaves almost like a pure electromagnetic extraordinary mode except for frequencies in the near vi-
cinity of cuI and coP when the gravitational-electromagnetic coupling becomes stronger.

The CW for this mode is given by

~C] Cop
5CO =

C2 COL
3

which is again negligible in the interstellar plasma.
2. Quasi gravitationa-l mode. For this mode, we obtain first order in c

~ the following dispersion relation:

(98)

2

ck =~ ~ 1+ C)COg

2 2
PCO —CO

Cd —COL —Co 1 3( Cd —COL ) —Cd 4CO ( Co —CO )
2 2 2 2 2 2 2 2 2

P P P P

COP
2

co —4coL co mL
2 2 2 2

Cd& (CO +2COL )

2 2 2 2
C2 (Co —COL )(Co —4COL )

2

(99)

As we can see from (99), this mode behaves as a pure gravitational wave in a nondispersive medium except for a narrow
frequency band near 2coL where the coupling again gets stronger. The energy flux is dominated by the gravitational field
since substituting (99) in (95) (outside the near vicinity of coL, 2coL, and

cd& ), we obtain

ETC ) COL
2

4( 2 4 2)2( 2 2)2
P

2 2
2co

COL Co )(Cd COL ) + (Co + ~L Cd ) ~L Cd (~ 4COL
2 2 2 2 2 2 P 2 2 2 2 4 2 2 P

P C 2
P P c2

The CW for this mode is also given by (88) and this coupling is negligible in the interstellar plasma.

(100)

V. CONCLUSIONS

From what we have already mentioned, we conclude
that gravitational waves are coupled to electromagnetic
waves in a magnetized plasma and can be cyclotron
damped, but the weakness of the damping as well as the
narrowness of the frequency band over which the coupling
is significant makes these effects physically negligible in
the interstellar medium. One can therefore conclude that
these effects put no constraints on the frequency bands
which should be explored in order to detect gravitational
waves.

However, the subject is far from being thoroughly stud-
ied since the case when the waves propagate at an arbi-
trary angle to the magnetic field was not considered. This,
as well as the propagation of the coupled waves in weakly
collisional plasmas, will be a subject for further study.
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