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Gravitational radiation reaction in the Newtonian limit
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The asymptotic approximation scheme based on the theory of the Newtonian limit developed in
the preceding paper is applied to the gravitational radiation-reaction problem. All divergences en-
countered in previous approaches disappear: For any e the asymptotic approximation is finite to all
orders we have calculated, even beyond radiation-reaction order. This is because the divergent terms
in previous work were misordered, and make finite contributions to coefficients of lower-order terms
in the asymptotic expansion. The logarithmic divergences, in particular, turn up as an e' inc term
in the asymptotic expansion (i.e., between 2.5 and 3 post-Newtonian order) which shows that the re-
lativistic sequence is not C at a=0. This does not, however, affect the asymptotic convergence of
the approximation. The radiation-reaction terms are used to calculate the period shortening of a
nearly-Newtonian binary system directly from the equations of motion, avoiding the well-known dif-
ficulties associated with energy in general relativity. It is proved that the prediction derived from
the standard quadrupole formula applies in the Newtonian limit. It is also shown that random data
for the initial gravitational wave field do not affect the calculation of radiation reaction, even if their
amplitude is of first post-Newtonian order.

I. INTRODUCTION

This paper is concerned with gravitational radiation re-
action in the Newtonian limit developed in the preceding
paper by myself and Schutz' which will be referred to as
paper I. The radiation-reaction problem has become very
important recently because of the discovery of the binary
pulsar PSR 1913+16. The observed period shortening is
believed to be entirely the result of energy loss due to the
emission of gravitational radiation. The observations
support with very good accuracy the so-called standard
quadrupole formula, which was first derived by Einstein
within the linearized version of general relativity. The
formula was extended to the nonlinear case by Chan-
drasekhar and Esposito by using the formal slow-motion
approximation for a perfect-Quid source, and by others.
However, as emphasized by Ehlers et al., and Ehlers, the
standard formula has not yet been derived fully rigorously.
Walker and Will have critically reviewed the previous
derivations of the formula. The most successful deriva-
tion to date within the formal slow-motion approximation
is that by Kerlick. He was able to construct a divergent-
free equation of motion up to the radiation-reaction order,
i.e., 2.5 post-Newtonian (PN) order but found new diver-
gent integrals at the next and higher orders. These diver-
gences are uncontrollable in the sense that there is no
guarantee at all in his work that they may not influence
the results of his calculations at radiation-reaction order,
because of the lack of an error estimation. On the other
hand, Christodoulou and Schmidt' have given an argu-
ment which indicates that the fast-motion iteration
method gives an asymptotic approximation to exact solu-
tions of general relativity. Recently the fast-motion ap-
proximation has been iterated by Damour and Deruelle"
to a high-enough order to calculate the radiation-reaction
effect for pointlike particles treated by means of the
Riesz-regularization method. However, it is not clear how

their method could be rigorously justified. In paper I we
have developed a new asymptotic approximation to gen-
eral relativity by studying a C sequence of solutions to
Einstein's equation that are defined by initial data having
the Newtonian scaling property; U'- e, p- e, p -e, where
e is the parameter along the sequence. To obtain an
asymptotic approximation to this sequence at e=O we
have defined a map from one solution in the sequence to
another by identifying them at constant spatial position x'
and Newtonian dynamical time ~=@I;. This mapping de-
fines a congruence parametrized by e on the sequence.
Along this congruence one can follow the physically same
event: A system which has completed one orbit is joined
by the congruence to one which has also completed one or-
bit at least in the limit e~O. The various (post-) Newtoni-
an approximations are defined as derivatives of the rela-
tivistic solutions along this congruence at @=0. We shall
apply this scheme to the radiation-reaction problem in a
binary star system.

As explained in Sec. III, our scheme is free of the diver-
gences found in previous work. Kerlick found terms of
the form g„e", where the integral expression for g„
diverged as its upper limit r went to infinity. %'e call
these power-of-r or logr divergences, according to the
character of the divergent integral. Power-of-r diver-
gences simply make finite contributions to lower powers
of e in our scheme. The logr divergences introduce new,
nonpolynomial terms into our asymptotic approximation
beyond 2.5 PN order, of the form e" inc. These do not af-
fect the asymptotic convergence of the approximation, and
permit one to calculate the approximate expression for any
finite e at any order, in contrast to Kerlick's result. More-
over, it will be found that the coefficient of the lowest
e" in& term depends only on the fourth time derivative of
the quadrupole moment of the material system. Thus, if
there is no quadrupole radiation from the source, the se-
quence remains differentiable at e=0 until beyond
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octupole-radiation-reaction order.
The above improvexnents in the slow-motion approxi-

mation are the result of our essentially local point of view
based on an initial-value problem. The local approach to
the radiation reaction based on the initial-value problem
was proposed by Schutz' in the linearized theory. In this
approach the evolution of the system is determined by the
initial data for both the field and the matter. ' The
dynamical degrees of freedom for gravitational fields are
determined by assigning a probability distribution to the
initial data for the field and by averaging over them rather
than using an asymptotic radiation condition, such as
purely outgoing radiation condition at W+, future null in-
finity, ' or no incoming radiation condition at W, past
null infinity. Apart from the advantage of not using such
time-asymm. etric conditions, his formalism can avoid
mathematical difficulties associated with such global con-
ditions. Since these difficulties have been fully discussed
by Ehlers, I shall here point out the relation between the
divergences in the formal slow-motion approximation and
the asymptotic radiation condition. These asymptotic
conditions on W+— are of course mathematically precise
and covariant boundary conditions to pick up only the re-
tarded field as the dynamical degrees of freedom for the
gravitational field. However, at the same time the condi-
tions lead to the retarded integral over infinite volume.
The slow-motion expansion for such retarded integral (i.e.,
Taylor expansion in retarded time) immediately leads to
uncontrollable divergent integrals. Therefore, the asymp-
totic radiation condition, though mathematically well de-
fined, is not a useful condition at least in the slow-motion
approximation. One is forced to specify the boundary
condition not at W —+ in order to have controllable diver-
gence. In fact, as already pointed out in paper I or as will
be shown in Sec. III, our initial-value-problem approach
eliminates divergences and gives controlled errors.

In paper I, zero data for the free initial gravitational
field was chosen for the sake of clarification of the con-
cept of the Newtonian limit. This is obviously a
mathematical idealization and may not correspond to real-
ity. There always exists background gravitational radia-
tion. The only thing we can expect is that the emission of
radiation will be accompanied by a damping of the motion
of the source if the initial radiation field is not in reso-
nance with a mode of the system. We shall take this into
account in Sec. II and try to find the weakest condition on
the free radiation data that does not disturb the radiation
reaction.

Finally in Sec. IV, we shall calculate the observable ef-
fect on the equation of an almost-Newtonian binary sys-
tem directly, i.e., the rate of change of the orbital period
of the system. Much attention has previously been paid to
the calculation of the energy-loss rate itself. These calcu-
lations use either the energy of a gravitational bound sys-
tem, which is not well defined, or an energy balance be-
tween that in radiation seen at W+ and that in the materi-
al source, a balance which has not been established within
general relativity and essentially depends on the existence
of a well-behaved future null infinity. A well-behaved fu-
ture and/or past null infinity is not expected in general
spacetirnes. By formulating the theory in terms of the
initial-value problem we are able to avoid difficulties asso-
ciated with an asymptotic radiation condition. It seems

where p and II are the rest-mass density and the specific
internal energy of the fluid, respectively. The conserva-
tion of the rest-mass density then can be expressed as fol-
lows:

(pu "&—g ) „=0. (1.3)

In this paper we call e + order in h, e + order in
h '" as the Xth PN order, and e + order in A ", e +
order in h '" as the X+ —, PN order (see Table I). There-
fore, Eq. (I.4.26) is 1st PN order in h and 2nd PN order
in h '". This notation is motivated by the fact that the
Xth PN terms contribute to the Xth PN equations of
motion.

II. STATISTICAL APPROACH TO THE PROBLEM

We shall consider here nontrivial free data for the initial
gravitational field and find the weakest constraint on the
data that does not affect the radiation reac4om. We shall
interpret the free data for the field as background radia-
tion on the initial hypersurface. As pointed out in Sec. I,
what we can expect for the background radiation is that it
is uncorrelated with the motion of the source. In order to
take this into account, I shall adopt the statistical defini-
tion of the radiation given by Schutz, ' and solve the fol-
lowing initial-value problem in the Newtonian limit. We
shall consider a perfect-fluid source with compact support

TABLE I. The name of the order in h"", where X
Newtonian order, KPN = Xth post-Newtonian order, and RR
= radiation-reaction order.

Orders

~4

~5

~6

E
~8

~9

N
0

1 PN
1.S PN

2 PN
RR

1 PN
0

2 PN
RR

3 PN
3.5 PN

1 PN
1.5 PN

2 PN
RR

3 PN
3.5 PN

best to calculate everything without relying too much on
the asymptotic structure of spacetime. (We shall, howev-
er, assume the existence of an asymptotically flat initial
hypersurface. ) I shall calculate only the reaction effects in
the source and show that only the Newtonian functional
form of the period is necessary to calculate the lowest re-
action effect. We can avoid the well-known difficulties as-
sociated with energy in general relativity. We shall find
that the prediction derived from the standard quadrupole
formula is valid in the Newtonian limit. The formula is
asymptotically exact.

The notation in this paper is the same as in paper I.
The basic equations are (I.3.3) and its integral form (I.4.3)
except for the definition of the stress-energy tensor for an
isentropic perfect-fluid source. Here I shall adopt the
form

T ~=p[tl+II(p)+p(p)Ip]~ ~~+p(p)g ~, (1.1)
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II(p,e)=e f(e p) .

Then, since p =p II'( p) (for fixed e),

p(r=o, x J,e)=e a(x J)

implies

p( ro, ix, e)=e [a(x 1)]f '(a(x~))

=e"b(x 1)

(2.1)

as desired.
For the gravitational field, we have the constraint equa-

tions (I.3.13)

on an asymptotically flat spacelike hypersurface, r=0,
and choose the free data for the field at random from a
statistical ensemble with some properties specified below.
Then the expected evolution of the system is calculated by
averaging over the random data, keeping the data for the
fluid fixed. The averaging over the random data is sup-
posed to account not only for the above condition of un-
correlatedness between background radiation and the
motion of the system, but also for the fact that the initial
radiation is not observable in general. Therefore, we shall
require that the mean-free data are zero. We shall also
impose a gauge condition on the free data.

For the fluid, the same initial conditions as in paper I
will be imposed: (I.3.13). For the speciftc internal energy,
Newtonian scaling of the initial data requires that

and assume the following form for them at ~=0:

h '~(r =O,x i;e)=6/t '(1 =O,x J),
(2.4)

The functions 4h '~ and 4h 'J at ~=0 are chosen from
the statistical ensemble with the above conditions: the
mean values of them vanish and (2.3) hold. Further I have
to assume the following restrictions for them as
r= xi ~oo.

4h 'J(r=o, x J)=O(r '), 4h 'J
k 0——(r ),

4h 'J (r=o,x J)=O(r ), 4h 'J,k=0(r ') .
(2.5)

g Tl 16~q—2gvl

h, = —h;=16m% A '),

These conditions are sufficient to ensure the unique ex-
istence of solutions to the constraint equation (2.2), ' and
are very weak restrictions on the free radiation data, con-
sidering that the 1st PN contribution to h 'J (gravitational
stress) is also of order e in our gauge.

The remaining initial data ( h ",h &', ) are expressed as
follows:

hhI' +16~AI' —hI"; =0.
) (2.2)

I shall choose ( h 'i, h 'J,) as the free data from among the
20 unknowns ( It I'",h &" ) for this system. ' I shall impose
the transverse gauge condition on them:

(2.3)

where V is the inverse flat-space Laplacian which van-
ishes as r~ao. These are, of course, implicit expressions,
since h " and h '", contribute to A'". These initial data
for the field and the fluid uniquely determine the homo-
geneous solution at r=o via Kirchhoff's formula (I.4.3},
i.e.,

h g(r, x J;e}= f . h )'",(r=o,y ~;e)dQ + r, h I""(z=o,y J;e)dA
477 $(T,x J ~] ' ' ' 4' ()7 . $(,r,x J,~]

(2.7)

The contributions from T" to the initial data have compact support, so the terms they generate in the homogeneous
solutions vanish at fixed x J for sufficiently small e. ' Moreover, since we average over the free data for the field, the
mean value of the homogeneous solution will depend only on terms having an even number of factors h 'J, h '~,.

From the above initial data the first nonzero homogeneous solutions which are not involved in averaging come from
the following source terms::

6A (r=o,x J)=s[(—g)tL'L]( ro, j)x= — (V4h") = — b(4h") ——,', ppgh',
128m 256m

(2.8)

6A (1.=0,x ~)=6[(—g)tLL](1.=0,x J)= [—3$h; 4h 'J J+44rl J(4rl'J; —gh
' J)],

7T
(2.9)

so

6A;(r=o, x J)=
128m 8

(V4h ) ——2p4h
' —2piu'4h ".

)I

b(4h 4h
' i)+ (2p4h ) —4 2p4h, —2p, U'~h (2.10)

where

4I) (r=0,x J) =—16)r(V 4A )(r=o, j)=x4 d y ~xk yki

(k2ipU)( =r0, y)
4h (T=P,x J)= —16m'(V 4A )(z=p,~ &)=4 d y ixk yki

(2.11)

(2.12)
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and we have used the identity

(&f)'= f &—f+ ,' &( f-)' (2.13)

(2.15)

Then one has the following contribution to h ' from the monopole (MP) part:

for an arbitrary function f. It can be shown that the term with compact support in 6A"' vanishes and the terms with
compact support in 6A"; cancel each other after the surface integration in (2.7). Noncompact support terms give
nonzero contributions of 0(e ) in h H'. This can be seen from Lemma 1 of paper I by taking N =6 and M & —2. In or-
der to calculate these contributions explicitly, one needs the multipole expansions for 4h '(r =O,x J) and 4h "(r=O,x J):

E J ps
4h '(r=O, x J)=4 . +6I J . , +0( ~x J

~

"), 4h "(r=O,x J)=4 . +0( ~x'~ ), (2.14)
/xJ/

where M= f d y 2p(r=O, yJ), p'= f d y[2p, u'](r=O, yJ), andEJ is the reduced quadrupole moment defined by

EJ I~J 3 13/Jl J I1J(r)—= d y 2p(r, y )y;y;
I 3 k

h Mp(r, x,E)=— 6 MPJyj
4 de+ 6' 7

~y"
~

43r 8~ 1&» &)

M de

6e rMPJ f +0(r ) dQ+ e rM f —+2 +0(r ) dQ
nj 2 1 nk&I

2' r =~le 4~ ()~ ~= TIE r r

M= —7e' +0(e10), (2.16)

where y =r"+x,
~

r"
~
=r, and n =r Ir. Thus the first nonzero contribution appears at 2 PN order (i.e., e order in

h ), and is a function of ~ alone. The contribution at the radiation-reaction order, i.e., e9 order in h ",vanishes by the
angular integration. Higher multiple parts of 8h

' are at most of order e' . The appearance of the nonzero homogeneous
term at 2 PN order is in clear contrast with older approaches. This term, however, does not contribute to the equations
of motion in the 2 PN order because the equations contain 8h

"only with spatial derivatives. This term affects the con-
servation of mass at 3 PN order.

On the other hand, the first nonzero contribution to ( h JJ'(~,x J) ) (the angular brackets express the averaging over the
random free data} from the quadratic term in the initial free data for the field first appears at e" order. This is generated
by the following terms in the Landau-Lifschitz pseudotensor:

10[( g}tLL]=—Y4h 'J
k 4h; J+ —, 4h

'
4h;J k

——, 4h 4h J k

(The reason that the product of two "fourth-order" terms on the right-hand side gives a "tenth-order" term on the left-
hand side is that the metric term g originally on the right-hand side is just e . ) It can be easily seen from Lemma 1 in
paper I by taking X= 10, M = —1 that these terms lead to e"-order contributions.

Therefore, our choice of the free data for the field, (2.5), does not affect the lowest radiation-reaction terms in h ".
Similarly one can show that the homogeneous part of the solution in h" does not affect the radiation-reaction order

here, either.

III. HIGHER-ORDER POST-NEWTONIAN APPROXIMATION

In paper I, we have calculated up to 1 PN approximation in h and up to 2 PN in h '". Here we shall continue past
radiation-reaction order.

Since one can neglect the homogeneous part of the solution as explained in Sec. II, we shall concentrate on the retarded
solution. In the earlier approaches it was always assumed that the slow-motion assumption enabled one to Taylor expand
the retarded integrals in retarded time and assign the higher terms to higher orders. For example, if we make use of this
method in our scheme, we may get

h ( , rex)k=4' g, e"1„ ig(r, x,e), (3.1}.=0 nt

where

gn
, )J(r,x",~}=e 4f „-d'y" ~x"—y'~" ' A (r,y, e) .

C(7,X , 6)
(3.2)

There is still explicit e dependence in J, coming from e dependence of the integral region c(r,x,e) as well as the non-
linearity of the field equations. Therefore, a higher. e dependence in front of J does not necessarily imply the real small-
ness of these terms compared with a term with a lower e dependence in front. One cannot always ignore the retardation
effects even in the limit as @~0. This fact has already been explained in Paper I. In this paper I shall use the following
criterion for neglecting retardation which was explained in the appendix in paper I.
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Criterion. Consider the following retarded integral:

f h(r er—,y",e)d y .
c(r,r, e)

Then the condition for neglecting retardation is

( rh, (r, r)
r
(A,

h(r, r)=lV(r)lr+O(r ) as r«oo,
h(r) is regular at r =0,

(3.3)

(3.4)

where A is a constant and X(r) is an arbitrary bounded function of r. It turns out below that one can always ignore the
retardation up to and including the radiation-reaction order according to the above criterion and one finds that the metric
obtained up to and including that order is essentially the same with that obtained by Kerlick by using the formal slow-
motion approximation. Therefore, we find the notations defined in (3.2) useful, even though we do not claim that the
series in (3.1) are convergent or even asymptotic. Anyway I shall not use the Taylor-expansion method, rather I shall use
the e-derivative method developed in paper I.

We have seen in paper I that the 1.5 PN order in h &' vanishes. Since 7A =0, one finds for the 1.5 PN order in h ",
7h (r,x )= lim —4 f „6"A (r,y )d y ——,

' f ' 'A '(r,y")d y (3.5)
e-+0 C(,7 «X «6') c(v xk &)

where the integral is not retarded because the integrand satisfies the above criterion [as well as the condition (ii) of Lem-
ma 2 in paper I] as easily seen from the expression of 6A, (I.4.27). Since 6A,=—6A";, the first integral in the right-
hand side of (3.5) becomes the surface integral of 6A" over S(r,x,e). This surface integral goes to zero in the limit e~O
because 6A =O(r ) So we. get the usual 1.5 PN term in h

h rr( xk) f (3)A««( yk) 2d3 (3)ll ( ) (3.6)

where I ~
——g'JIj'.

At the 2 PN order one finds that the condition (ii) of Lemma 2 in paper I breaks down because of the appearance of
the terms in SA and SA'j which contain 4h 'J. The time derivative of 4h

' does not change to asymptotic falloff behavior
of 4h 'J, so one has to appeal the above criterion. Let us examine the leading asymptotic falloff behavior of SA" and 6A'~.

The expression for 8A can be obtained from the knowledge of the lower-order terms as follows:

sA =(16rr) [eh 4h J 4h "4h 'Jj,tj—

+(16 ) '[ ——,(4h" ) + —, 4h" (4h';+4h'; )+4h";4h' + —,
' 4h"'4h; ——,

'
4h ~'4h";j

+6p+4p(iu + —, 4h )+2p( —, 6h ——, 4h ';+ —, 4h
'

4h
' —24h iv'+ —,

'
4h iu +iv +2)uk3vk) .

For 6A', see (I.4.27). The multipole expansion for 4h "and 4h 'J is given by

(3.7)

&h"= +65" +O(r '), ,h'J= +O(r ') .
4M .. ngnj 4 .. 2 I J

p 3 r (3.8)

Therefore, the leading asymptotic behavior of 8A and 6A'j is proportional to M' 'I'I /r and M' 'Ij/r, respectively,
and the above criterion can be satisfied provided ' 'I,j is a bounded function of ~. We can ignore the retardation in the
limit as @~0. Thus one gets the same expression for the 2 PN metric with that given by Kerlick except the higher-order
contribution of p and u, and the surface integral term in Lemma 3 of paper I. In fact, the surface integral first appears
at 2 PN order. For the explicit calculation of the surface integral we shall again make use of the multipole expansion
(3.8) for ~h . Since

,A (r,x )=—7 M + terms of compact support,8~ rxk~2

—4—i f,
,

r
x —y"

r
A (O,y",e)de

one finds the following expression for the surface integral h, :

()h, (r,x )= lim—
o 8!

(3.9)

7 4 M2 xn= lim — 4 re f 1 — +O(r ) dQ+e O(r )dQ~~o 8! gp7 8m «=«~ p3 r « =w/e

7 M
4 2 (3.10)

This term can be combined with the homogeneous solution (2.16):
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H(r)=()h g(r, x")+()h g'(r, x")=—", (—M /r2) . (3.11)

As explained in Sec. G, this term does not affect the equations of motion at 2 PN order. Finally we get the following ex-
pression for 2 PN order:

()h (r,xk)=4 f SA (r,y)r 'd y+2 f 6'A"(r,y)rd y+ —,
' f 4'A '(r,y )r d y+H(r) .

For 6h 'i', see (1.4.26).
At 2.5 PN we find that

h n( xk} 4 f A~~( yk)r —Id y 4 f An( yk)d3y f ( )An( yk)r2d3y f ( )Arm( yk)r4d y

7h "(rx")= ——' f 4 'A"(r,y")r d y, (3.13)

h'J(r, xk)= —4 f "'A'J(r, y )d y ——, f ' 'A'J(r y")r d y,
where

9A' =(16ir) '(4h "5h 'J);1 . (3.14}

All integrals appearing in (3.10) are not retarded because each term satisfies the above criterion: 9A =O(r 3),
s"A =O(r ), 6 'A =O(r ), ~4"A

~
&MRr,

~ I)
'A

~
&MBr,

~ 6
'A '~ &MBr where

~

' 'IJ
~

&B with a con-
stant B. There is no surface integral term in this order. This expression for the radiation-reaction order is exactly equal
to that given by Kerlick except again the appearance of the higher orders in p and v'.

Next we shall consider the 3 PN order. The study of this order has crucial importance for the proof of the asymptotic
convergence of the approximation up to and including 2.5 PN order. Since it is not difficult to see that the homogeneous
solution (inore generally terms expressed by the surface integral) does not have peculiar behavior in e at this order, we
shall omit these terms. One might think that h " at this order is given by the following expression:

(Oh
' (r,x )=4 f )OA"(r,y")r 'd y —4 f 9"A(r er,y )d y—+2 f I(

'A '(r er,y —)r d y

sh ri(r xk) 4 f A i(r r )r id3y+ 2 f (6 )Ari(r yk)r d3y + f ( )Ari(r yk)r3d3y

()h 'J'(r, x )=4 f ()A'~(r er,y )r—'d y+2 f 6'A"(r Er,y")r d—y+ —,
' f 4'A'~ (rer,y )r d 'y,

(3.15}

where the last integrals in )oh
' and ()h

' are not retarded because 4A'" has compact support. Explicit expressions for
ipA and 8A'" have been calculated by Kerlick. According to his calculation, the leading asymptotic falloff terms in
~pA' and 8A

' contain ' 'IJ and ' 'I~, respectively, and fall off like r and r, respectively. Therefore, the first in-
tegrals in )Oh

' and ()h are not retarded and give convergent integral provided that ' 'I
J and '3'I

J are bounded functions,
respectively. The second integrals in ()h

" are also not retarded because 6 'A"=O(r 3). Since 9"A =O(r 3),
(() 'A '=O{r 4), (6 'A"=O(r ), ()A'J=O(r ), 6 'A'J=O(r ), and 4 'A'J=O(r ). Simple ordering argument shows
that the second, third, and fourth integrals in ioh

' and the first, second, and third integrals in ()h
'J are logarithmically

divergent. Let me examine these potentially logarithmically divergent terms in detail. First of all note that the leading
asymptotically falloff terms of 9"A', 8

'A", 6 'A', SA'J, 6 'A'J, and 4
'A'J are all proportional to ' 'I,J. Therefore, accord-

ing to the Appendix of paper I, the "instantaneous" part of the integrals gives divergences, and the "retarded" part gives
convergent integrals at that order provided ' 'I,J is a bounded function of ~. I shall show further that some of these loga-
rithmic divergences are killed by the angular integration. This fact was first pointed out by Schutz and Breuer and Ru-
dolph. ' In our scheme the angular integration always has to be carried out before we take the limit e—+0, i.e., r~00.
Consider, for example, the following logarithmically divergent integral in the second term in &ph

f (1)h &J h rr
( k}d3

=5"h 'J f drr2 f dQ„(3n nj —5&)+O(r ) =O(e ) . (3.16)

The angular integration killed the potentially logarithmic divergences. Similarly one can show that the logarithmic
divergence in the fourth term in &ph

' and the third term in Sh
' are killed by the angular integration. Thus the real loga-

rithmic divergences are only the third term in ]pA
' and the fourth, and the second terms in 8h '~. Explicitly we have

ioh "= ,"M' 'I ilnao+ finite —terms, ()h
'i= —', M( —10' 'I J+f)'i' 'I i)luego+ finite terms, (3.17)

where "lnao" stands for lim, 0( —inc). This divergence means that the sequence is not differentiable at the 3 PN order
at @=0. This is not, however, a serious problem. Taylor's remainder theorem [paper I, Eqs. (4.1) and (4.2)] still guaran-
tees that the series through 2.5 PN order is asymptotic. Moreover, it is clear from (3.17) that the next term in the asymp-
totic series for h should be e' inc rather than simply E' .

It is also interesting to notice that the above logarithmic divergence disappears if the system does not emit quadrupole
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radiation. In such a case differentiability extends beyond 2.5 PN order to octupole-reaction order (3.5 PN).
Finally I shall point out the fact that there is another 3 PN term which is not in the expression (3.15). Consider the in-

tegral

JU(r, x )= f „E(4h' s 'h'~)(r Er,y—")r 'd y, (3.is)
c(~,xk, e)

where the integrand 4h
'

s
'h '~ is one of terms in „A'J. Since 4h s 'h j=O(r '}, this integral diverges. In the formal

slow-motion approximation, this gives linear divergence at e order, quadratic divergence at e' order, cubic divergence at
e" order, and so on. In fact, if we Taylor expand the integrand in ~, we have

gij ~ ~ 9 ( ) k k) n —1(n+2)h ij(X
n t ~ all space 4

y En+9 f d 2 n —1 n+9 n4. 1- 1
7

n n

(3.19)

(3.21)

where the asymptotic sign expresses the fact that we have picked up terms with the worst divergent behavior and
"Oo"+'" expresses the way the integral diverges as the outer limit of r goes to ce. Qn the other hand, these power-of-e
divergences never appear in our scheme. In fact the expression for J'j becomes in our scheme

J'j(r,xk)= f E9(4h' s 'h'j)(r, y )rdr —f E (4h 's 'h j),(r 7j,y )r—drd7I, (3.20)

where the angular integral is understood. By substituting the multiple expansion for 4h "and sh 'j= —2' )I'~(r), we have
r/e v/eJ'j(s. ,x")-E ( —SM")I'j) dr+E' 8M ' )IU(7. 7j )r dr —0(71 (Er

where we have used the mean-value theorem as in the Ap-
pendix in paper I. If we assume ' 'I'j is a bounded func-
tion of ~, one sees that the "retarded" part as well as the
"instantaneous" part is order of e . All the retardations
contribute to the same order (3 PN order in this case) and
the retarded Taylor expansion is not valid at all: The in-
tegrand must be treated in its retarded form.

The above argument also shows that the power-of-e
divergence in the formal slow-motion approximation is
simply the result of misordering and, moreover, this diver-
gence reduces to a finite contribution at some lower order
but still higher than 2.5 PN order. The last statement can
be proved as follows. Suppose 00 divergence first appears
at e" order in the formal slow-motion approximation.
Then the divergence reduced to a finite term at e " or-
der. Now we can write k =2+p —q, N=n+p when the"~""divergence appears in

f dr r rl' 'g'A""(7 Er, r), —

where 'l')A""=O(r 9). So N —k =n 2+q. Since t—he
worst asymptotic falloff at Ad"" is O(1), q & 0 so
X —k &r —2. It is easy to see that such situation q=0
does not occur at 3.5 PN order. Therefore, the "power-
of-e divergence" in the formal slow-motion expansion
does not affect the result at 2.5 PN order.

In summary we have seen that the expression (3.13) for
2.5 PN order does describe the leading radiation reaction
and our approximation scheme is asymptotic up to and in-
cluding 2.5 PN order.

The metric can be calculated from the knowledge of
h &". I shall here write down only the radiation-reaction
metric:

= —,'(7h +sh i} ~

sg~= 2(9h +7h I) 4 4h 7h 4 4h sh l

(3.22)

sg,j =sh "+T~;j(7h "—sh i } .

I

For later convenience we shall define Az„as follows:

(7) (9) 3 ~r (7)
3g. =~. 5g-=~ —

4 4~

g (7)
5ggl Tl

then we find

g (p)
5gij =~ij

(3.23)

(3.24)

IV. THE PERIOD CHANGE IN A BINARY SYSTEM

P2(1,X,E}=E 2P('T, x ) +E 4P(T,X }

+E',p(r, x '),

U(2,r X, )E=E 1U (1,X )+EsU ('F,x )'
+E' su'(r, x j),

(4.1)

and can also be written as a sum of a Newtonian order

The effect of the emission of gravitational radiation on
a binary system is observed as the secular change of the
orbital period. In the observation the period is defined by
fitting a post-Newtonian orbit to the data in short seg-
ments. (The period only has a meaning up to and includ-
ing 2nd PN order because there is no damping up to and
including that order. ) Because of the well-known prob-
lems defining energy in general relativity, it seems safer to
calculate the period change directly from the equations of
motion rather than use an argument based on the energy-
loss rate. However, one does not know the explicit func-
tional term of the period in terms of the matter variables,

p and u'. We know that there is no net change of the orbi-
tal period up to and including 2nd PN order. This is be-
cause the dynamical degrees of freedom for the gravita-
tional field do not appear until 2.5 PN order and, there-
fore, the material system has a conserved Hamiltonian and
some action-angle variables which are adiabatically invari-
ant up to and including 2nd PN order. Those quantities
are functionals of the matter-dynamical variables,
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+—
1 4 P(P2, U'2) (4.2)

Be4

We shall define the Newtonian period and the post-
Newtonian and 2nd post-Newtonian corrections to it as
follows:

P(v(2P»U')—=P{P2»'2) l.=o

B2
EPPN{2P «4P«1U «3U ) = —

2 P(P2«U 2}
2! Be2

{4.3)

B4
P2PN(2p ~4p ~6p~ lv, 3U, 5U'):——

4 P( p2, v'2)
4I Be" a=0

terms and higher-order correction terms to it. Now the
orbital period can be expressed in terms of one of the
action-angle variables and the Hamiltonian. Therefore,
the orbital period itself is a functional of p2 and v 2 defined
above and can be written as a sum of a Newtonian order
term and its connection terms. Expressed as a ~ time, the
period is

e2 B2
P{P2, U'2} =P{P2, U'2} l,=o+—

2! Be'

PN (radiation-reaction) terms in the equations of motion.
Then it is clear that only the Newtonian functional form
of the period Piv(P, U } is necessary in this calculation,
since its correction term EP(P, U') is at least e higher
than Pz and, moreover, the lowest-order nonzero value
(i.e., the lowest-order radiation-reaction effect) for the
period change dP/dr comes from the Newtonian order of
the Period Pjv(2P, ,U'). In the end, the calculation of the
period change is reduced to the calculation of the time
derivative of the Newtonian functional part of the period
and hence to the calculation of the time derivative of the
Newtonian functional form of the energy E&(P, U')

through the relation (4.4).22

The time derivative of E~( P, U ) is expressed in terms of
the time derivatives of P and U' by the formula (4.7) for
E&. This time the fully relativistic p and v are used in-
stead of p2 and v'2. The time derivatives of p and Ui are
given by (1.2) and T," =0, respe. ctively. We shall write
them as

Bp B+ . (PU )= —s(Pu &—g) =0,
B~ B~ J p

(4.8)
B(PU')+ . (PU'U j+PPj) PU'—= ,T; "—

Now we know that the form of Pz is the same as that of
Newtonian mechanics:

P(v(2P «1U }=k
I Eji(2P «1U }

l

where we have picked up only reaction terms in the right-

(4 4) hand side and

where k is a constant and E& is the total Newtonian ener-

Eiv(2P «(U') = f d x 2p( —,
'

1U +2II ——,
'

2U) . (4.5)

[Here as in (1.1) we have ignored tidal and other possible
Newtonian dissipative effects. ] Since the period is a func-
tional of p2, v'2, we can also write P as

P{P2 «U 2) PN{ P2 «U 2)+~P( P2 «U 2) (4.6)

in which the functional form of Piv is the same as (4.4),
but now p2 and v'2 are used instead of Newtonian quanti-
ties. It is obvious that hP is at least higher than the
lowest order of P& whatever the explicit functional form
AP is. The ~-time derivative of P can be calculated in
terms of ~-time derivatives of p and v' as follows ':

d 5p Bp2 QP Bv 2P= (4.7)

where 6P/5 p2, 5P/5v'2 are linear operators which
represent the functional derivatives of P with respect to p2,
v'2, respectively. If Bp2 /Bw, Bv'2 /B& were calculated from
the 2nd PN equations of motion, we would obtain zero for
dP/d~; the orbital period does not change up to and in-
cluding 2nd PN order. This result does not change even if
we shall consider P in the above formula (4.7) as a func-
tional of the fully relativistic p and v' as long as we use
only the 2nd PN form of the equations of motion for
Bp/Bw and Bv'/B~. This is because the vanishing of
dP/d~ means the vanishing of the integral on the right-
hand side of (4.7) and this is a functional relationship be-
tween P and the equations of motion, and we do not
change the functional form of P. Therefore, a nonzero
contribution to dP/dw is obtained only if we include 2.5

dE~ f d x(U 9Ti
10

(4.9)

Therefore, the "Newtonian energy" loss may be interpret-
ed as the work done by the reaction force 9T;

where

i (7) i (5) (7)+ 2 2P1 ~TV T+2P 1 ~ij, v 4P i~T

(5)
~

(5)
4P P4 J +2 2 U JA J (4.10)

2U«x }=f "'y lx —y l
'2p(& y"}

This expression is essentially the same as the correspond-
ing expression in Kerlick. So we shall obtain the standard
quadrupole formula for Ez after time averaging:

(
1 & (31 (31 kl)= —
5 & Ikid'7

(4.11)

The only assumption I have made for the system is the
perfect-fluid form for the stress-energy tensor (1.1) and
the relation (4.3). These assumptions are very reasonable,
particularly for a nearly Newtonian binary system.

U( ,rx, }e= f d y" lx"—y l
'p(r, x",e)

and s( pu "&—g ) &, 9T; ", are defined from
s(pu"& —g ) „, 9T;" by subtractin. g s[P ~+(PU');],
9[( PU

' ),+ ( pU 'U j+p 5'j ) j—U '], respectively. We have
also used the fact that s(pu«V —g ) „=0which can be
easily shown. The time derivative of the internal energy is
calculated from (1.3}. By using the above equations, one
finds the lowest-order nonvanishing contribution is
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V. DISCUSSION

In this paper we have studied the radiation reaction for
a nearly Newtonian (weak internal gravity) perfect-fluid
system by applying the approximation scheme based on
the theory of Newtonian limit. It was found that the
standard quadrupole formula gives a genuinely asymptotic
formula for the rate of period change of such a system.
Obviously, the most important question about the quadru-
pole formula is whether the formula can be applied to the
binary pulsar with strong internal gravity. We have as-
sumed that the initial data for matter satisfy the Newtoni-
an scaling properties; U'-e, p-e . Therefore, if we fix
the linear dimension of the material system L in the limit
e~O, the internal gravity is getting weaker and weaker,
M/L-e . However, in order to study the Newtonian-
type orbital motion it will be enough to assume that the
mass, not the density, scales like e in the limit. Strong
gravity can be incorporated in the limit if we assume L
also scales like e. Then we can follow physically the
same event in the limit e~O; M/L, which is the measure
of the compactness of the source, remains constant as
e~O. Therefore, we have to introduce another limit very
near the body (body zone limit) as well as the limit we
have introduced outside the body. D'Eath has intro-
duced this limit for the study of the interaction of a small
black hole with the background metric. He showed that
the black hole moves on the geodesic in the background
metric. In our case the limit can be defined by requiring

the initial density scales like e if we take the uniform
density distribution initially and also introduce the body
coordinate X'=e x', which remains constant in the
course of limiting process. Thus the integrals we have
studied in this paper have additional e dependence. Then
one can in principle apply our e-derivative method though
the calculation is much more complicated. This study
remains for the future.

Another study for the near future is an examination of
the outgoing radiation in this sequence of solutions of gen-
eral relativity. We have succeeded here in deriving radia-
tion reaction without examining this radiation, but we be-
lieve general relativity is a conservative theory and that.
there will be a meaningful sense in which the energy lost
locally does turn up far away. A study of the far-field
limit of this sequence of solutions should elucidate this
problem.
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