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Phase transition of the nucleon-antinucleon plasma in a relativistic mean-field theory
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Studying Walecka's mean-field theory we find that one can reproduce the observed binding ener-

gy and density of nuclear matter within experimental precision in an area characterized by a line in

the coupling-constant plane. A part of this line defines systems which exhibit a phase transition

around T, -200 MeV for zero baryon density. The rest corresponds to such systems where the

phase transition is absent; in that case a peak appears in the specific heat around T-200 MeV. We

interpret these results as indicating that the hadron phase of nuclear matter alone indicates the oc-

currence of an abrupt change in the bulk properties around p&-0 and T-200 MeV.

INTRODUCTION

A long-standing aim of theoretical nuclear physics is to
describe the bulk properties of hadronic matter. An ambi-
tious hope is that this task can be accomplished at least
numerically by doing lattice @CD calculations in the near
future. -Even if we had such results to date, it is still very
instructive to study effective theories describing hadronic
matter in a definite range of temperature and density.
One of the most successful effective models is Walecka's
mean-field theory. ' On the one hand, it describes
suprisingly well a variety of physical properties of nuclear
matter and of finite nuclei, and on the other hand it can
be generalized to contain the linear o model which is sup-
posed to be the low-energy effective theory of strong in-
teractions. In the following we extrapolate the effective
theory to the high-temperature region ( T & 200 MeV).
This extrapolation may be somewhat misleading, since
scalar and vector mesons are not sufficient for nuclear in-
teraction at this temperature. Nevertheless it is of value
to study the nonlinear behavior of such an effective theory
under extreme conditions.

We expect that a phase transition takes place in hadron-
ic matter at high temperature or density. Having an effec-
tive theory in the low-temperature or -density region, one
can study whether this model contains a phase transition.
This procedure can be contrasted with another strategy,
according to which two different approximations are used
(e.g., Walecka's theory and perturbative QCD in the case
of quark matter) and one tries to match them.

In this article, we study Walecka's mean-field theory
with the following results: (i) We can reproduce the ob-
served binding energy and density of nuclear matter
within experimental precision in an area characterized by

a line in the coupling-constant plane. The coupling-
constant values proposed by Walecka represent a point
close to the end of this line. (ii) We have found that a part
of this line defines systems which exhibit a phase transi-
tion around T, -200 MeV for zero baryon density. The
rest of this line corresponds to such systems where the
phase transition is absent but there is a peak in the specif-
ic heat around T-200 MeV. We interpret these results as
indicating that the hadron phase of nuclear matter alone
indicates the occurrence of an abrupt change in the bulk
properties around p z -0 and T -200 MeV.

Walecka's nuclear field theory contains the baryon field
P and scalar- and vector-meson fields N and V&, respec-
tively. ' The field Lagrangian is given by

= J dr [ P(y"d„+M)g—]——,
' [(t) N)(t) @)+m 4& ]

—~( 2F~tF '+mv'1'~&')+tgvA"0l „+gsA'@

where M, Mz, and m~ are the inverse Compton wave-
lengths of the baryon, scalar meson, and vector meson,
respectively. Here the field tensor is I'pp BpV) 'BQVp.
The equations of motion obtained from Eq. (1) are

(2)

( —a, '+ V' —m, ,') V„=—ig vI, ,

with the scalar density ps ——tbsp, the baryon (vector) densi-

ty p v =jo ——gyes, and the baryon current j =Py P. Con-
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sidering a uniform system of baryons the meson fields can
be replaced by the classical fields. ' In this limit Eqs.
(2)—(4) reduce to mean-field equations

[Y"8„+(M —gs4')+gvl o Vo]/=0,
5=(gs/ms )ps,

Vo=(gv/~v )pv

One can calculate thermodynamical quantities in the
mean-field approximation and find

e = —,
' (1/Cs')(1 —x)'+ ,' C—v'nv'

+[y/(2n) ] f d k(k +x )'~ [n(8)+n(8)],

p = 2(1/Cs )(1—x) + 2 Cv nv +T~[y/(2~) ]

X f d k k [n(8)+n(8)]/(k +x2)'~~,

nv [——y/(2m) ] f d k[n (8)—n(8)], (10)

where e, p, and nz are the dimensionless energy density,
total pressure, and vector (baryon) density. The first two
terms in Eqs. (8) and (9) arise from the scalar- and
vector-meson fields, while the final two contributions are
those of a relativistic Fermi gas of baryons with an effec-
tive mass M" =xM. y is the degeneracy factor (y=4 for
nuclear matter), n (8) and n(8) stand for the Fermi func-
tion for baryons and antibaryons, respectively. 0 defines
the dimensionless temperature 8=T/Mc . The nucleon
effective mass M* =xM is given by the equation of
motion of the scalar-meson field @:

x = . 1+Cs~[y/(2m) ] f d k[n(8)+n(8)]/(k +x )'

(
2$
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In the original publication, ' the coupling constants C&,
C~, were fixed to give eb;„d———15.75 MeV and kF ——1.42
fm . However, the resulting equilibrium density
p,q=0. 19 fm and the nuclear incompressibility ~-550
MeV were unrealistically large. We have tried to fix these
shortcomings by using different sets of coupling con-
stants. Figure 1 shows the region of the coupling-constant
plane where the mean-field solution yields the nuclear
binding energy —16 & e»„d & —15 MeV at equilibrium
densities 0.14 &peq & 0.19 fm . However, we observe that
for any reasonable set of coupling constants the compres-
sion constant ~ does not change significantly, even for the
lowest p,q values. Also the effective baryon mass
x =M*/M, which is the governing quantity of the mean-
field approximation, is constant in this region within 1%.

The physical reason for this wide latitude in the deter-

mination of the coupling constant is not completely clear.
Mathematically the situation is the following: By fixing
the binding energy one gets a line in the coupling-constant
plane. Moving along this line the scalar coupling constant
C& and the Fermi momentum kF corresponding to
minimal energy (at 8=0) change. These changes are relat-
ed such that they almost cancel each other in the second
term of the denominator in the self-consistency equation
(11). In this way the effective mass changes very slowly
along the line and one has an elongated region in the plane
of coupling constants giving approximately the same eb;„d
and kF.

PHASE STRUCTURE

e = —,(1/Cs )(1—x) + U ~

with the internal energy density

(12)

Let us now explore the phase structure for the effective
Lagrangian at vanishing chemical potential p and vector
density p, (p=pv ——0). First observe that for @=0 the
vector coupling constant does not appear in the thermo-
dynamical quantities (8)—(11) calculated in the mean-field
approximation. It is interesting that this feature is
preserved by the leading-order quantum corrections as
well. '

In contrast to p&0, the Fermi integration can be done
analytically, yielding for the dimensionless energy density

100
100

I

200
(

300 400
I

500 Cy

U =(y8x /~ ) g [(—1)" '/n][K&(nx/8)

+ (38/nx)K2(nx /8)]
FICx. 1. The region of the coupling-constant plane where the

mean-field solution reproduces the nuclear binding energy
—16&@&—15 MeV at equilibrium densities 0.14&p,q&0. 19
fm . We observe that for any reasonable set of coupling con-
stants the compression modulus ~ does not change significantly.
Also the effective baryon mass x =M /M is constant in this re-
gion up to 1%.

and the total pressure

p = ——,
' (1/Cs )(1 x) +pb, —

with the baryonic contribution

(13)

(14)
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py ——(y0 x /vr ) g [(—1)" '/n ]%2(nx/6) . (15)

The effective mass M* =xM is defined by the self-
consistency relation

x = 1+(yCs Oxhr ) $ [(—1)" '/n]E, ( nx/0) .

(16)

Here IC& and K2 stand for the modified Bessel functions
of first and second order, respectively.

Figure 2 contains the solution x of the self-consistency
equation (16) as a function of the temperature. The gen-
eral trend of the function x (9) can be understood as fol-
lows: The scalar density, which appears as a source for
the scalar-meson field N, increases with increasing tem-
perature. This leads to an increase of the mean-field value
of +. Since the scalar meson describes an attractive in-
teraction of the nucleons, these will be bound more strong-
ly, and thus the effective mass is reduced. This mecha-
nism is reinforced by the fact that a decrease of the effec-
tive mass increases the scalar density again.

The most striking feature is the sudden drop in x at
temperature T—200 MeV where the transition from
x=0.75 to x=0.25 occurs in an interval of AT-5 —10
MeV only.
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We have computed thermodynamical quantities for the
various coupling constants of the regions shown in Fig. 1.
For C& ~342 we find a phase transition of first order.
For Cz & 342 the thermodynamical behavior is smooth in
the temperature but a peak of finite width is found in the
specific heat (see Fig. 5). For Cs ——342 there is a phase
transition of second order.

To the best of our knowledge this is the first example in
the literature of an effective theory in which the order of
the phase transition directly depends on the strength of
the coupling constant.

Figures 3—5 show the temperature dependence of the
total energy density divided by the high-temperature limit
of the energy density [Eq. (12)], the pressure, and the
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FIG. 2. For p =p=O the solution x =M /M of the self-
consistency equation (16) is plotted as a function of temperature
for different values of Cq . The lower graph contains the same
results but with a stretched temperature axis near the transition
point.
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FIG. 3. For p =p =0 the temperature dependence of the nor-
malized energy densities is shown. E„U, and Eq, stand for the
total, nuclear, and scalar-field energy densities, respectively.
They are divided by the Stefan-Boltzmann limit of E, . From
E, one recognizes that the system reaches its high-temperature
behavior quite abruptly. Since the effective mass is very small
at high temperature the system suddenly decouples to almost
free zero mass nucleons, i.e., up to the constant first term in the
energy density and pressure. How this happens depends on the
actual values of the coupling constants C~ . The lower graph
contains the results only for Cq ——365 but with a stretched tem-
perature axis.
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FIG. 4. For p =p=O total pressure divided by the high-
temperature (Stefan-Boltzmann) limit is plotted versus tempera-
ture for different coupling constants Cq . The lower graph
shows the transition point.
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FIG. 5. The dimensionless specific heat CH„, is shown as a
function of temperature and for different Cq . Because of the
linearity of CH„, in dx/dO and the pole structure of dx/dO, the
specific heat diverges for Cq ——365, but is continuous for
Cs'=307

specific heat for Cs ——307 (p,q
=0.17) and Cz ——365

(p,q=0. 145). The total energy density shows (Fig. 3) that
the system reaches its high-temperature behavior quite
abruptly around T-200 MeV. Since the effective mass is
very small at high temperature, we can say that the sys-
tem suddenly decouples to almost free zero-mass nucleons,
i.e., up to the constant first term in the energy density and
pressure. How this happens depends on the actual values
of the coupling constants Cs . It must be kept in mind,
though, that this picture comes from the mean-field ap-
proximation so that the detailed structure of this sudden
change (e.g. , whether we observe a phase transition or a
peak of finite width in the specific energy only) may be
different in the full quantum field theory.

Another remark concerns the observation that at high
temperature the system behaves like an almost-free zero-
mass fermion gas with a constant shift in the energy den-
sity and in the pressure. This is quite analogous to the ex-
pected chiral phase transition in high-temperature QCD.
However we should keep in mind that there is no libera-
tion of internal degrees of freedom of hadrons in the
Walecka model, i.e., the phase transition found here can-

not be interpreted as a transition from baryon to quark
rnatter.

CRITICAL LINE OF THE MEAN-FIELD THEORY

The mathematical structure of the self-consistency
equation is so simple that it is possible to understand how
this decoupling happens. First we remark that the specif-
ic heat calculated from (12) is linear in dx/d8. So when-
ever we see a sudden fall in x(8), there is a peak in the
specific heat (see Fig. 5). In addition, if we have three
solutions of the self-consistency equation, similarly the to-
tal energy density in that region is also triple valued. This
type of temperature dependence leads to a phase transition
of first order applying the Maxwell construction in order
to avoid instability. In this way the fact that we see one
or two poles or only a peak in dx/dO means, respectively,
that we have a phase transition of second or first order or
continuous thermodynamical behavior.

The next step is to clarify the pole structure of dx/dL9.
It is easy to express dx /d8 as a function of x and 8:
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( —ycs'x '/~'8) Q [(—1)"—'/n]IC,
dx/d8=

1+(yCs 8/ ) g [(—1)" '/n][K~ —(nx/8)K ]

The poles of this expression in the (x,8) plane lie on the
curve determined by the vanishing of the denominator.
Using Eq. (16) this condition becomes

(18)

The number of intersections of this line with the solution
of the self-consistency equation tells us how the decou-
pling happens. The numerical study of this question leads
to the following results:

(i) For Cs & 342 the lines do not cross, so that for such
coupling constants the decoupling is continuous.

(ii) For C~ —342 the lines have one point of contact so
that we have a phase transition of second order at
T, =205 MeV where x=0.505 (these values come from
the x, T coordinates of the point of contact).

(iii) For Cz ~342 the lines cross twice, so in this case
we have a phase transition of first order. The critical tem-
perature and x at both end points of the mixed phase are
given by the x, T coordinates of the intersections.

Thus the order of the phase transition strongly depends
on the actual value of the coupling constant Cq .

density. Our result is that around temperature T-200
MeV the pressure and the internal energy become, up to a
constant, those of a free-massless-fermion gas having the
degeneracy factor of nuclear matter. This sudden change
can be manifested as a peak in the specific heat or as a
phase transition depending on the actual values of cou-
pling constants. In addition, we have found that if one
fixes the coupling constants by fitting the measured bind-
ing energy and density for nuclear matter to experimental
values, the possible coupling-constant values determine an
elongated strip in the coupling-constant plane. This strip
contains coupling-constant values corresponding to both
types of the mentioned thermodynamical behavior. We
interpret these results such that the nuclear field theory, as
a low-temperature effective theory of hadronic matter, in-
dicates the occurrence of a sudden change in thermo-
dynamical behavior around T, -200 MeV at zero baryon
density, in analogy to quark deconfinement in lattice
QCD calculations.
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