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We investigate the properties of a class of supersymmetric SO(10) grand unified models
with an intermediate mass scale M& corresponding to the breaking of left-right symmetry.
We consider the possibility that the supersymmetry-breaking scale M.q coincides with M~
and study the constraints imposed on the value of M~ by low-energy parameters such as
sin 0(Mir) and u„„„s(Mir) for different plausible scenarios for the mass spectrum of the su-
permultiplet fields. We find that the allowed values of MR are greater than 10' GeV. If,
however, the supersymmetry-breaking scale Mz & Mz and Mz is chosen as a free parameter,
lower intermediate mass scales are possible. Some implications of our model are noted.

I. INTRODUCTION

The subject of supersymmetric unification of
elementary-particle interactions' is of great current
interest. Making a unified model supersymmetric
not only helps to reduce the number of arbitrary
coupling parameters in it but it also raises the hope
that it may provide a resolution of the puzzle of
large mass ratios often occurring in these theories.
In general, global supersymmetry makes it possible
to tune parameters in the tree level once and for all,
and predict a mass spectrum for fermions and bo-
sons that is stable under radiative corrections. In
particular, any desired large mass ratios can be made
natural, although rather arbitrarily. From this point
of view, global supersymmetry seems particularly
well suited for application to grand unified theories.

Application of global supersymmetry to SU(5)
grand unified models has been recently carried out
by Dimopoulos and Georgi and Sakai. The SU(5)
model has two mass scales MU, the grand unifica-
tion scale, and M~, the scale of weak interactions.
One assumes that supersymmetry is unbroken down
to Mii. This enables one to keep the mass of the
Weinberg-Salam Higgs doublet light (-Mit ) by one
fine tuning of parameters. The radiative corrections
do not alter this result; this makes the gauge hierar-
chy natural. The implications of this model for
baryon nonconservation and cosmology have been
studied by various people.

In this paper, we discuss a supersymmetric grand
unification based on the SO(10) grand unification
group. The main motivation for studying this
model is that unlike the SU(5) model, SO(10) allows
for interniediate gauge symmetries Gl CSO(10) to
exist, such that Gl D U(1) X SU(2)L X SU(3), . Pos-

sibilities of new physics associated with this inter-
mediate symmetry depends on the mass scale Mt
above which Gt is a good symmetry. As is well
known, if we restrict the unification mass MU to be
less than the Planck mass Mt, Mt is restricted by
low-energy constraints coming from the
phenomenological parameters a, (Mii ) and
sin Oii (Mii ). In this paper, we study the con-
straints on MI taking into account the effects of su-
persymmetry, where the intermediate symmetry is
the left-right-symmetric group of electroweak in-
teractions.

The SO(10) grand unified model can be broken via
the following symmetry-breaking chains, ' with
SU(2)1 X SU(2)R symmetry at the intermediate
stage:

SO(10) SU(2) XSU(2) X SU(4), (H )
MU

~ SU(2)L, X SU(2)R
M

XSU(3), XU(1)R L, (H2)

U(1) XSU(2) XSU(3), (G ) .
M~

We consider the two cases: (i) M, =MU so that

SO(10) ~Hp ~ Gi23
MU Mz

and (ii) M, =MR so that

SO(10) ~H, ~ G,23 .
MU M~

The next important question is the following: What
is the scale of supersymmetry breaking, Ms'? The
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evolution of gauge coupling constants depends sensi-
tively on Mz since for p&Ms, both the scalar
mesons and fermions of the supersymmetric multi-
plet contribute whereas below the scale Mq, we are
reasonably free to adjust the mass spectrum by in-
cluding soft supersymmetry-breaking terms. We
consider two situations: one in which supersym-
metry remains unbroken until the scale Mz and
another in which it is broken above the intermediate
mass scale M~. For these classes of theories (with
Ms & M~ and Ms -M~ ), we study the constraints
on Mz coming from sin 8~(m~) and a3(mii, ).
These constraints depend sensitively on the mass
spectrum of the supersymmetric multiplets. It is
therefore important to know the masses of the vari-
ous scalar-boson and fei iriion multiplets in the
theory. In this connection, we make specific men-
tion of the particular case when pseudo-Goldstone
supermultiplets result from large accidental sym-
metries of the superpotential. The point is that in
contrast with ordinary gauge theories, the existence
of nonrenormalization theorems in supersymmetric
models implies that the pseudo-Goldstone supermul-
tiplet can have a mass at most of order Ms. There-
fore, if pseudo-Goldstone particles arise at the su-
perheavy mass scale, as they do in our case, their
contribution to renormalization-group equations
must be included starting at p =Ms.

Taking this effect into account, we obtain the
values of Mz and MU allowed by low-energy data.
Our main result is that for the case Ms ——M~, con-
straints of supersymmetry rule out any intermediate
mass scale below 10' GeV. This value is sugges-
tively close to supersymmetry-breaking scales con-
sidered in models with geometric hierarchies. '
These results are given in Tables VI and VII. In ad-
dition, we display the mass scales allowed by low-
energy constraints in Table III when Ms »M~.

This paper is organized as follows. In Sec. II, we
present the detailed Higgs-multiplet and symmetry-
breaking structure of our model. In Sec. III, we
present the renormalization-group equations for

Spin

0
1

2

1

Auxiliary

Vector Chiral
superfield (0, . ) superfield (4, . )

Here A, 's are four-component auxiliary Majorana
spinors, P's are chiral spinors, and A's are complex
scalars. However, we often use the superfield sym-
bol to stand for its scalar component when the con-
text makes the usage unambiguous. We use the no-
tation and techniques of Ref. 11 for the SO(10)
group and have a,P, . . . as SO(10) indices from 1 to
10; A, B = 1, . . . , 6 are SO(6) indices which
give the SU(4), representation content, while,
a, b, . . . =7, . . . , 10 belong to the SO(4) subgroup
[which is isomorphic to SU(2)r X SU(2)z ]. We
denote by (x,y,z) and (x',y', z'„t') the representation
content in a given SO(10) multiplet according to the
Hi and Mz subgroups, respectively. Recall that

Hi ——SU(2), X SU(2)~ X SU(4),

(2)

02 ——SU(2)1. XSU(2)g XSU(3), XU( 1)g

We display in Table I the multiplets employed.

sin Oii (mii ) and a3(Mii ). In Sec. IV, we present a
detailed analysis of the superpotential and the fine-
tuning conditions necessary to obtain the desired
mass spectra. We conclude in Sec. V with a brief
discussion of our results and their implications for
baryon nonconservation.

II. SUPERSYMMETRIC SO(10) MODELS
AND PATTERNS OF SYMMETRY BREAKING

Multiplets and notation

We employ the following generic notation for
superfields and their components:

Supermultiplet Submultiplets

TABLE I. Multiplets employed in this paper.

Dim

4 (Higgs field)

X (Higgs field)

X (Higgs field}

H (Higgs field)
g (Matter field)
4 (Gauge multipiet}

210 s (1,1, 1)+a (1,1, 15)+wi. (3, 1, 15)
+ uteri (1,3, 15)+z (2, 2, 10)~z (2,2, 10)

cr(1, 1,6)+EL (3, 1, 10)
+5„(1,3, 10}+a(2,2, 15)

o (1,1,6)+ZL (3, 1, 10)
+Eg (1,3, 10)+a(2, 2, 15)

c(1,1,6}+d(2,2, 1}
q (2, 1,4}+q(1,2,4)
1(3,1, 1}+r(1,3, 1)+f(1,1, 15)+g(2,2, 6)
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TABLE II. The mass spectra used as input for the renormalization-group analyses.

Multiplet

1(3,1,1)
r(1,3, 1)
f (1,1,8,0)
f(1,1, 1,0)
q (1,2,4)+q (2, 1,4)
q(2, 1, 1, +1)
One SU(2)1. doublet
One (Higgs) SU(2)L, doublet

q (2, 1,4}+q(1,2, 4)
Z, S'—+

, photon, gluons

Type of
fields

X, Vq

A, , V„
A

A, g
A, P

A

SO(10)
index structure

ab
ab
AB
AB

Order of mass

Mg
Mg
MR
Mg
Mg
Mg
Mg
Mw

Fermion masses
Mw

Subcase A(i)
b g +Kg(1,3, 1, k2)

EL, +ZL, (3, 1, 1,+2)
A

A

abAbC

abABC
Mg

Mg

Subcase A]ii) same as (i) plus
b,g +Zg (1,3,6, k2)

bL+ZL, (3, 1,6, +2)

Subcase A(iii) same as (ii) plus
bg+Eg(1, 3, 3, +2/3)
41.+Kg(3, 1,3, +2/3)

A abABC

abABC

abABC

abABC

Mg

Mg

Mg

Mg

Symmetry-breaking patterns

We shall discuss only the cases where the
supersymmetry-breaking scale Ms & M~, where M~
is the scale at which the intermediate symmetry
group (H

&
or H2) is broken. We list the cases con-

sidered along with the mass spectra in each case.
Detailed discussion of the mass spectra is given in
Secs. IV and V.

Case A. The symmetry hierarchy is

SO(10)~Hp~SU(3), XSU(2)L, XU(1)r (Gt23) .

Case 8. In this case,

SO(10)~H ) ~G )23,

(A 7s9)Q ) —(S( 1,1,1,0) ) = Vo

(A„„)= (hg(1, 3, 1, +2) ) = Vg,

(A„„)=(b. (1,3, 1,—2)) = V

(A, „)= (d(2, 2, 1,0) ) =re .

(4a)

(4c)

(4d)

The only nonzero vacuum expectation values are as-
sumed to be

(A i~34) =( ~456) =(A „,6)

Case C. Same as A(i) (see Table II) except that we
assume

Ms »M

= (a (1,1, 1,0) &
= V

(A „'„)=(~(2,2, 1,0) ) =~,
(A„'„)=(a, (1,3, 1,+2))= V, ,

(A„„)=(b~(1,3, 1, —2) ) = Vg,

(A„'„&=(a(2,2, 1,0) & =~,

(A, „)=(d(2, 2, 1,0))=~.

(3a)

(3b)

(3c)

(3d)

Mass spectra

The mass spectra used as input for the
renormalization-group analyses are displayed in
Table II. Details are given later. We display multi-
plets with mass M~ and we use the notation of Eq.
(1) and Table I.

Cases A(i), A(ii), and A(iii). For all these cases, in
addition to the multiplets in Table II, there are
pseudo-Goldstone supermultiplets
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Pp, o——il, (3,1,3( —, )+3(——, ))ecoii(1,3,3( —,)+3(——, ))et (2,2, 6, —, )t (2,2,6, ——, ) .

Their masses are, at most, of order Ms and thus
they must be reckoned into the renormalization-
group equations above Mii. We call this case A(a).
When P& is included in the superheavy set, we call
it case A(b). The point of including them in the su-
perheavy set is that if the Higgs sector is further
complicated by including 45- and 54- dimensional
irreducible representations, the set P/, may be made
superheavy.

Case B. This corresponds to case A(iii) with
gauge group Hi above Mii. The pseudo-Goldstone
superiiiultiplets are

t

in the 16-dimensional spinor representation, for ex-
ample, must be normalized in the same way and if
we take I31, I3ti, I3, , etc., defined as physical
SU(2)t. , SU(2)ii, and SU(3), generators, respectively,
we obtain

TrIzt TrI—z—„TrI—3— TrIz——t.

=—TrIi ——TrIso~ iol
——2.2 2

We note, however, that the physical 8 La—nd l'
generators over the whole 16-dimensional represen-
tation do not satisfy Eq. (10). Taking

Pti ——
wing (1,3, 15)+wt (3, 1, 15)

+t(2, 2, 10)+t(2,2, 10) .
8—

Tl'
2

'2

16
and TrFz

~
i6,

Subcases (a) and (b) correspond to intermediate and
superheavy masses for PB, respectively.

Case C. In this case we assume Ms &&Mii. We
display the results of the renormalization-group
analysis under this assumption for cases A(b)(i) as
Table III. In the other subcases the constraint of
perturbative unification, i.e., that a„„„s remain
bounded by a number less than 1, does not allow any
significant lowering of the value of Mii.

III. CONSTRAINTS ON THE MASS SCALES
FRGM a, (Ms ) AND sin~8(Ms )

In this section, we will write down the
sin~8ii(Mii ) and the QCD coupling a3(Mii ) in
tei-riis of the inteiiiiediate mass scales. The foiinulas
are identical to these in the nonsupersymmetric case,
except that the coefficients in the evolution of cou-
pling constants will be different for the supersym-
metric case. For generality, let us consider, the fol-
lowing symmetry-breaking chain:

we conclude that

(
z )1/2I ( )

I /2I

Since Y!2=I3R+(8 L)I2, we o—btain

1 3 1

gi'(Mi~ ) 5 gzti'(Mti )

and

2 1

5 gii t. '(M-ii )

g'(riiw) =( —, )'"gr(riiw) .

Now, let us write

Ii =( —, )' I3ii+( —, )' I~

From Eqs. (11) and (12), we conclude that

(10)

(12)

(14)

(15)

SO(10) ~Hi ~Hz ~ Giz3 .
MU M M~

Let us recall the important steps in the derivation
of the equations for sin Oii and a3(Mii ). First we
note that all generators of the SO(10) group defined

where g; goes over gzt for SU(2)t. , gzii for SU(2)ii,
gii I for I~ t. and gr for Ir coupling, respectively.
Now, we remember the following additional boun-
dary conditions representing the grand unification
of coupling constants:

CKg

0.100
0.109
0.12
0.121

14
14
14
14

12.9
12.3
11.8
11.7

6.5
4
6.5
2.5

0.248
0.257
0.244
0.261

TABLE III. Intermediate mass scales for case C when Mz ~~M~. Masses in GeV.

(Mii ) sin'Os (Mg ) r =log~&Pfii s =log~~~ u =log, ~~
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gl'(MU ) g2R (MU ) g2L ™U) 88 L(—MU ) g3™U) 8So(10)(MU ) (16)

Integrating Eq. (12) between various mass scales and using boundary condition equations (10), (11), and (13),
we obtain the following equations (we assume Mx ——MU and use the fact that, sin OIi

——e /g2L ):

2 3 5 a R S 3 S 2 S»n e~ I M + (A2L AF )in +(A2L A2R 3A& —L8 82m
(17)

aild

8a(MIs )1—
3a3(MII )

5 a(MII ) s Mg s MU
( —,A2L+A„——,A3)ln +[—,(A2L+A2ii)+ —,AII L ——,A3]ln

2~ W M„
(18)

3
Y (20)

where A2L and A3 stand for SU(2)L and SU(3), con-
tributions to Eq. (12) for MII &@&A and A2L,
and A3, etc., denote the same contributions for the
mass range Mz-MII &p&MU. For case C the
relevant foiiaulas are obtained by replacing Az
and A3 everywhere by A4 .

For case A, the foriiiulas for A2L, A z, and A 3 are

4 1

Ay ——, Ng+ ——,0, (19)

A3 ———11+ , Ng . —

We have assumed that only one complex scalar
SU(2)L Higgs doublet contributes between MIs and
M~. Ng is the number of ferinion generations. We
point out that to calculate A r we use the formula

A2L —— 6+2—Ng+ $ TL(R; ),
A2II —— 6+2N—g+ g TR(R|),

AII L ——+2Ng+ g Ts L(R; ), (21)

A3 —— 9+2Ng +—$ T3(R;)

A4 ———12+2Ng+ g T4(R; ),

TL,R 2 (DL, R +4TL,R )

(8 L);-
TH L— (22)

where i goes over supermultiplets other than those
coming from g (16) and the gauge vector supei-inul-
tiplets $3(1,1,80), 44(1, 1, 15), Vii(1, 3, 1), VL(3, 1, 1).

For D complex weak isodoublets and T isotriplets,

where I runs over fermions and scalar bosons. The
rest of the coefficients appearing in Eqs. (14) and
(17), i.e., A2L, A2II, A3, and XII L receive contri-
butions from whole supeiinultiplets since they were
in the region of energy p &Ms &MR. The relevant
foiii|ulasi2 are

where i goes over all members of the multiplet (ei-
ther the boson or the fermion part) with appropriate
transformation properties. In Tables IV and V, we
give the values of the T's for various representa-
tions.

For case C (Mz & MII ),

5 a(MIi )
sin eii (M~) =—+- (A2L —A r)ln

8 8 2m

R, 3 2 R+ (A 2L ——,A 2' ——,Aii L )ln
W

+(A2L ——,A2II ——,AII L )lnS 3 S S

8a(MIi ) 5a(MII ) 3 s M~ 3 3 8 g

( —,A2L +A& ——,A3)ln +(—,A2L + —,A2++ —,Az L
——,A3)ln

3a3(Mw) 3(2Ir)

(23)

+( 5A2L'+ 5
A2R'+

5 Aa Ls—5A3S)ln
S
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TABLE IV. Contributions of various
SU(2)gX SU(2)g X U(1)s I. X SU(3), .

multiplets to the p functions for

Multiplet

(2,2,0, 1)

(3,1,2, 1)

(1,3,2, 1)

(3, 1, —,,6)

(3, 1, ——,,3)
(1,3, ——, , 3)
0(3, 1, —, , 3)

(1,3, —,3)
(2, 2, —,, 6)
(1,1,3,—)

T2L

1

2

0
12

6

0
6

T2R

1

0

0
6

0
6

6

0

TB—L

0
9
2
9
2

3
3

2
3

2

6

3

5

~C
(when relevant)

0

0
15

2
3

2
3

2
3

2
3

2

10
1

2

TABLE V. Contributions of the various multiplets to
the p functions for Mi.

Multiplet

Gauge
(3,1,10)
(1,3,10)
(2,2, 10)
(1,1,15)

T2L

—6
20
0

10
0

T2R

—6
0

20
10
0

T4

—12
9
9

12
4

where the coefficients AzL, Azit, Az L, and A3
include the effect of the whole chiral superfield (i.e.,
both P and A), whereas the rest of the coefficients
are the same as in nonsupersymmetric theories. We
examine the consequences of the Higgs-multiplet
spectrum of case A(i) and list the results in Table
III. The results of the renoi irialization-group
analysis for cases A, 8, and C are listed as Tables VI
and VII.

Let us discuss our results. As is clear from Tables
VI and VII, the scale of Mz is greater than 10'
GeV. Thus, if M~-Mit, in supersymmetric SO(10)
models, there is no room for low-mass parity res-
toration, unlike the case of non supersymmetric
SO(10). We also note that unlike the SU(5) case, '

where the unification masses are of order 10' GeV,
our unification masses in the one-loop approxima-
tion are of order 10' GeV.

One point worth emphasizing is that, due to the
existence of a large number of Higgs superiiiultiplets
above p ~M~ -Ms, the SU(2)1 it and SU(3), gauge
couplings start increasing beyond @=M~. If we
want to apply the perturbative approximation for
P(g), we have to check in each of these cases that
g;(MU), i =L,R, 3 does not become too large. We
find that this rules out the existence of intermediate

mass scales in some cases. In Table VI, we display
only those cases for which the perturbative approxi-
mation holds till p =MU.

Finally, we wish to note some uncertainties in our
estimates. The first obvious source is that of
higher-loop effects in the P function. Another
source of uncertainty is the possible large splitting
between the fermionic and bosonic partners within a
superiiiultiplet below M~ as well as that due to the
mass of superheavy bosons being below MU. '

However, we do not expect these uncertainties to
change our general conclusion drastically.

IV. FEASIBILITY OF ASSUMED
SYMMETRY BREAKING

In this section, we analyze our model in some de-
tail to note how the cases mentioned in Sec. II can
be realized by natural fine tuning of parameters in
the model and also to assure that supersymmetry
remains unbroken down to =Mit. Our discussion
will be carried out only at the tree level. The non-
renorriialization theorems of supersymmetry then
guarantee that the resulting mass spectra below and
above Ms do not get mixed up due to radiative
corI'CG41OIlS.

Our strategy will be to show that the chosen
symmetry-breaking patterns and tuning conditions
(see below) remove all contributions of order MU4
and MU Mit to the vacuum energy. Terms of order
Mit 4 are then left over, which, together with
supersymmetry-breaking negative (mass) for scalar
bosons, will generate the remainder of the symmetry
breaking due to the vacuum expectation values
(VEV's) V~,K with

V~ ))JC .
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TABLE VI. Values of M~ and MU for representative allowed values of sin'8~ and a,««z
for case A. Masses in GeV.

as(Mw)

0.100
0.110
0.120

sin Ow

0.214
0.21
0.2075

r =log«gfz

Case A(a)(i)
13.5
12.7
12.3

u =log|OMU

14.1

14.1
14.1

0.10
0.11
0.12

0.205
0.203
0.205

Case A(a)(ii)
13.6
14.1

14.8

15.5
15.6
15.2

0.10
0.11
0.12

0.224
0.221
0.219

Case A(a)(iii)
13.1
13.2
13.5

14.5
14.8
15.1

0.10
0.11
0.12

0.219
0.219
0.219

Case A(b)(i)
13.5
12.5
12.0

14.1

14.0
14.0

0.10
0.11
0.121

0.100
0.110
0.121

0.216
0.212
0.209

0.245
0.242
0.239

Case A(b)(ii)

Case A(b)(iii)

13.3
13.7
13.9

11.9
12.2
12.4

16.1
16.3
16.6

14.1

14.8
15.1

Preliminaries

(25)

where

As a preliminary, we note that the potential in su-
persymmetric theories is given by

V= gF;F, + , gD—
and

gA;T'A;, — (27)

W is the superpotential, i goes over the chiral multi-
plets and goes over =1, . . . , 45 of the group; T' are
the generators in the representation of the ith chirai
multiplet. In case A, the supeg otential is given by

BW(A) (26) W = W, + W~+ W3+ W4,

TABLE VII. Same as Table VI, for case B.

as(Mw)

0.1

0.110
0.120

sin~0 w

0.222
0.219
0.215

r =log~0M~

Case B(a)
14.1
14.4
14.6

u =log, oMU

15.8
16.1
16.3

0.100
0.110
0.118

0.25
0.25
0.25

Case B(b)
12.8
12.9
13.0

14.5
14.8
15.0
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where

2= 3=@ =@p p@p p C' =@p. pc' pys@y~~

Wi ——Mi@ +a@

W2 ——MpXX+ g bk ( @XX)k,

W3 M3(——H )+c&(4HX)+c2(NHX),

where

(XX)=XpvapyXpvapy ~

( —) ( —)

(@H X )=N pysHi, X pygmy,

(H ) =HpHp,

(30)

Such terms can be of two types: mass terms for sca-
lar bosons (A) and mass tei iris for gauge fermions (A, )

The presence of scalar mass terms in addition to
those coming from the supersymmetric Lagrangian
does not lead to quadratic divergencies. Hence the
nonrenormalization theorems which are vital to su-
persymmetric models are violated only by terms of
order am, lnA, where A is the cutoff. Since we only
employ tree-level tunings accurate to first order in
Ms, the corrections 0 (aMzlnA) will not affect these
conditions drastically. Thus we add

—px (A "A +AX~AX) —pii2A tA +pg A~tA~,

(33)

k runs over the various SO(10) invariants that can be
formed from 4&, X, and X. For example,

(@X»i=@i.pX„~s~X py5~

W, = d, X'a 'r„XH-„
T —1+d2X 8 I „„p+Xp„py,

8 is the conjugation matrix for SO(10).'

In case B„Wi is modified to

Wi ——AX(@ —24Mi )+a@

(31)

where X is a left-handed chiral gauge senplet super-
field.

In addition to the supersymmetric Lagrangian, we
include terms which break supersymmetry softly. '

where the p, 's are real masses -Mz.
The other type of supersymmetry-breaking term

that is employed is a mass term for gauge fermions,

M4Apgp„, (34)

where M4 is (Ms). It has been shown' that this
term too is "soft". It leads to no quadratically
divergent radiative corrections. We note that, strict-
ly speaking, this term is not necessary since we ex-
pect the breaking of supersymmetry by mass terms
for the scalars to lead to one-loop masses for the
gauge feiinions of order MaMz. Next we note the
following formulas for the D term and gauge Yu-
kawa coupling Wgy in our model:

Dpv='Ã[4A pyapA vyap+5A @yap' vyapx 5A @yap' vy px+Ap A +iA XpQ (p~v) j
xf & Xf x Hf II

4t — e rT — x
Wgy —— 2g[4Apy pi, k,p„,g, py+5A„y p g„„P

5A„y p ~„„Q—~ p +A„k„„g„+iA~tA,„„X„„Q]+H.c. ,

(35)

(36)

where X&„are the SQ(10) generators in the spinorial
representation.

Now, we are ready to discuss the details of gauge
and supersymmetry breaking. Since we want the
first stage of the gauge symmetry breaking to
preserve supersymmetry, we have to show that both
the F and D te~s vanish at the first stage.

The vanishing of the D terms is immediate since
(A ) leaves all diagonal generators of the SQ(10)
group unbroken, i.e., the rank of the group remains
conserved. ' This is also easily seen by substituting
Eq. (3a) in Eq. (35).

It is easy to check that if

Vo ——— (37)
a

then it follows that the vacuum energy of the model
receives no contribution order Mz from F F and
the group is now broken down to

SU(2), XSU(2), XU(1), ,XSU(3), .

However, the existence of the couplings bk, Ci,
and C2 (i.e., of @XX,NHX, and NHX type terms in
the superpotential) raises the possibility that there
may be contributions to the vacuum energy of order
O(MU Mii ), contrary to our requirement that su-
persymmetry is unbroken at energies above Mz.
Eliminating O(MU Mii ) contributions requires the
imposition of fine-tuning constraints on the parame-
ters in the theory. These constraints come from the
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requirement that F*, F, and FH at the minimum
are at most of the order Mii and are given by

C) =C2=C

M2 —3 VpBg =0+0 (Mg )

5M2 —3 VpB +6Ci Vp =0 (Mg )

M3 ~ 12CV0 ——0 (M~ ),

(38a)

(38b)

(38c)

(38d)

4
V= g a„VR"K "

px V—g pH K—

n=i
(39)

where B~ and B are linear combinations of bk. It
then follows that the potential at the classical
minimum can be written as

V aMs. By further complicating the model one may
destroy the global symmetries responsible for the
pseudo-Goldstone phenomenon. However, in view
of the high intei-iriediate scales found by us we have
not carried this out.

In this section, we present details of the mass
spectra in the 10, 210, 126, and H. Since we are in-
terested only in masses of order MU and those pro-
tected from being of 0(MU), our approach will be
to concentrate on the fermionic mass tern|s since at
energies 0(MU), supersymmetry is valid and au-
tomatically provides the boson masses. This results
in an enormous simplification since the fermion
mass terms are of two types only.

(i) Those coming from the superpotential

where

V„=(A, ) =(A , ) and -K=(A~)

2

t J
(43)

with px, pH (M~,' a„are arbitrary parameters. It is
clear that there exist ranges of these parameters, for
which we obtain the desired hierarchy between Vz
and K, i.e., Vz ))K. However, since supersymmetry
is already broken at this level, the fine-tuning condi-
tions have to be imposed order by order in perturba-
tion theory.

Case 8

Recall that in this case A78910 breaks SO(10) to
Hi. As in case A, A does not contribute to (D ).
The vanishing of F and F implies that

(A ) =0(A 7891p ) = Vp =m

Furthermore, since

(A78910A ) (A78910A ) = (H~ ) =0

(40)

(41)

the invariants (@)HX and (4)HX make no su-
perheavy contributions to (F ) . Just as in case A
we tune

V. MASS SPECTRA
IN SO(10) SUPERSYMMETRIC MODEL

The mass spectrum of this theory is quite rich
since preservation of supersymmetry at the su-
perheavy scale entails a pseudo-Goldstone
phenomenon, by which certain submultiplets of the
superfield @ get no superheavy mass at all. Since
nonrenormalization theorems prevent a radiative
mass from developing until supersymmetry is bro-
ken, these particles get mass at most of order

M7+Bt, Vp ——0(M11 ) .

This also has the effect of making the b, submulti-
plets light on the superheavy scale.

where C is the Dirac conjugation matrix.
(ii) Contributions from the gauge Yukawa cou-

plings

igV 2((A; )A, T' it; g, A, TP (A—; )) . (44)

MUdlag(F2I6, —71$, —7I$), (45)

We remind the reader that in the supersymmetric
version of the Higgs mechanism, a massless scalar
from a chiral multiplet is absorbed by a massless
vector boson. At the same time the feinuonic
partners of the two join to form a Dirac particle of
mass equal to that of the massive vector boson.

Case A. Masses in the 210. Using the VEV as-
signed in Eqs. (3a) and in the formulas (35) and (36),
together with the forni of the superpotential Wi, it
is straightforward, if tedious, to deduce the masses
of the (H2) submultiplets of the 210.

(a) The (1,1,8,0) and (1,1,1,0) in a (1,1,15)
get masses 0 (MU ) from Wi but the
(1,1,3, ( —, )+3(——, )) components of a (1,1,15) get
no such mass. However, these chiral supermulti-
plets are precisely those "eaten" by the gauge super-
multiplet which becomes massive in the breaking of
SU(4) invariance. This is easily verified using Eqs.
(36) or (44). The singlet s (1,1,1) (@78910) aild
b(2, 2, 6) (@,t„~) get no contribution from the cubic
term in Wi, and hence get masses 0 (MU) from M, .

(b) The representations ioL (3, 1, 15)+wz(1,3, 15)
have index structure Ahab. By reasoning analogous
to (a) above, only the color 3 and 3 in the 15 get no
mass from Wi. However, in this case these super-
multiplets are not consumed by vector supermulti-
plets and hence remain without mass to 0 (MU).

(c) Finally, t(2, 2, 10)+t(2,2, 10) (@,zoic) have a
mass matrix of form
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where rl„ is the n Xn matrix with all entries equal to
unity. This results in the (2, 2, 6, —, )+(2,2, 6, ——, )

submultiplets having no mass to 0 (MU).
The pseudo-Goldstone set in case A is thus that

given as (6). This set (Pz) of supei-iiiultiplets gets
mass at most V aMs.

Case A. Masses in X~q26~ and X~&z&~. The tuning
condition (38) removes superheavy contributions to
the color-singlet masses in the 5 submultiplets of X
and X. Because of the left-right symmetry of the
potential and of the superheavy (VEV), this applies
to both b, (3, 1, 10) and 6(1,3, 10).

In cases A(ii) and A(iii), we tune the color triplets
and sextets in the 6 submultiplets to have mass
0(M~ ) by conditions exactly analogous to Eq. (38).
For this purpose we introduce additional pairs of
X,X multiplets with independent couplings bk.

The colored submultiplets in (2,2, 15) are su-
perheavy for the same reason as the triplets and sex-
tets in case A(i): the tuning conditions do not re-
move their superheavy mass telms.

The SU(2) doublet color singlet a(2, 2, 1,0)
+a(2, 2, 1,0) from X and X mix with the d (2,2, 1,Q)
from the H (10) in a feirriionic mass matrix

6cVpM3

M= 6cvo 0

6cVp 5M2 —13VpB

6c Vp

5M' —13VoB

2M3

CVo

CVo

CVp M2+ VpB

CVp

M2+ VpB

0
(47)

and thus all get masses 0 (MU).
Case B. In this case, by reasoning similar to that

followed above, the superheavy VEV

&~7s9io&-0(MU) ~

along with the superheavy masses Mi and Mi, lead
to the following spectrum.

(a) There are pseudo-Goldstone superiaultiplets

Pg. t(2, 2, 10)+t(2,2, 10)+a (1,1, 15) .

(b) All the b, submultiplets remain at mass M~,
since SU(4) is unbroken at MU. The rest of the sub-
multiplets in X and X are superheavy.

(46)

Using the tuning conditions (38), we find two su-
perheavy masses (M3/2, 3/2M3) and one mass zero
to 0(MU).

The color triplets in cr(1, 1,6), o (1,1,6), and
c (1,1,6) mix together in the mass matrix

r

(c) b (2,2, 6) in @(210)is the multiplet absorbed by
g (2,2, 6).

(d) s (1,1, 1), wz (1,3, 15), and wl (3, 1, 15) get
masses from the cubic term.

(e) The c(1,1,6) in H(10) becomes superheavy
due to the mass term

C (~abed ~ ( CA ~Aabcd +CA ~A abed ) (48)

VI. PHENOMENOLOGICAL IMPLICATIONS
AND CONCLUSION

SO(10)~SU(2)L )& SU(2)z )& SU(4)c~G i23,

where Gi23 is the standard model. We found by a
detailed renormalization-group analysis that the in-
termediate mass scale is very high (above 10' GeV
in most cases). Thus, observation of any evidence
for such a scale either as m in the eV range, or ob-

oe

servation of (PP)o„decay, or X-X oscillation, etc.,
would be an indication against supersymmetric uni-
fication based on the SO(10) group [and, of course,
against SU(5) grand unificationj.

As far as proton-decay amplitudes are concerned,
we have the following remarks. The dangerous box
graphs discussed by Weinberg and reanalyzed in
Ref. 18 become suppressed, because, according to
Ref. 18, the required condition is

M~ M~ &~ 10' GeV (49)

and this is easily satisfied in all the cases considered
since Mi is 0(M~) and M~ is 0(M~) or greater.
Since we find Mz is greater than 10' GeV in almost
every case, it is clear that there is no gross conflict
with the observational limits on proton decay. Thus
the inequality (49) is easily satisfied.

It is worth noting that a supersymmetry-breaking
scale of 1Q' —10' GeV may be of interest from a
different point of view where one tries to understand
the grand unification mass from Mii and Ms as a
radiative-correction effect. Our results therefore
would appear to single out SO(10) with an inter-
mediate mass scale as one possibility for understand-

In this section, we summarize our findings with a
brief discussion of the implications. Our original
aim was to investigate the possible existence of an
intermediate mass scale corresponding to left-right-
symmetry breaking in the simple supersymmetric
SO(1Q) model. We studied two possible symmetry-
breaking chains:

SO(10)~SU(2)L, )& SU(2)„&(U(1)g L, && SU(3)c

~Gi23 r
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ing the gauge hierarchy problem. It is in this con-
text that case D may prove to be of some interest
since it combines Ms —10' CreV with much lower
values of MR.
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