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The propagation of gravitational waves parallel and perpendicular to a magnetic field in a col-
lisionless plasma is considered. In the parallel case weak cyclotron damping of the gravitational
waves exists, while in the perpendicular case there is coupling between gravitational and electromag-
netic waves due to the generation of currents by the gravitational wave.

I. INTRODUCTION

In this paper we study the propagation of gravitational
waves in a tenuous plasma containing a constant uniform
magnetic field. We use a kinetic description for the plas-
ma, and point out the existence of small cyclotron damp-
ing of the gravitational waves, as well as coupling with
electromagnetic waves.

Two cases are considered: the case where the wave per-
turbation propagates in the direction parallel to the mag-
netic field and the case of the perpendicular propagation.
There have been several studies using a kinetic theory for-
mulation of the propagation of gravitational waves in ma-
terial media,' ~3 as well as studies of the coupling between
gravitational and electromagnetic waves in a magnetized
vacuum®> and near charged black holes,® but to our
knowledge there has been no analysis of the propagation
of these waves in a magnetized plasma.

As well as the coupling found in a magnetized vacuum
we find another type of coupling, which involves the gen-
eration of electric currents in the plasma by the perturba-
tion in the charged-particle trajectories due to the gravita-
tional wave.

II. THE FORMALISM

We consider a tenuous collisionless plasma containing a
constant uniform magnetic field ﬁo.

We describe the plasma by a particle distribution func-
tion from each species, labeled with index j (j =i,e for the
ions and electrons, respectively), viz., f;(x%,p®), where x*
and p® are the four-position and four-momentum coordi-
nates in phase space. The particles move in the fields
described by the metric g,,(x%) and the electromagnetic
field tensor F,,(x®), which together with the distribution
functions obey the set of coupled Einstein, Vlasov, and
Maxwell equations.

In the unperturbed state, we assume the characteristic
length of the background curvature (due to the energy-
momentum of the plasma plus the unperturbed elec-
tromagnetic field) to be much larger than the wavelength
(A) of the waves considered, which means that for the pur-
poses of this study we can consider the unperturbed space
to be flat, i.e.,

g;,tov)=7]uv’ (1)

where n,, is the Minkowski metric.
Using a reference frame where the unperturbed magnet-
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ic field ﬁo is in the xz plane, and makes an angle 6 with
the z direction, the unperturbed Maxwell tensor will be

0 0 0 0
0 0 —Bycosd 0

Fow=c¢ |0 Bycos® 0  —Bsind 2)
0o o0 Bgsin@ 0

We also assume the unperturbed distribution functions are
Maxwellian, i.e.,

fo=rAe Pa?" 3)
where
Ua
Pa=Tr -

U, is the four-velocity of the rest frame of the plasma, k
is Boltzmann’s constant, and T is the temperature of the
plasma.

If we consider the plasma to be perturbed slightly, we
can write

f=f0+f_, gyvznyv‘Fth )

FMVZF(O)ﬂV+FpV >

where the overbar denotes a perturbation, and we use the
usual symbol 4,,, for the perturbation of the metric.

Einstein’s weak-field equations, using a Lorentz gauge,
are then

887G
o Ty, (4)

OPh = —

where

"= TI(CTH) + Tﬁxatter) =8 aﬂF i B %g qu aBF ap

: 3
+ ? I8 ,{,—’jp"p"d“p , O

and where fP denotes integration over all the four-
momentum space and

[ (x%p)=fi(x%p®)8(ptp, —m;’c?) . ©

Here m; and e; are, respectively, the rest mass and charge
of the j-species particles. Maxwell’s equations are
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a (\/——-j_g—F“v):—" vV —8 JY
ax# c
_v—z Y
CE3 LB o
and
oF, oF oF
by p o, ®)
ax ox” oxH
where g =detg,,=—1 +0(h?) in the transverse traceless

(TT) gauge which we will use.””® Note that provided the
phase velocity of the wave in the plasma is only slightly
different from c, the use of the TT gauge is a good approx-
imation.’

Finally Vlasov’s equations are

aaff

af;
P =0, ©)

ap*

e.
p + | = FppP~T,pfp"
where I'%g, is the Christoffel symbol.
There have been many®~!3 studies of the propagation of
electromagnetic waves in magnetized plasmas using a ki-
netic description, including the effects of both Landau and
cyclotron dampings. They fall into two categories, those
using a method due to Landau which involves a Fourier
transform in space coordinates and a Laplace transform in
time to consider the initial-value problem,g'12 and those
due to van Kampen which uses a “method of stationary
solutions,” which essentially involves a Fourier analysis in
both space and time coordinates but which can solve the
initial-value problem as well.!% 113
In this paper we use this second method, which seems
to us more appropriate in that it retains the symmetry be-
tween space and time.
If we Fourier analyze the solution of the linearized
: J

87G Nua
[(k3— (ko) Ay = — :4 ) ";J
J
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equations with respect to all four-coordinates x %, then one
Fourier component of the solution will be

- ik _x©

fi=g;(p%e " ,

= ik x*

Fuy=cpe ™, (10)
— ik x

huyy=eye

cuy and e,, being constants, corresponding to a plane
wave. We assume (without loss of generality) that the
plane wave propagates in the x 3=z direction, i.e.,

k®=(k%0,0,k3) . (11
Cuy has the components
0 E E E
—E; 0 ——cﬁ, cEy
“w|_E B o -d 2

_E —cB, B, 0

where E and B are the amplitudes of the perturbation in
the electric and magnetic fields.

Also, using the Lorentz-gauge condition #*¥,=0 and
since we can, to the approximation of this analysis, use the
TT gauge conditions, e, reduces to an approximate form

00 0 0
04, 4y 0

ew=10 A4y, —A, O (13)
00 0 0

Linearizing Egs. (5), (7), (8), and (9) with respect to the
perturbed quantities, the first-order equations in the per-
turbations are then

8 « = =
—.v fPffP pPd*p + FuoF(0),® +F 0y Fra

— M FapF 8 +hPF 00 F 018 — 3 Muvh “PF 010y F (08" — T huvF (00asF 8 | » (14)
_ e;
i(kon®®+k3n**)(n*PFapg+hPFup)=— 3, z_”{l_ fpffpvd4 ’ (15)
J J
K*F,,+k*Fy, +kFF,, =0, (16)
and
. _ e af; e; _ Af i
l(koP0+k3P3)fj+‘CLF(0)HBPBapi = Fﬁayl’ﬂpy—Tj(haaF(O)aﬂ+"laaFaB) ap‘z . an

Owing to the axial symmetry of the physics around the direction of the unperturbed magnetic field, we make a coordi-
nate transformation in p space to cylindrical coordinates po, p||, p1, and ¢, i.e.,

p1=p)|sinf+p,cosé cos¢ ,

P> :PLSin¢ ’
p3=p||cosO—p,sinb cos¢ .

Using (18), (12), and (13) in (14), (15), (16), and (17), we obtain the set of equations
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X g_;‘ . 2 14 2 5 .
Ay = =1 (p;sinf+p cosB cos¢)°d*p —c*ByB,sinb | , (19)
* [(ko)*—(k3)* ]+ 5Xc By cos?0 ?f” m; Pi P 9rd’p 07
X g/
Ay = 2L (p|sinf+p,cosO cosd)p, sing d*p —c?ByB,sinb | , (20)
X [(ko)z—(k3)2]+XczBoz(—;—cosze—l—%sinze) {? fp m, P P ¢ )p,sind oby
B,=0, 1)
k3Ey=kocB, , (22)
k;E, = —kocB, , (23)
E. =— ko iy & f g} (p) sinf+p, cos@ cosd)d*p —ck3ByA 5 sinb | , (24)
x (k0)2_(k3)2 G cm; poJ I 1
E,=— ko iy % f gip.sing d*p +ck;ByA . sind (25)
'y (ko)z—(kg,)z G cm; poirL 3 + s
E, =—l—2i f g} (p||cosf—p sin6 cosp)d’p , (26)
‘ Cko j mj pet
. 0 . ag] a
i[kop®+k;(p)|cos@—p, sind cosp)lg; +e;Bo—— = —¢;(p%) , 27)

a¢
where we have used (21) in (19) and
877G

X =

pra g/ =g;8(p°pe—mj*c?), d*p=p dp°dédpdp,

since the unperturbed distribution functions f; are assumed to be isotropic and we take U%=(—c,0,0,0), it follows that

oy Uy 3y
op' o> 3p’

=0.

(28)

Therefore the only nonvanishing component of 3f,;/3p* is 3f¢;/dp %, so that the function ;(p®) appearing on the right-
hand side of (27), which is the third term of the left-hand side of (17), becomes

e ~ ~ ~
P;(p*) = —c’—[Ex(p||sin9+plcosl9cos¢) +E,p, sing + E,(p| cosd—p,sind cosp)]

iko

+ {A, [(p)sinf+p cosb cosp)*—p,*sin’p]+2A4,p sing(p| sinf+p cos6 cosp)}

Now, following Bernstein,” Vlasov’s equation (27) can
be integrated by dividing it by eB, and multiplying by the
integrating factor

kop®+k3p| cosd k;p,sinf
. a 3 ] - i
Gi(p®)=exp |i /B ¢/B, sing
(30
so that it becomes
3 Gi¥;
Gig;)=— 31
EY; (Gjg;) B, (31)
and therefore the solution of Vlasov’s equation is
1
= GiY;do . 32
& ¢;B,G; f i¥idé 32

Now, substituting (32) into (19), (20), and (24)—(26), we

9fo;
ap°

(29)

T
obtain a set of coupled equations in 4, 4, Ex, E,, and

E, which can be written as

A,
Ax

V)
L0
Il
[«

E,

j

N

]

where D is a 5X 5 matrix. From the determinant of D we
obtain the dispersion relation of the waves, and hence any
possible damping, while Eq. (33) yields the coupling be-
tween the gravitational and electromagnetic waves for
each mode.
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III. CASE OF PARALLEL PROPAGATION

When the wave travels parallel to the unperturbed magnetic field ﬁo (i.e., 6=0), Egs. (19), (20), and (24)—(26) become

o © © 27 g"
A,=a3 f_w f_w fo fo ﬁpﬁcoszd)dq&dpldp”dpo , (34)
j i
@ ® o p2m gl sin2
Ax=a [ [T S S S dgdp dp " 39
j
~ . o © © 27 g; 2 0
Ex=—zﬁ2ej f_m f——mf() fo ij cosp dédp,dp)dp” , (36)
J
~ . © © © 27 gj* 2. 0
Ey=-—zﬁzej fw f_w fo fo ;—n;pl sing d¢ dp dp dp” , (37
j
~ . © © © 2m gf 0
Ezz—l'}/zej f—m f_w fo fO ——cmijp”dlﬁdpldpndp ’ (38)
T
where Using k for k3, and defining the wave frequency
Y w=—koc, we can define the new parameters, u =w/k
a= , (phase velocity of the waves) and u;;=w,;/k, where wy;
(ko)?—(k3)*+ ‘;‘XczBoz is the Larmor frequency of species j, i.e.,
(39)
B ko 1 op; = EjBo
Tk =k T ke om
Equations (43) then become
and from (29), (30), and (32) we have
Ej=hkm;loy—u), &y=km;(w)—utu),
e | B P By By
&i l[ c | § P i e Ul ¢ nj=km;(w —u—u;), 8
ko o A dfo; uy =k o) —u+2uL,)
+i——p12 ____e21¢+___e—21¢ Y .
4 W v; p° vy =kmj(v) —u—2up;) .
(40) In the nonrelativistic case, the Maxwellian distribution
: functions fy; take the usual form
In Eq. (40) we have used
~ o~ ~ o~ =~ ~ 3/2
=E,—IiE,, E,=E,+iE, , 41 m; () *+v,»)
Ei=E;—iE, r=Sx il @0 foj=n; Ey— exp ——mjﬂzhl 45)
A=A, —id,, A=A, +idy , 42) e 4
with the subscripts r and / denoting right and left circular- with
ly polarized modes, respectively, and r=kT,

Ei=kop’+ksp®, &i=kop®+ksp*+e;B,,
’T]] =kop0+k3p3——ejBo , (43)
py=kop®+ksp*+2e;By, v;=kop®+kyp®—2e;B, .

If now we assume the plasma to be nonrelativistic (i.e.,
the random velocity of a particle v <<c), we can write

- 0_
pPLr=m;vy, p|=mv, p =cmj .

where n; is the number density of particles of species j.
Hence the derivative of f,; with respect to p° is

3fo;
Fy=" 3t
3/2
_ e | mi (W) +v,?)
- T | 27T P | —my 27 - 46
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Substituting (46) into (40) and taking account of the func-
tion fo;(v)|,v,) being even both in v, and v||, the integrals
over some of the terms in Egs. (34)—(38) vanish and we
are left with a system of equations whose matrix D is
quasidiagonal, i.e.,

D,D, 0 0 O
D,y Dyy O 0O O

D=|0 0 Dy Dy O 47)
0 O Dy Dy O
0 0 0 O Dss

Its form shows that there is no coupling between the elec-
tromagnetic and gravitational modes. This is due to the

fact that a gravitational wave propagating along the direc-

tion of the unperturbed magnetic field does not generate
electric currents in the plasma. _

If we use the circularly polarized modes E,, E;, A,, and
A;, then we have a diagonal matrix D', i.e., the system of
equations becomes

D, 0 0 0 O ||4
0 D, 0 0 O ||4
0o oDy 0 0|E|=0. (48)
0 0 0 D, 0 ||E
0 0 0 O Dil||E,

The components of the matrix D; contain singular in-
tegrals which give rise to Landau damping (D5) and cy-
clotron damping [D; (i=1,...,4)]. The electromagnetic
modes have been considered by Van Kampen and Felder-
hoff, among others,”~!*> and we consider only the gravita-
tional modes.

Owing to the similarity of the two circularly polarized
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A,=a§ f_w fo fo “—jFOjPLSd¢dP1dP|| ,

8cm;
(49)
where only nonzero terms are retained.
If we define H;(v||) by
H;(y)= fowFE,j(v”,vl)vlsdvl R (50)
where

Fojv),v)=Foi(p|,p1) »

using this, together with a defined in (39) in (49), we ob-
tain the dispersion relation from this mode by canceling
AI ’

mTCw

ck2—w?=X %c“Boz—i— 4-[—«; “—dv“

(51

Since the integral in (51) is singular, we have to analytical-
ly continue the integrand H; /u; into the region where the
poles exist in order to employ contour integration.'!

Equivalently we can use the following representation of
the integrand (see Asseo et al.’):

H o8,
=P—+ind(u;) , (52)
Kj Hj

where P denotes the principal part. The integral in (51)
then becomes

© i H(U )
SO, tay=p [ >
—o —o km;(v) —u+2u;)

dU“

+i77'H,-(u—2uLj) . (53)

The Hilbert transform of H;(v,) is defined by

modes, we calculate explicitly the frequency and damping . 1 » H;))
for A, only, and simply quote the result for 4;. Hj(w)= i—;P N — (54)
Substituting (40) into (34) and (35) and then using (42), Il
we obtain and the dispersion relation (51) can then be written as
I
c*By? imem;?
cl—ul=x13 P +2 e L u[H} (u —2up;)+Hj(u—2ug;)] | . (55)
J .
We assume that the modes are slowly decaying so that
u=u,-+iu; (56)
with u; <<u,. The dispersion relation can then be written in the approximate form
4 2.3
c'B iTcm;
2 —u,?—2iugu, =X {1+ k2° +2 5 —u,[H} (u,—2up;)+H;(u, —2up;)] J (57)
J
and from the real and imaginary parts we get for the right and
circularly polarized mode 2
U= 277-62m3H(u 2ug;) (59)
i=— AU, —2uy;) .
cl—u’= 4:-2G 3B,? + u,EmﬁH}"(u,—Zul_j) k% 57 !
5

(58)

For the left circularly polarized mode, 4;, the same pro-
cedure yields
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47G j
c —u,z_—kT%— 3Boz+%u,2m3H (4, +2ug;) |
J
(60)
2 2
u,~=——k’—§§ S m H(u, +2ug;) 61)
J

We find therefore that the normal modes (which in a
vacuum were 4, and 4 ) have been changed due to the
presence of the magnetic field into the circularly polarized
modes A, and A4;, propagating at slightly different phase
velocities [compare (58) and (60)], and both slightly
damped.

From Egs. (59) and (61) we can calculate the strength of
the damping. Evaluating the integral (50) using (46), we
obtain

Hj(u,:tZuLj)
3/2 2
m;(u, +2uy ;)
__ nhc 27 exp IO Abed detuded 9 R (62)
T | mTm; 27

To obtain resonant damping we require u, =F2u,; in
order that the exponential in (62) is not very small, i.e.,
I

2387

resonant damping for left and right circular polarizations
occurs only for antiparallel magnetic field directions. In
both cases the resonant damping factor is given by

172, 3/2

Gnrm; ™
u;z—7.8 2

Cl)Lj
or, in CGS units we obtain the following damping time
for the waves:

[4
OrjU;

ij

~TX10V——L—
172, 3/2
nT “m;

t D~ SecC .

The damping is almost negligible; for instance, in the
interstellar medium (By=10"°% G, n=10* cm™3), the
damping time will be of the order of 10! sec for waves
with frequency near the ion resonance, and 10%* sec for
waves near the electron resonance.

IV. CASE OF PERPENDICULAR PROPAGATION

In the case when the wave perturbations travel in a
direction perpendicular to the unperturbed magnetic field
Bo(6=m/2), Egs. (19)—(27) become

e , 1 27 © ©
Ap=a'BEyv+a 3— [ [ [ pipigidpydp.ds , (63)
P ,

e s 1 27 © © .
Ay =—8"E,+6 ?Z]- fo fo f_wpnplzsmtﬁgfdpndpldqi , (64)
~ X e; 2T ) ©
Ec=pax—iB3—— [ [ [ _pupis} dpydp.ds , (65)

j m;
~ ” . ej 27 © © .
E,=—B A+_15§% IR fo f_mplzsmd)gfdpndpld(i), (66)
~ e; 2 © ©
E=ivS—= [0 [, [ picosss} dpydp.dd , (67)
j cm;
with

X X Ck3.Bo Ck3.Bo

[ , r_ , a'= al, 811___—___81’ ﬁ”=ck B By (68)
(ko) —(k3)? (ko) — (k3 +Lxc2B,? ko ko e
with g; given by
afoi | 1 ~ kp,* e 1 p’ kp.’pje
o 1 oje | .Ex R = S F —wiE 4 2 Pl L P||9L .
&j 3pl | mc |o Pt +2m(m2—wi)(w1“ » —wik;) 2 il 2 A++m(caz—sz)lA><
1 |2 kpp1 ~ PL = .=
+ e { 2 | molo—wy) * w—of (E, —iE,)
kp p*—pi/2 »i’ PP ;
F23 1 I 1 1 oL . i¢
+ 2 | 2m(w—or) @ 4ow—2w;) A+ w—or x| e

k ~
+L e | P||PL iE, — Dy
mec | 2 molw+or) o+o

(Eﬂ—iﬁ,)]
L
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2_ 2 2
L@ kp. _P—pL/2 DL . PPy i, ]e"”’
2 [ 2m(w+wr) @ 4 w+2wy) w+or
+C4e¥ 4 Cse ¢4 Cee ¥t Cre 3¢ ] , 9)

where ¢4 to ¢, are functions ofp”, Pk w, A, Ay, E~x, E~y, and E;. If we now define the quantities I,,,(;) as being the
integrals

Lnni= f_w fo v{viFodvdv, , (70)
with
3fo;
Fsz‘b—o_ , (71)
/4

then, since F; are even functions on the variables v, and V1> Lijx) will be zero when n is odd:

Iy 4 1m»p=0,

. (72)
Iypym(jy7#0, m,n integers .
If we substitute (69) into Egs. (63)—(68) taking this fact into account, then the system of equations becomes
Ay =Byt 2ma 3T | mmypy Ay — Mg ik B (73)
" g J ¢ / 23j + w(wz—ijZ) By COZ—CI)LJ'Z 23j7z ’
m; or; ~
A X = ——8”Ex —TTSE‘EL [mjw2123jA X —lk"cj_1123}'Ex J ’ (74)
J
E,=p'dy 20831 ko 4 o4 49 1 B (75)
= — LT, ————— . — s ,
x X < Cz wz__ijz 23543 X mjw 21j6x
eim; ko0 +2w;;2) 2e; ~ ~
E,=—pB'A, +7B — ’ L= IjA, ——L 1 (0E, —ioEy) |, (76)
y B + ; 2(w2 or 2) (02—4ij2 2341 mj 21j y Ljfoz
2
~ eim; oo’k 2e; ~ ~
E,=—im St — L Inyjd y +—L1 (0 E, —ioE,) | , (77)
z 7’? A’ —wp2) 04w, B4 T, T OLEy z
r
with and in this case the matrix D" is quasidiagonal of the
form
ne
Iyy:i=—
2 27ij ’
(78) Dy D, 0 0 O
ncT ” ”
Iyj=——. Dy Dy, 0 0 O
n.mj ” ” ”
D"—_— 0 0 D33 D34 D35 . (80)
In this case we can write the matrix equation (33) in a dif- 0 O Dj Dy Djs
ferent form by exchanging rows and co.lumns in matrix D 0 0 DI DI DI J
in such a way that the system can be written as

From the theory of the propagation of electromagnetic
waves in a magnetized plasma, we know that for waves
propagating in a perpendicular direction to the unper-
(79)  turbed magnetic field, there are two wave modes: the or-
dinary wave which is a purely transverse mode linearly po-
larized with the wave electric field in the direction of the
unperturbed magnetic field and the extraordinary wave
which is an elliptically polarized mode with the plane of

Du

I
Il
(@]
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the electric field ellipse perpendicular to the direction of
the unperturbed magnetic field.

The structure of the matrix D" shows that there is a
coupling between the 4 . gravitational mode and the ordi-
nary electromagnetic wave, and also between the 4 , mode
and the extraordinary electromagnetic wave.

The two new types of coupled modes will be referred to
as the gravi-electro ordinary mode and gravi-electro ex-
traordinary mode, respectively.

Physically, the existence of each coupling is connected
with the fact that the anisotropic perturbations of the dis-
tribution function induce drifts in the electrons and ions,
which in turn generate an electric current and hence a per-
turbation in the electromagnetic field. In addition, as
mentioned by Gerlach,® the existence of an unperturbed
magnetic field on its own couples the two fields.

We can see from Egs. (73)—(79) that for high-frequency
waves (o >>wy;) the contribution of the ions to the disper-
sion relations is negligible compared with the contributiorll

(wz—mpz—czkz)(wz—c2k2+ e N —wp?)

2389

of the electrons, since the terms due to the ions are much
smaller than those due to the electrons in view of
m; >m,.

A. The gravi-electro ordinary (GEO) modes

The dispersion relation for these modes is obtained from
the condition for nontriviality of the first subsystem of
Egs. (74) and (75), i.e.,

” "
Dll DlZ

" . | =0 (81)
D, Dy,

det

from now on, we will be considering only the propagation
of high-frequency waves, and therefore we will use w;,w,
instead of &y, and wp,.

Now, substituting for D{j, D15, D;), and D;, from Egs.
(74) and (75) and calculating the determinant we obtain
the dispersion relation

2722 2
c c’kor w
-1 (co2—co,,z—c2k2)a)zwpz+czczk2(w2—mLZ)sz—czkzwpzsz—f-—2———%—;— =0, (82
C2 C w'—owp
r
where (w, =plasma frequency) and Lifshitz'4)
2 2
1 =47G—, = me W _ % | Ax (84)
e T = =
W, 4G | E,

We can obtain the ratio of the amplitudes of the perturba-
tions 4, and E, from Eq. (75), viz.,
A e(w?—w,?—k%?)
—= e (83)
E, Ttkooplc;+20,%/(0°—w?)]

From this we obtain the ratios of energy fluxes of the
perturbed gravitational and electromagnetic fields (Landau
_

2
2) oL

2 1
_cl —_—
wpz(coz—sz)

c k2=(w2—wp

w
(@2 —wp?)— =2
(4

¢, is a dimensionless number of the order of 10™% so, in
order to understand better the behavior of these modes, we
will expand the dispersion relation as a power series in c;.
To first order in ¢; we have two solutions for k2 corre-
sponding to the two different types of wave modes.

1. Quasielectromagnetic mode. To first order in ¢, its
dispersion relation is given by

] . (85)

4
2 %
022 wz—sz

We can see from this dispersion relation that this mode behaves almost as an electromagnetic mode due to the smallness
of ¢y, except for the case when @ ~w; in which case the electromagnetic-gravitational coupling becomes stronger and the

expansion in powers of ¢; ceases to be valid.

Using Egs. (85) and (83) in (84) for the case of @ away from the near vicinity of @, and provided » >>w),, we obtain

wg oo’ — w0’ —0L 0, /e’ — 0, /ey o — o )T 86
~c
we w02 —w [ 14+(2/c3)0, /(0 —o )]
I .
We can see from (86) that the relative energy flux of the  Egq. (86) and is
perturbation in the gravitational field compared with the Ve
energy carried in the electromagnetic field grows when w S ~ 1 oy . (88)

approaches o; and goes to zero when o approaches w,.
Defining the coupling width (CW) for a wave mode as
the width of the frequency band 8w for which

Wy /We =1 (87)

at @ =wResT 8w /2 (Where wge is the resonance frequency)
then, the coupling width for this mode is obtained from

C2

For example, in the interstellar medium «; ~10 Hz and
C,~10% so we obtain for 8w a value of 10~2° Hz. This
frequency band is too narrow for this coupling to be phys-
ically significant.

2. Quasigravitational modes. To first order in c¢;, the
dispersion relation for this mode is
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¢ wpl We can see from (90) that in this type of mode, the cou-
kc*=w’+ ——2—7‘*27 oo —wp?) w2+—2— pling is stronger where the temperature is higher. It also
wp (0" —oy increases when o approaches w; in the sense that the rela-

o’w.? tive amplitude and therefore the relative flux of energy in

— £ (wL2+wp2) the perturbation of the gravitational field decreases when

€2 o approaches w;. The CW for this mode can be calculat-

ed using (90) and is the same as for the previous mode and

given therefore by (88). This effect is therefore also negli-
gible in the interstellar plasma.

2 wzszcopz
¢} 0’—or?

(89) B. The gravi-electro extraordinary modes

This mode has a dispersion relation which nearly corre- The dispersion relation for these modes is obtained from

sponds to the dispersion relation for a gravitational wave  the nontriviality condition of the second subsystem of Egs.

propagating in a nondispersive medium. In general they  (73), (76), and (77), viz.,

behave almost like gravitational waves in a nondispersive w e

medium except in a very narrow frequency band near the D33 D3y Dss

Larmor frequency w; , where the coupling is stronger. det |Djy Dy Djs|=0. 91)
Using (89) in (83) we obtain for this type of mode, away

" ” n
from the near vicinity of @, D5y Dsy Dss

If we now substitute for D33, D34, D35, D43, D44, D4s, D5,

w 020 .t Dgy, and Dgs5 from Egs. (73), (76), and (77), and calculate
& _¢€c¢ — p2 5 5 - (90)  the determinant we obtain the following dispersion rela-
we  4GT w'or’[cr+20, /(0 —0p?)] tion for these modes:
J
2 j2c2 c c c1 3w?—c?k?) 2
(c2k2—Q) 9___1‘2_C__4__1_ (wz_sz_wpz)(wz_sz)+2€2ksz2wp2) & fr _ -:wp
w, c2 () 0°—4w;
2 2 2 2 2 2
c — — 2 —
+ck%0,? ey (0’ —0p?) +2— 0,1 d sz @ 1@ +2 L 7% |_o, (2
Co @p (&) w —4(1)L2
where
Q=e?| [1-22 | 2L / l—w"z_ﬂi
? o’ * w?
We obtain the ratios E, /4, and E, /A4 , from Egs. (76) and (77), viz.,
E, mciwkoy (3/c))wp’0,*+(0?—wp?—w,) (0 —0p N w0’ —40,?)+(1/c,)(0* + 20, Do,?] ©3)
A,  el0?—4w.?) a),_Zw‘,4+(w2—wl_2——a)p2)[w2wp2——(a)z—kzcz)(wz—sz)]
and
E, .mczku)LZa)pz 3/c2[(w2—c2k2)(w2—a)L2)—wzwpz]—[(w2~wL2)(a)2—4wL2)+l/cz(a)z—l—Zsz)wpz]
=i
A, e(w?*—4w.?) szwp4+(wz_mLz_sz)[wzwpz_(wz_kzcz)(wz_sz)]
(94)

From these ratios, we can calculate the ratios of the energy fluxes in the gravitational and electromagnetic fields as be-
fore, viz.,

Wy ot | Ay 95)
W, 4G Ey2+EzZ

Now, for the modes whose dispersion relation is given by (92) we can use the same procedure as used for the GEO modes,
i.e., expand in powers of ¢;.

Again we have two types of modes.

1. Quasi-electromagnetic mode.

For this mode the expansion yields
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22 cior? a)z—a)Lz—a)pz 1 w2+2a)L2—wp2
cki=011—— 2 2 - 2 2
" —wp @p (3 o —4w;
26(),,2 3wp2 w2+2wL2~mp2

C22

(0*— 0w *Nw?*—4w;?) (o —sz—wpz)(w2—4wL2)

2

-

We can see using (96) in (95) that the ratio of energy fluxes for this mode is

——~

Wg (1)

w, 1rcop4(m2—wp2)20
00’ — 40 ) [(0*— 0, — 0’0, ?)]
2 2 4 2 2 2
) 0] or“+4o
(@ —0p— 0, 0?—40; )+ L (0?+20.*—0,°) | 0*— |0,X0? 402+~ |1 — ——— L oL’
P P P 2 2 2
Cy Cy " —wy, —(l)p
p)
0,? 30*—20;’—0,> 20, 3w,? 0’ +20. -0,
P S S M p <% p _ P
L P ¢ 2_ 40,2 2 2 2)( 2 2 2 2 2)( 12 2
2 w*—4dor ¢y o°—o N —d40,") (0°—0 " —0," ) 0" —40L7)
97)

In general this mode behaves almost like a pure electromagnetic extraordinary mode except for frequencies in the near vi-
cinity of w; and @, when the gravitational-electromagnetic coupling becomes stronger.

The CW for this mode is given by

Vi oyt

S = 3 (98)
() r
which is again negligible in the interstellar plasma.
2. Quasi-gravitational mode. For this mode, we obtain first order in ¢, the following dispersion relation:
2.2 2 crop? wz_sz_wpz 1 3(wz—coL2)—a)p2 4wp2(co2—a)p2) 2 a),,z(w2-+—2cuL2)
cki=0 114+ — 2 2 . 2 2 2 2 T 272 2y 2 2 :
0*—wp o, c w*—4o; ooy ¢ (0" —wp No"—40L”)

(99)

As we can see from (99), this mode behaves as a pure gravitational wave in a nondispersive medium except for a narrow
frequency band near 2w; where the coupling again gets stronger. The energy flux is dominated by the gravitational field
since substituting (99) in (95) (outside the near vicinity of @, 20w, , and w,), we obtain

W, 7TC1C0L2
~
2)2

Wg a)p4(w2—4wL

X [wz

(coz—a)l,z)2

2

)
(wz—sz—wpz)(w2—4wL2)+ *f—(w2+2a)L2——cop2)
2

2

(100)

20, |?
—sza)p4 (0*—40p %) ——L } ]

C2

The CW for this mode is also given by (88) and this coupling is negligible in the interstellar plasma.

V. CONCLUSIONS

From what we have already mentioned, we conclude
that gravitational waves are coupled to electromagnetic
waves in a magnetized plasma and can be cyclotron
damped, but the weakness of the damping as well as the
narrowness of the frequency band over which the coupling
is significant makes these effects physically negligible in
the interstellar medium. One can therefore conclude that
these effects put no constraints on the frequency bands
which should be explored in order to detect gravitational
waves.

However, the subject is far from being thoroughly stud-
ied since the case when the waves propagate at an arbi-
trary angle to the magnetic field was not considered. This,
as well as the propagation of the coupled waves in weakly
collisional plasmas, will be a subject for further study.
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