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U(1) gap equation and consistency condition in quantum chromodynamics
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We unify most aspects of the "resolution" of the U(1) problem in QCD —nonperturbative as well as
perturbative —by calculating one second-order gluon quark-annihilation or "diamond" diagram. This leads
to a U(1) gap equation and consistency condition which is numerically satisfied, providing one exchanges
eight color, spin-one, massless gluons, as required in QCD.

Many learned papers have been written on the statement
of the "U(1) problem": Glashow' long ago noted that (in
the absence of gluon anomalies) the SU(2) x SU(2) isoscalar
pseudoscalar qo mass must vanish in the chiral limit; Wein-
berg2 generalized the problem to three quark flavors and
computed a (physically unacceptable) upper bound for m~;
Kogut and Susskind attempted to link the U(1) problem to
quark confinement; 't Hooft, 4 Crewther, 5 and Arnowitt and
Nath investigated the vacuum in quantum chromodynamics
(QCD) and other subtleties associated with the U(1) prob-
lem and massless gluons —semiclassical "instantons, " "to-
pological charge, " etc.

In a parallel vein, there have been many important partial
resolutions of some of the above facts of the U(1) problem
and other seemingly unrelated isoscalar dynamical puzzles:
Fritzsch, Gell-Mann, and Leutwyler' noted the analogy
between the anomaly in spinor electrodynamics8 involving
two-photon emission and the U(1) anomalous axial-vector
divergence involving two-gluon emission; Isgur clarified the
isoscalar q-q' mixing problem by working in the
nonstrange-strange-quark basis; De Rujula, Georgi, and
Glashow' contrasted C+ two-gluon q-q' rediagonalization
with C three-gluon c0-@ Okubo mixing; Jones and Sca-
dron" and independently Genz" then employed the factor-
ized' structure of the quark-annihilation diagrams of Ref.
10 to calculate the one off-diagonal strength pp =14.7m
by rediagonalization, which thereafter predicts the two isos-
calar mixing masses m„and m i; Witten14 demonstrated
that the U(1) anomalous divergence vanishes for large color
number N„ thus guaranteeing that m„vanishes in the

chiral N, ~ limit; Patrascioiu and Scadron'5 showed that
the dressing equation = pseudoscalar-binding equation con-
dition for spontaneous breakdown of chiral symmetry'
cannot hold for the U(1) axial-vector current, again suggest-
ing that m~ is nota Nambu-Goldstone boson (for finite N, )

even though the U(1) anomalous divergence contains a

n, =g, '/4qr =0.5 (2)

as expected' in the qo mass region of q —1 GeV . Then
the U(1) off-shell two-gluon anomaly of Fig. 3 is

derivative coupling and is therefore "soft"; Novikov et al. '

related this nonperturbative go mass to the nonperturbative
gluon condensate; likewise m„was approximately computed

nonperturbatively by use of QCD sum rules. 20

In this paper we rely on the insights provided in these pa-
pers to compute the perturbative two-gluon "diamond" dia-
gram of Fig. 1 which represents the minimum quark-
annihilation strength pp of Refs. 9—13 and Fig. 2(a) on the
one hand and also the U(1) anomalous divergence matrix
element (01rlA '0'1rlo) of Refs. 4—7 and 14—17 and Fig. 2(b)
on the other hand. The darkened quark propagators in Figs.
1 and 2 correspond to nonperturbative dynamically generat-
ed" quark mass md, „which is the chiral limit of the non-
strange and strange constituent quark masses m„„=340
MeV, m, „„=510MeV. For the sake of simplicity we shall
take' mdy 315 MeV as momentum independent because
Fig. 1 con verges in the ultraviolet and infrared region.
Likewise we bind the qq quarks together with a
(momentum-independent) U(1) pseudoscalar coupling

gz qqqyshoq with XO = ( 3
)'i21 such that the Witten N,

condition'4 ensures the validity of the Goldberger-Treiman
relation at the quark level, with

g„qq = mdr„/f~ = 3.5

for the chiral-limiting value's 2~ f~ =f =90 MeV. We

expect (1) to hold even for finite N, =3.
To proceed with the calculation, we work specifically

within the context of QCD, with the quark-gluon coupling
g, 2 q A.,B„'y"q for eight, spin-1, massless color gluons and

take the QCD coupling constant

0 (a) (b)

FIG. 1. Quark diamond diagram for isoscalar pseudoscalar qq
mesons with only two gluons exchanged.

FIG. 2. Quark-annihilation diagram (a) with strengths Pp and
axial-vector divergence diagram (b) with strength (018 Atal1rlo).
Both graphs have at least two gluons exchanged.
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(3)

where n~ is the quark-Aavor number and e„„(kq) = e~„&k q~. The structure of (3) recovers the mopy anomalys
(A/vlf ) E~ (kq) for k2 = q~ = 0 and Xo X3 in flavor space for color-singlet photons. Combining (3) with the Feynman

rules for Fig. I, we are led to the chiral-limiting quark-annihilation strength [of Figs. 1 or 2(a)]

. " d4k (no(q) lg„"g!)(g:g!Iso(q))
(k+ ,

' q)'(—k——'q)' (4a)

nf 0/s g g qq mdyn 21
3vr4

(4b)

where Trh. ,kb ——25,q, with 5„=8 for eight colored gluons, and e„„(kq)e'"(kq) =2[k'q2 —(k q) ] means that the in-
tegral 1in (4b) is

d'k[, (k')/, ]'[k'q' (k q)—'1 i~+4+i~
" k'(k' 4m„„')—(k+ —,

' q)'(k ——,
' q)', i&+4 —~&,

(Sa)

with ( = —k'/md, „'. Next we combine the four denominators in (Sa) and, noting that the numerator k'q2 —(k q)' is in-
variant under the change of variables k k + (xyz/2) q, we extract the q2 dependence from (Sa) to write

3 ~' t' t' t d kk [n, (k )/a, l [ln . ]'
I = —x 3q~i dx ydy z2dz

4 " —' o "o [k —4md~„(1 —z) +q yz(1 —x yz)/4]
(Sb)

Note that the denominator in (Sb) vanishes for a finite
positive value of q'. %e invoke color confinement to ig-
nore this mild nonanalytic behavior while extrapolating q' to
zero within the integrals in (5b), as otherwise the gluons
could materialize as unconfined particles. Then (5b) takes
the form

1 = (q'/m, y„') (3n'J/4) (6)
where the finite dimensionless integral J can be evaluated
numerically once we rotate to a Euclidean metric with
d k i7r md'„(dj:

I

creased to

Jgcp 1.48 (7c)

Pp= m~ /3

In order that the calculation (4) —(7) provide a physically
interesting result, we must first identify the quark-
annihilation strength Pp with the nonperturbative qo mass.
Since lgo) = Iuu + dd + ss)/i3, this link via the meson
mass matrix is

J= „' [n, (()/n, ]' ln
ig+4+ij

&0 ( (+4 (+4—

= 2. 10

(7a)

(7b)

which recovers the expected estimates rn„= 915 MeV7]p—m„, for the chiral-broken rediagonalization value"

(m 8 —m ')(m, ' —m ')
4( m~' —m„')

independent offor u, (() taken as constant,
j = —k /md'„~0.

In QCD, however, it is well known" that n, varies for
—k & 1 GeV' according to the asymptotic-freedom depen-
dence n, (k') =7rd/ln( —k'/A'). For three quark flavors, 24

A3=250 MeV and d =12(33 2nf) ' =0—.444; we recover
the expected value (2) at Ik'I =1 GeV'. Substituting this
QCD a, (k') into (7a) with n, =0.5 frozen out" for
Ik I

& 1 GeV, the numerical estimate for 1 in (7b) is de-

Combining (8) with (4) —(7) for q'= m~ 2, we note that the

nonperturbative mass scale m~
' cancels out (because m~ %0

7)p 7)p

and qo is not a Nambu-Goldstone boson) of this perrurbative
second-order calculation for P p. This is a characteristic
behavior of spontaneous-symmetry-breakdown dynamics as
in the calculation of mdy„ in a four-fermion model, '6 of' the
gap energy 5 in superconductivity, ' or even for the mean-
field calculation of the magnetization (M) in ferromagnets.

Gi ven this cancellation, our perturba tive calculation
(4) —(7) provides a U(1) gap equation and consistency condi
tion for QCD:

k+ —q,2

k- —q,2

FIG. 3. Triangle diagram for qp 2 gluons.

nf ns
g'opqq

7r

3JgcD
2

(10)

Equation (10) is a gap equation in the spirit of Ref. 16, be-
cause the integral (Sb) means that (10) could, in principle,
be solved for the nonperturbative mass m„. Equation (10)7)p

is also a consistency condition because it should be numeri-
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cally approximated even to order O(n, '). In particular,
substituting ny= 3 with (1), (2), and (7c) into (10), we see
that (10) is reasonably well satisfied. Put another way, us-
ing (10) to solve for g~ «, we find g~ «=4.4, which is

close to the Goldberger-Treiman value (1).
The U(1) consistency condition (10) pertains to the dia-

mond and quark-annihilation graphs of Figs. 1 and 2(a).
For the U(1) axial-vector current of Fig. 2(b), we have in-
stead the identity in the chiral limit

Again constructing the state Irto) as the "pinched down" qq
with pseudoscalar coupling g„«qkoyqq, the left-hand side

of (11) once more is proportional to q' as is Pp. For
q = m„&0, this nonperturbative qo mass also cancels out

from (11). Finally invoking the Goldberger-Treiman identi-
ty (1) to (11) reproduces the U(1) consistency condition
(10) in the chiral limit for the minimum two gluons ex-
changed. A chiral-broken particle-mixing analysis of (11)
can also be carried out. '"

%e conclude from this analysis the following.

(a) Essentially all of the statements and partial dynamical
resolutions associated with the U(1) problem are compatible
with the U(1) gap equation and consistency condition (10)
except the confinement arguments of Ref. 3. To obtain
(10) we have employed the standard gluon propagators—k 2 rather than the quark confi-nement form k 4 with a
massless qo used in Ref. 3. Instead we evaluate these
graphs at the nonperturbative U(1) mass q~= m~

2 in the

numerator of (Sb) (but with q2=0 in the propagator
denominator). This is then consistent with the dressing
AU(1) binding result of Ref. 15 that rto is not massless in

the chiral limit,
(b) Specifically with reference to perturbative QCD, two

exchanged gluons suffice to saturate the diamond or quark-
annihilation pseudoscalar-isoscalar graphs of Figs. I and 2;
additional gluons serve to build up md, „ in the quark loops
and o, (k2) or give small O(o.,3) corrections to Pp and to
(10).

(c) The U(1) consistency condition offers one of the few
physical examples where the QCD gluon color number
(eight), spin value (one), and mass (zero) can be meaning-
fully tested.
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