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We present a new method for resolving the scheme-scale ambiguity that has plagued perturbative
analyses in quantum chromodynamics (QCD) and other gauge theories. For aphelian theories the

method reduces to the standard criterion that only vacuum-polarization insertions contribute to the
effective coupling constant. Given a scheme, our procedure automatically determines the coupling-

constant scale appropriate to a particular process. This leads to a new criterion for the convergence

of perturbative expansions in QCD. We examine a number of well known reactions in QCD, and

find that perturbation theory converges well for all processes other than the gluonic width of the Y.
Our analysis calls into question recent determinations of the QCD coupling constant based upon Y
decay.

I. INTRODUCTION

tr, '(Q)
+ C2(Q), + . .

The coefficients C;(Q) depend both upon the exact defini-
tion of the running coupling constant a, (Q) (i.e., the
"scheme" ) and upon the choice of scale Q. When working
to all orders in ct, (Q) the choice of scheme and scale is ir-

relevant; the coefficients C;(Q) are defined so that p is the
same for all choices. However, this freedom can be a seri-
ous source of confusion in finite-order analyses. Indeed,
when working to first order, one can set Ci(Q) to any
value simply by redefining a, or by changing Q. This
coefficient seems meaningless here. In particular, it seems
to give no indication of the convergence of the expansion.
This question is of critical importance in testing QCD,
since a, is rather large ( -0.1—0.3) at current energies. It
is quite likely that perturbation theory will fail completely
for some processes. Such processes must be identified.

The potential difficulties are well illustrated in low-
energy quantum electrodynainics (QED), where, for exatn-
ple, the electron anomaly has a very convergent expansion,

ge —2
ae

2

2

1 —O. 657—+2.352+

A major ambiguity in the interpretation of perturbative
expansions in quantum chromodynamics (QCD) is in the
choice of an expansion parameter. In general, QCD pre-
dictions for some measurable quantity p have the form

r

tr, (Q)
p= Coa, (Q) 1+C, (Q)

while the expansion for orthopositronium decay is much
less convergent:

ro p, ——ro 1 —10.3—+CX
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The difference in convergence rate here is not an artifact
due to a bad choice of scheme or scale; the first-order
coefficients in these expansions should not be absorbed
into a redefinition of a since the running coupling con-
stant for QED does not run at these energies. '

While numerous schemes have been studied [minimal
subtraction (MS), modified minimal subtraction (MS),
momentum subtraction (MOM}], little has been done to
resolve the scale ambiguity in QCD. In this paper we in-

troduce an automatic procedure for determining the
coupling-constant scale appropriate to a particular pro-
cess. Given a scheme, this results in a new criterion for
the convergence of perturbative expansions in QCD by
unambiguously fixing the expansion coefficient Ci(Q) in

Eq. (1) for a given process; perturbation theory cannot be
trusted when Ci (Q)ct, (Q}/m. & 1. Furthermore, the
coupling-constant scale can be determined without com-
puting all higher-order corrections. Thus leading-order
analyses in QCD can be meant ngfully compa'red with ex

peri ments.
In Sec. II, we outline our basic approach as applied to

QED (i.e., Abelian theories). We define the running cou-
pling constant ct(Q) for QED to include all contributions
due to vacuum-polarization insertions in the photon prop-
agator. This is the only natural choice since the variation
of the effective coupling in QED is due to vacuum polari-
zation alone. The coupling-constant scale Q* best suited
to a particular process in a given order can be determined
simply by computing the vacuum-polarization insertions
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in the diagrams of that order. Expansion (1) is then re-
placed by

, a(g*,),a'(Q; )
p=~oa(go} I+&i +Cp, +

7T 7T'

(4)

where all photon self-energy corrections are absorbed into
the effective coupling constants by an appropriate (and

unique) choice of scales Qo, Q~, . . . . Since all dependence
upon the number of light-fermion flavors (n/) usually
enters through the photon self-energy in low orders, boih
the coupling-constant scales Q,' and the low-order coeffi-
cients C;* are independent of nf. (Light-by-light scattering
graphs lead to nf dependence in higher orders. ) The
light-fermion loop corrections serve mainly to renormalize
a(Q), as expected. Note also, that in a general process, the
scales Qo, g~, . . . can depend on the ratio of invariants,
e.g., center-of-mass angles.

In QCD (i.e., non-Abelian theories), it again is natural
to absorb all vacuum-polarization corrections into a, (g).
In particular, all vacuum polarization due to light fer-
mions should be absorbed, leaving an expansion

, a, (Q*)
p=Coa, (g*} 1+C)— +. . .

procedure are indeed small.
The plan of this paper is as follows. In the next section,

we review the procedure in which the scale of the running
coupling constant is set in Abelian gauge theory. These
ideas are then developed for QCD in Sec. III. We limit
our discussion to lowest- and first-order corrections, and
focus upon processes that do not involve a gluon-gluon
coupling in leading order. This is sufficient for most
phenomenologically relevant processes in QCD, and we il-
lustrate our procedure for a number of well known reac-
tions. Most significantly, we find that the gluonic width
of the Y has a very unreliable perturbative expansion. We
also find that first-order corrections are numerically small
( &10—20 percent) for all of the other processes con-
sidered, when the correct coupling-constant scale Q* is
employed; the lowest-order calculations, together with the
quark vacuum-polarization corrections which set Q*, are
quite adequate in these cases for a quantitative comparison
of theory and experiment.

Finally, we summarize our results in Sec. IV, contrast-
ing our approach with other attempts at resolving the
"scheme-scale ambiguity. " We also briefly explore the
possibility of generalizing our method so that it may be
applied to all processes in QCD.

II. QED (ABELIAN GAUCyE THEORIES)

where C~ and Q* are defined to be nf independent. (The
calculation of C*, and g' is unambiguous since the depen-
dence of a, on nf is determined to this order by
Po ——11——,nf. ) Although the scale Q' is now automatical-
ly fixed, the expansion (5) still depends upon the definition
of a, (Q)—i.e., upon the renormalization scheme. One
can easily create schemes in which Cl is arbitrarily large,
and, unlike @ED, QCD has no scheme which is obviously
superior. This seherne ambiguity can, in fact, be eliminat-
ed to a large extent by adopting some physical process as a
theoretical standard for defining a, (g).7 For example, the
ratio of e+e ~p+p might be defined to be exactly
(s=g )

R+ (Q)=—3 g eq 1+ a~(g)
flavors

Expansions for other processes would then be expressed in
terms of a~(g*), with scale g* chosen such that C~ and
Q* are independent of nf as in Eq. (5). As it happens, ex-
pressions derived in this R scheme are almost identical to
those obtained for the MS or MS schemes (MS and MS
give the same expansions when used with our procedure).
We will adopt the MS scheme as our standard in this pa-
per, since it is the more familiar.

There are a large number of physical processes which
could be used as the standard for defining u, with similar
qualitative results. A bad choice for the standard process
can be detected immediately upon application. This is be-
cause the differences between first-order coefficients Cl
for various processes are independent of the scheme; there-
fore, for a bad choice of standard process most coeffi-
cients Cl will be large and have the same sign. This, in
fact, does not seem to be the case for the R.-MS-MS
scheme, since for a large number of processes the coeffi-
cients Ci obtained by using the automatic scale-fixing

The only true ultraviolet divergences in QED are associ-
ated with vacuum polarization, because divergences in the
vertex and fermion self-energy corrections cancel by the
Ward identity {or are absent in Landau gauge). Thus it is
only vacuum-polarization corrections that renormalize the
coupling. Since these corrections vanish like Q /m, as
Q2~ 0, QED becomes a fixed-point theory at very low en-
ergies:

a(Q)~ a= 1/137.036 as Q~ 0 . (7)

Equation (7) serves as an initial condition for the
renormalization-group equations, which then uniquely
determine a(Q) for all Q. In effect, we are absorbing the
entire vacuum-polarization correction into a(Q)—i.e.,
(QZ q2)

a{Q)
q —=ao(A)d""(q, A), (8)

q +LE
where ao(A} is the bare coupling and d" the unrenormal-
ized photon propagator.

Given this definition, we need only determine the ap-
propriate scale (or scales) Q for a given process. The most
naive procedure is simply to use the full propagator [Eq.
(8)] for each photon in any given diagram. 9 For example,
we can replace a by a(g) for (with Q = —q ) before in-

tegrating over q in the leading diagram for the muon ano-
naly [Fig. 1(a)].' All vacuum-polarization insertions are

FIG. 1. Diagrams contributing to the muon's anomalous
magnetic moment.
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automatically included. Unfortunately, the loop integra-
tion is then quite cumbersome. However, by the mean
value theorem there must be some scale Q'-m„ for
which the exact result is

vp a(Q*)
2~

where from the definition, Eq. (8),

(9a)

CX

2

1 —(a/m )[—,ln(Q/m, ) ——, ]—— [—,ln(g/m, )+g(3)——,'~ ]—.
(9b)

For simplicity we are neglecting muon loops and terms of
order m, /Q or less in a(g).] The scale Q' can then be

determined order by order in perturbation theory by ex-

panding (9) in powers of a and adjusting the coefficients
to agree with results obtained order by order from
vacuum-polarization insertions in the basic diagram. For
example, the lowest-order electron loop [Fig. 1(b)] contri-
butes

2 ~p 25 (x p—a = —ln — —a
3 m 18 m.

I

but its expansion is obviously far more convergent than
the original expansion for a&. Also this expansion is
unique. For example, including the C,a/m in a(g') [Eq.
(10b)] would wreak havoc with the next-to-leading loga-
rithms of mz/m, in higher orders; there is no reason to
expect that the Ci o./m is part of an approximately
geometric series of contributions, while the vacuum-
polarization corrections must be geometric (for renormal-
izability). Finally, each order in perturbation theory will

usually have its own scale (determined as above); there is
no reason for all running couplings to have the same scale.

a na„= 1+—(Avp+C, )+
2m

by

a(g*)
1

a(Q') Cap —— 1+ Ci+
2

(10a)

where

A
1 ——Avp

(lob)

and

2

C, = + —m. ln2+ —,g(3) =—0.657 .
72 6

Intuitively this is reasonable, since if a single insertion
gives u/~r4 vp a double insertion will give roughly
(a/wAvp) and so on. Thus the electrons modify only the
charge and not the physical expansion of az in this order.
Of course, this is no longer the case in higher orders, when
"light-by-light" diagrams [Fig. 1(c)] and others like them
appear.

The physical scale g* is refined by higher-order correc-
tions

Q*=m„e' ' (I+.1.14a/m+ );

which from Eq. (9a) must equal

g* 5 a 0—ln ———a
3 m, 3

Thus we have Q"=m&e ~' in leading order. With this
procedure, the muon anomaly has the same expansion to
first order as the electron anomaly [Eq. (2)], but with a
different expansion parameter —i.e., to this order we are
replacing

III. QCD (NON-ABEI. IAN CsAUGE THEORIES)

A natural definition for the running coupling has prov-
en far more elusive in QCD than in QED. There is no
boundary condition for a, (g) analogous to Eq. (7). A per-
verse definition, such as

ap(g) =aMs(g)+10'aMs(g)

would lead to absurd results. To avoid or at least mini-
mize this possibility we can define a, (g) directly in terms
of a specific physical process, as in Eq. (6). This is
equivalent to prescribing a renormalization scheme. Here,
however, we will simply adopt the MS scheme, since it
happens to be practically equivalent to choosing R + to
define a, .

Our procedure for fixing the scale is then straightfor-
ward, at least for processes that do not have gluon-gluon
interactions in lowest order. To first order, such a process
has an expansion

aMs«)
p =CDaMs(g) 1+ (A vpn/+B )

where the ny term is all due to quark vacuum polarization.
As in QED, the sole function of these light-quark inser-
tions is to renormalize the coupling. Given a reasonable
scheme, all such terms should be completely absorbed into
the leading-order coupling by redefining the scale

aMs«) aMs«*)

=aMs«) 1+ aMs«)» +Ms g
Furthermore, the new scale Q* must be n/ independent if
it is to retain any physical significance in relation to the
momenta circulating in the leading-order diagrams. Thus
we replace
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p=C a—(Q) 1+ MS( Q)
( —

~ P&vp+ ~ ~vp+&)

+ 0 ~ ~

(1 la)

where

a—,(Q')
P=CpaMs(Q') 1+ Ci+

any unique and general fashion. Consequently, our pro-
cedure for determining Q* is inapplicable; not all of the nf
dependence should be absorbed into a, (Q*). Since any
process involves gluon-gluon vertices in first order and
beyond, we presently can determine Q* only to lowest or-
der in a, /m. .

To illustrate our scale-fixing procedure and to explore
its implications, we examine briefly a number of well
known predictions of QCD.

e+e —+ hadrons. The ratio of the total cross section
into hadrons to the cross section for e+e —+ p+p is
(s =Q )"

Q* =Q exp( 3A vp ),
33C) ———,Avp+B .

aMs(Q) aMs(lib) R + (Q )=3+e~ 1+ — + (1.98 —0.115nf)
q

The term 33Avp/2 in C& serves to remove that part of the
constant B which renormalizes the leading-order coupling.
The ratio of these gluonic corrections to the light-quark
corrections is fixed by Pp= 11—', nf-

Several features of this procedure are worth noting.
(a) Two schemes that differ only by an nf-independent

rescaling give identical expansions in a, (Q ). Thus the
differences between MS and MS, for example, are ir-
relevant in this approach. Furthermore, aR(Q) could be

replaced by aR(Q/2) or aR(10 Q) in definition (6) with
no effect on the final results for any process p expressed in
terms of aR(Q*).

(b) If the MS scheme is replaced by another for which

~vs
a, (Q) =aMs(Q) 1+ (Dpp+&)+

+ 0 ~ ~ (13a)

aMs«) aMs'«*)
~3+eq 1+ + 0.08

q
7T

+ 0 4 ~ (13b)

where from Eq. (11), Q*=0.710Q. Notice that aR(Q)
[Eq. (6)] differs from aMs(Q') by only 0.08aMs/m. , so that

aR(Q) and aMs(0. 71Q) are effectively interchangeable (for
any value of nf ).

Deep-inelastic scattering. The moments of the nonsing-
let structure function Fq(x, Q ) obey the evolution equa-
tion'

~~s=a—(Qe ) 1+ F.+. . . (12) Q lnM„(Q )
dQZ

where D and E are nf independent, then the first-order
coefficients for all processes are shifted by —E:
C~ ~ C~ —E. Differences between first-order coefficients
are scheme independent. Thus, for a poorly chosen
scheme, the coefficients for most processes will be large
and have the same sign. On the other hand, if several pro-
cesses have convergent expansions (i.e., C~ small) in some
scheme, then this will still be true in the physical scheme
defined in terms of any one of these processes [see Eq. (6)].

(c) The leading-order scale is determined solely by Avp,
which comes from quark vacuum-polarization insertions.
This is usually all that need be computed to make a mean-
ingful leading-order prediction, as we show below.

(d) Equation (1 la) is a particularly convenient way to
present perturbative results since all flavor dependence is
implicit in the definition of a—s.

The automatic scale-fixing procedure determines a
natural expansion parameter aMs(Q') for the majority of
interesting processes in QCD. However, reactions with
gluon-gluon couplings in leading order are more difficult
to analyze because quark loops appear in the first-order
radiative corrections to the gluon-gluon vertex as well as
in propagator insertions. It seems difficult if not impossi-
ble to separate the divergent part of the vertex, which re-
normalizes o.„from the finite process-dependent part in

Vn MS PPPn+yn
(1)

8rr rr y„
aMs +

4 (p) + (14a)

(oj

aMs(Q. ) '—Xn aMs«.*)
~ ~ ~ (14b)

P rl, ~ hadrons)

r(q, qq)
2

2 Ms "I. Ms1+ (17.13—
9 rlf )

O'@ED

(15a)

where, for example,

Q p
——0.48Q, Cp ——0.27,

Q*,p
——0.21Q, C,p

——1.1 .

For n very large, the effective scale here becomes
Q„*—Qlv n, which is exactly what was found in Ref. 13
by a detailed study of the kinematics of deep-inelastic
scattenng.

g, decay. The ratio of the g, width into hadrons to
that into yy is (nf =3), '
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2 aMs'«*)
4 2

9e& O.'@ED

aMs(M*)
1+ 2 46+

(15b)

where Q*=0.26M„.
Y decay. The ratio of the hadronic to the leptonic

widths of the Y is (nf =4),"
I (Y~ hadrons)

I (Y~p+p )

10(m. —9) aMs (M'r)
8 1~eh &@ED

2 2

(I -x)p

y(p+q)
+

(~-y)(p+q)

—,( ' '[(1— )(1—y)]' 'Q)
TH(x, y, Q) =

3Q 2 (1—x)(1—y)

(18)

FIG. 2. The hard-scattering amplitude in leading order for
meson form factors.

X 1+ [2.770(7)P —14.0(5)]+

10(77 —9) aMs
281m eb a~ED

2

—(M )
1 — 14.0(5)+

(16a)

(16b)

since the gluon's momentum transfer is —( 1 —x )( 1 —y )Q
(see Fig. 2). If we estimate (x ) —(y ) ——,', then the
correct expansion parameter for TH is -aMs(Q/4. 6) in
agreement with the detailed analysis in Ref. 19.

QQ potential. The interaction potential between two in-
finitely massive quarks is

V(Q') =—CF4~ass«) aMs1+ ( —,';pa —2)+. . .

where Q* =0.157M~. Thus the decay rate into gluons has
a large negative correction with this physical definition of
the coupling, just as do the rates for Y~ yyy and for
orthopositronium decay into three photons, both of which
are scheme and scale independent to this order. Such a
correction implies large, positive terms in higher orders,
and, in fact, these are necessary if we are to fit the data.
Further study is clearly necessary before Y decay can be
used as a reliable measure of a, . We do note, however,
that the large corrections cancel' almost completely in the
branching ratio for producing a direct photon plus had-
rons':

I (Y~ yD+ hadrons)

I (Y~ hadrons)

36eb a@ED MS( Q1+ 2 2(6)+. . .
aMs«*)

(17)

where again M*=0.157M~. This cancellation occurs be-
cause the leading-order amplitudes for Y~ ggg and
Y~ ygg are identical in structure. Thus the branching ra-
tio for direct photons could be used to determine o.—s.

Exclusiue processes. Exclusive processes involving large
transverse momentum are given by the convolution of dis-
tribution amplitudes P(x, g), representing the wave func-
tions of each initial- and final-state hadron, with (collinear
irreducible) hard-scattering amplitudes TH(x;, Q) in which
each hadron is replaced by collinear on-shell quarks (or
gluons). ' The procedure given above allows us trivially to
include the vacuum-polarization corrections to the
(skeleton) tree graphs contributing to TH, and thus set the
coupling-constant scale for the leading-order results. For
example, the hard-scattering amplitude required for the
form factor of helicity-zero mesons is (Fig. 2)

(19a)

~F4~aMs«" ) aMs«')
1 — ' 2+-

2

4' CFa„(Q )
V(Q )=— (20)

with a„(g)=aMs(e 5~ Q)(1 2aM slur . —. ). The pertur-
bative QCD prediction can be tested empirically —without
scheme or scale ambiguities —if the predictions for two
processes such as (6) and (19) are consistent with experi-
ment.

aMoM(Q). The standard MOM definition of a, is (Lan-
dau gauge)

Ms
aMOM( Q) aMs( Q) 1 + ( 1.28po —7.47 ) +

aMs(g*)~ a—(Q" ) 1 —— —7.47+Ms

(2»)

(21b)

where Q*=0.077Q. Although this is not a physical pro-
cess, we include this result because MOM is a widely used
scheme. Clearly the M(OM scheme is incompatible with

(19b)

where Q'=e ~~6, Q—:0.43Q. This result shows that the
effective scale of the MS scheme should generally be about
half of the true momentum transfer occurring in the in-
teraction. In parallel to QED, the effective potential
V(Q ) gives a particularly intuitive scheme for defining
the QCD coupling constant
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our method of fixing Q*; all first-order coefficients would
be increased by 7.47 if MOM replaced MS. This is not
unexpected since a~o~ is defined in terms of the trigluon
interaction and such processes are specifically excluded
from our analysis. Indeed the MOM scheme based upon
the quark-gluon vertex is a perfectly acceptable alternative
to MS

a—(Q*)
a~o~(Q) =a~,(Q*) 1 — ' 0.4+ (22)

IV. CONCLUSIONS

In this paper, we have emphasized the importance of
distinguishing scheme and scale ambiguities when inter-
preting a perturbative expansion in QCD. On the one
hand, one has considerable lattitude in choosing the renor-
malization scheme or process which defines a, (Q). For
example, the replacement [see Eq. (20)]

a„(2.3Q ) =a~~( Q)(1 —2a~~/~+ )

makes little practical difference for any of the processes
we have discussed. On the other hand, once the scheme
has been selected, the scale for a, must be chosen carefully
if the perturbative expansion is to evolve sensibly as the
momenta are rescaled. In particular, the procedure dis-
cussed in Secs. II and III unambiguously determines the
coupling-constant scale for the leading term for most of
the interesting processes which test perturbative QCD.

The automatic scale-fixing procedure can be summa-
rized as follows. Given a renormalization scheme for a„
the QCD perturbative expansion for the processes of in-
terest takes the form

p=C()a (Q*)(1+C]u /7r+ '
) .

The scale Q* should then be chosen such that Q* and C*,

are independent of n~, the number of "light" fermions
(i.e., with m~ &&Q ). Most importantly, this implies that
the expansion is unchanged in low orders as the important
momenta vary across a quark threshold —all vacuum-
polarization effects due to a new quark are automatically
absorbed into the effective coupling constant. Clearly this
is where such effects belong. For the processes of interest,
the low-order expansions well below and well above such a
threshold differ only by gluon self-energy corrections due
to the new quark, provided, of course, the argument of o.,
is rescaled with the momenta. Such self-energy contribu-
tions are then correctly absorbed into the coupling con-
stant, leaving the expansion unchanged across the thresh-
old. Whatever scheme is employed, this criterion of n~ in-
dependence uniquely determines the scale appropriate to
that scheme for both Abelian and non-Abelian theories.

A striking feature of each of the perturbative QCD pre-

where Q*=0.43Q and Landau gauge is assumed. It is
only accidental that a~o~(Q) and a~o~(Q) are nearly
identical for n~ ——4. This is not the case for nf+4,

f = ~o~(Q) = mom(Q)( +
and from our perspective the MOM definition is prefer-
able.

dictions discussed in this paper is that —except for Y
decay —the first-order correction in a~& is only 10 to 20
percent of the leading term at typical Q after the scale
has been fixed. [This is despite the fact that the coeffi-
cient Avpny+8 is replaced by 16.5Avp+B, as in Eq.
(11).] Perturbation theory seems to work rather well —the
leading term in a~~(Q') for these processes is by itself
quite accurate. The main effect of the higher-order
corrections is in setting the correct scale Q", and for this
only the fermionic vacuum-polarization corrections are
needed. In effect, the automatic scale-fixing procedure
uses the fermionic loops to probe the momentum flowing
in the leading-order diagrams. The remainder of the
higher-order corrections, i.e., the [(—", )A vp + 8 ]a, /m,
must of course be computed to obtain predictions with
precision better than 10 to 20 percent.

For Y decay into three gluons [Eq. (16)], the higher-
order corrections are quite large, calling into question the
possibility of a perturbative analysis of this reaction. The
fact that the higher-order corrections for the correspond-
ing decay of orthopositronium in @ED are large [see Eq.
(3)] indicates that this effect is not due to ambiguities in
the renormalization scale.

The automatic scale-fixing procedure given in this pa-
per is applicable for any choice of renormalization
scheme. However, once the scale-fixing procedure is used,
we can readily normalize and thus define a, (Q) by using a
convenient physical processes such as R + (Q ) [Eq. (6)]
or the effective potential V(Q ) between heavy quarks
[Eq. (20)]. Since the first-order corrections are small in
the MS scheme, any one of the physical processes con-
sidered could have been used to define a„with essentially
the same results. The exception is again Y decay. Rewrit-
ing the other expansions in terms of a~, defined such that

I (Y—+ hadrons) 10(~ —9) &v (~r)
I (Y p+p ) 8lmeb a~~D

is exact, results in first-order corrections ranging from
+3o.~/m to +7a~/m, depending upon the process. This
seems not to be a very good scheme. The standard MOM
scheme appears to be even worse and so is incompatible
with our technique. However, leaving aside atypical cases
such as Y decay and artificial schemes such as MOM,
there appear to be no serious problems associated with the
scheme ambiguity now that the scale ambiguity is
resolved.

In the past, two viewpoints have prevailed concerning
the resolution of the scheme-scale ambiguity. One was
simply to adopt some definition of the coupling
(MS, MS, MOM, . . . ), and then attempt to guess the ap-
propriate scale for the process under study (e.g.,
Q*=M~/3 for Y decay since there are three gluon jets in
leading order). Our procedure removes any guesswork by
automatically determining the scale. It is an essential
complement to any analysis of scheme dependence.
Furthermore, we now can easily introduce physical
schemes for defining a, [e.g. , Eq. (6)] which are both
gauge independent (unlike MOM) and regulator indepen-
dent (unlike MS and MS).

The second viewpoint holds that for want of better gui-
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dance we should adopt some ad hoc principle such as
maximal convergence, where Q' is chosen so that
C;(Q")=0 for i ) 1 in Eq. (1), or minimal sensitivity,
where Q* is chosen to minimize the variation of p with
Q* [due to omission of higher-order terms in Eq. (1)].
Unlike our procedure, these methods give no indication of
the convergence of perturbation theory; C~(Q') is by defi-
nition small and process independent for both of the
Inethods mentioned above. Such methods will usually be
completely wrong when applied to processes, like Y decay,
for which the higher-order corrections are very large;
worse, they give no warning of such situations.

Our scale-fixing procedure is obviously far from com-
plete. The most pressing problem is to find a suitable
method for analyzing processes with gluon-gluon cou-
plings in lowest order. An interim procedure might be to
absorb all fermion-loop corrections —i.e., vacuum polari-

zation, quark loops coupled to three gluons, etc.—into the
coupling constant, while using some definition of a, relat-
ed to the trigluon interaction (e.g. , tzMQM). However,
something better should be found. %'hen it has been, the
extension of our analysis to higher orders will be straight-
forward (as is already true in QED).
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