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The R problem of electron-positron physics is analyzed within the frameworks of a free-
field theory (parton models) and a field theory with an infrared-stable fixed point. Present
data do not rule out either of these models and hence they both can survive as alternatives to

standard QCD in the R problem.

I. INTRODUCTION

The R problem of electron-positron annihilation
has received considerable attention during recent
years.! Most of the authors in recent times have
studied it within the framework of QCD.>~7 Here,
we address ourselves to this problem within the
frameworks of a free-field theory (or equivalently
parton models) and a field theory with an infrared-
stable fixed point. The R problem was studied ear-
lier within these two approaches®~!° before the
discovery of new particles!' ~!* and was found to be
consistent with CEA and SPEAR data."*~!" It is

therefore tempting to restudy the problem using the
present high-energy e*e™ datal’!® and to check
whether these two approaches can be accommodated
or ruled out. Thus the present analysis will check if
existing scaling models of R other than standard
QCD can survive in the present high-energy e te ™
data.

In Sec. II, we discuss the problem within the con-
text of a free-field theory, while Sec. III is devoted
to a similar analysis with a field theory with an
infrared-stable fixed point. Section IV contains
comments and conclusions.

II. FREE-FIELD THEORY

A. Five-quark model

In the standard five-quark model with u,d,s,c,b quarks of masses m,,m,,m;,m.,m; and three varieties of

color, one has
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Here s is the (c.m. energy)? and V/ soy=~3.1 GeV and V's¢py~9.1 GeV corresponding to ¥ and Y thresholds.

From experimental values of R,
R =3.0+0.25 at Vs =4 GeV(sgy <5 <Sgy) »
R =3.6610.5 at Vs =27.5 GeV (s >soy) ,
we get

m.=1.68+0.03 GeV, m;=4.951+1.24 GeV ,

(2.2)

(2.3)

which are quite consistent with the estimates by Barnett et al.” Here and below, we have taken the calculated

error to be equal to

[(statistical error)?+ (systematic error)?]'/2 .

In Fig. 1, we draw the R-W plot of Eq. (2.1) where W =V's.
In Eq. (2.1), we have neglected light-quark masses (m,,,mg,m;). Giving them a common value m;, Eq. (2.1)
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FIG. 1. R(s) vs W with a five-quark model with m; =0.
is modified to
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From the experimental input!!®
R,=1.9540.2 at V/s;,=2 GeV (5, <Sow,Soy) »
R,=3.0+0.25 at V/s,=4 GeV (soy <S; <Sor)
R3=3.6610.5 at 1/s;=27.5 GeV (s3> s0y) ,(2‘5)
we get
m; =0.48+0.1 GeV ,
m,=1.68+0.1 GeV ,
my,=5.08+1.23 GeV .

(2.6)

The corresponding R-W plot is shown in Fig. 2.
From Figs. 1 and 2, we see that the standard
five-quark model is in overall agreement with the
mean experimental data. However, we note that a
significant fraction of data in the continuum region
is scattered away from the prediction of the model.

B. General free-quark model

Let us now consider a general free-field theory
over and above the specific parton model discussed
above. For this purpose, we consider a parton

|
model with quarks of masses m,,...,m, having
charges Q4, . . ., Q, with a color group SU_(/).

The most general formula for R in a free-parton
model is

n 2m,~2 4m,~2 12
R=I3 Q% [14+4— | [1—
= s s
X O0(s —s¢;) , (2.7)

where s(;’s are the thresholds associated with quarks

Q;’s. We can make phenomenological use of (2.7),
without specifying the values of Qi ..., Q,,
my, ..., m,, and [, if we make a free-quark expan-

sion with a few nonleading terms above all thresh-
olds (s >>s¢;’s). This is due to the reason that Eq.
(2.7) contains unspecified number of quark parame-
ters (mass, charge, color) and only a free-quark ex-
pansion can reduce the number of parameters to the
order of the expansion to be discussed below.

C. Free-quark expansion

Expanding Eq. (2.7) up to second, third, and
fourth order, respectively, one has
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FIG. 2. R(s) vs W with a five-quark model with m 0.

Ryl(s)=R, 1——6% , (2.8)
S
Ru(s)=R,, [1-_& | (2.9)
S N
Ry(s)=R, [1-2%_ & & (2.10)
S S S
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n
R, =IS02. (2.14)
i

Equations (2.8)—(2.10) show that in a free-field
theory the approach to asymptopic behavior is a
power law in s and from below [i.e., R(s;)> R(s;)
for s;>s5,].%° This behavior is to be contrasted
with that of QCD, where the approach to the limit-
ing value of R is from above [i.e., R (s;) <R (s;) for
s1>5,] and logarithmic in s, since?*~

R=R_ [1+ b

—_— 2.15)
In(s /u?) (

20 25 30

with b >0. In Eq. (2.15) we have neglected terms
O(1/s?) (which are common to a parton model and
QCD) compared with the logarithmic one.

We now use Eqgs. (2.8)—(2.10) for the high-energy
R data above the experimental thresholds and find
best fits with these three forms. To use above the Y
threshold, we recast Eqgs. (2.8)—(2.10) in the forms

2 2
~| My
Ru(s)=R,, [1-6% | : (2.16)
[ 2 )2 2 )3
m m
Ru(s)=R_ |1=65 | —— | —67 | — ,
S S
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TZ *
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PO
m'r4 ’
=2, (2.19)
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Here X,y,Z are dimensionless quantities and m~y is
the mass of the Y particle my=9.1 GeV. We now
record our main results.
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(a) Analysis with Eq. (2.16). Using"!?

we obtain the best fit with

R(s;)=4.0+0.44 at v/s;=30.4 GeV, R_=4.4%1.1, (2.30)
(2.20)
R(s,)=3.9+0.56 at v/5,=27.5 GeV , X¥=1.36%0.18 , (2.31)
we obtain the best fit with y=0.97+0.31, (2.32)
R_=4.2+0.19, (2.21) Z=1.17Xx10°+0.22 X 10* . (2.33)
X=0.42+0.32 (2.22) The R-W plot using Egs. (2.16), (2.17), and (2.18) is
in th ; . b he Y threshol shown in Fig. 3. Our result shows that the present
m tbejon;mpum_ Zeélon; 107V € tUe. E,llges old. formalism can explain the continuum data of R in
(b) Analysis with Eq. (2.17). Using the high-energy end suggesting that the free-quark
R(5,)4.0£0.44 at V/s;=30.4 GeV , (2.23) expansion cannot be extrapolated down to the Y
threshold. It also suggests the asymptotic limit of R
R(s;)=3.9%0.56 at 1/5,=27.5GeV, (2.24) to be R, >4.0—4.4, to be compared with the QCD
R(s3)=3.4+0.8 at 1/5,=22 GeV , (2.25) limit of R ?T- We can also make an estimate c_)f
(c.m. energy)” where R would be saturated. Let this
we obtain the best fit with saturation (energy)’ be defined as §,. Then using
R_=4.2+0.06, (2.26) Eq. (2.‘16), R will reach its 99% saturation point at
s, defined to be
Xx=0.83+0.01, (2.27) 212
99 ~| My
7=2.88+0.88 . (2.28) oo =1—6% | — (2.34)
. . . 1,18
(c) Analysis with Eq. (2.18). Using Using Eq. (2.22) we find the 99% saturation (ener-
R(s;)=4.1+0.51 at 1/s;=31.6 GeV , gy)? to be
R(s,)=4.0+0.44 at v/5,=30.4 GeV , s, =2028 GeV? (2.35)
(2.29)
R(s3)=3.940.56 at V/s;=27.5 GeV , or
R(s4)=3.410.8 at 1/s,=22 GeV, V's . =45.03 GeV . (2.36)
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FIG. 3. R(s) vs W with a free-quark expansion. Solid, dotted, and dashed curves correspond to expansions O (1/s?),

O(1/5%), and O (1/s*), respectively.
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Similar analysis of Egs. (2.17) and (2.18), respective-
ly, yields 99% saturation energy at V/'s_ =44.2
GeV and \/-s: =49.8 GeV, respectively. We note
that 1the present PETRA energy is limited to 40.5
GeV'.

D. Positivity analysis with free-quark expansion

Further phenomenological application of Eq. (2.7)
can be obtained if we use the truncated expressions
(2.8)—(2.10) or (2.16)—(2.18) to determine the al-
lowed domain of R, from the positivity constraints
of x,y,z (or equivalently %, 7, 2).%° We note that all
(mass)? and (charge)’ are positive, x,y,z are neces-
sarily positive. The advantage of this approach lies
in the fact that it can accommodate more data in the
continuum region within a general free-field hy-
pothesis, Eq. (2.7).

Let us first consider Eq. (2.8). Let R(s;) be an
experimental value of R at s =s;. One then has

R(Sl)
R

Slz

6

x= (2.37)

0

Positivity of x here implies the trivial inequality
R, >R(sy). (2.38)

We now demonstrate that in the third-order case,
Eq. (2.9), the condition that x and y are positive will
constrain R in a nontrivial allowed domain. To
see this let R(s;) and R (s,) be two different experi-
mental values of R (s) such that s;>s,. One then
has

S S 33
X = 6Rw(51_32) {Rw(sl A )
—[R(51)513—R(52)523]} ’
(2.39)
__ S5 2 2
V=GR (s, s, | Relsiims2d)

+[R(S1)S12——R(52)322]} .

(2.40)
Positivity of x yields
R(s;)s>—R(s;)s,°
>R _ > ! 13 3 272 , (2.41)
S17—352
while that of y yields
R(s{)S2—R(s,)s,?
0<R, <—1"1 272 (2.42)

[ o —
512—S22

Thus, the allowed region of R _ is given by
R(sy)s;>—R(s;y)s,°

S13—S23

<R

o

R (S])SIZ—R (52)S22
< 2

3 (2.43)
$17—3S82

for fixed R (s1), R (s,), 51, and s,.

Let us now demonstrate that in the fourth-order
case, Eq. (2.10), if x, y, and z are positive, then R _
has also restrictive allowed domains. Let R(s;),
R (s,), and R (s;) be three experimental values of
R (s), such that s; >5, >s3;. We then obtain the fol-
lowing expressions for x, y, and z:

1
x—6Rw|S} (Roodl—nl), (244)
1
=——(—R_d , 2.45
y 6R°°IS| ( wd2+ny) ( )
$15253
z= 6Rw 'S | (Rwd3_n3) ’ (246)
where
|s | =(s;—s52)(s5—53)(s;—53), (2.47)
nlzR(Sl)Sl4(52“S3)‘—R (Sz)S24(S1—S3)
+R (S3)S34(S1—S2) , (248)

di=s"s,—53)—5,%s1—53)+53%s,—5,), (2.49)

ny=R(s1)s1*(5,2—532) —R(5,)5, (5,2 —532)

+R(s3)s3%(s12—5,2) , (2.50)
dy=5,45,2—532)—5,%(s12—532) +53%s5,2—5,2) ,
(2.51)
n3=R(s1)s; (s, —53)—R(s5,)s,3(s, —53)
+R (53)53%(s; —5,) , (2.52)
dy=5,3(5y—53)—5,3(s1—53)+533(s;—s,) . (2.53)

From Eqgs. (2.44)—(2.53) we observe that x, y, and z
will be positive if only (n,,d,), (n,,d;), and (n3,d;)
satisfy certain conditions discussed below.

(a) Constraints from positivity of x. Case 1. If
R(sy), R(s;), R(s3) and s, s,, s3 are such that
n; >0, d; >0, then positivity of x yields

n
o>R_ >—. (2.54)
d;
Case 2. If n; <0, d; <0, then positivity of x
yields
|n |
ldy]

w<R_< (2.55)
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Case 3. If d; <0, ny >0, then x cannot be posi-
tive.

Case 4. If d| >0, n| <0, then positivity of x can-
not give any nontrivial constraints on R .

(b) Constraints from positivity of y. Case 1. If
d, >0, n, >0, then positivity of y yields

nj
O<R_<—. (2.56)
d,
Case 2. If d, <0, n, <0, then positivity of y gives
w>R, > 2l 2.57)
7 |4, '

Case 3. For d, <0, n, >0, positivity of y cannot
yield any nontrivial constraints of R ;.

Case 4. For d, >0, n, <0, y cannot be positive.

(c) Constraints from positivity of z. Case 1. If
d3 >0, n3 >0, then positivity of z yields

nj

R —_. .
wo>R_> 4, (2.58)
Case 2. If n3 <0, d3 <0, then positivity of z
yields
0<Rr, <] (2.59)
ST lds| '

Case 3. For d; <0, n3 >0, z cannot be positive.

Case 4. For d; >0, n3 <0, there are no nontrivial
bounds on R, from positivity of z.

Let us now discuss our main numerical results
from the present formalism.

(i) Positivity analysis with Eq. (2.17). We take ex-

perimental input!!®

R(s;)=4.0+0.44 at v/s;=30.4 GeV ,

(2.60)
R(5,)=3.940.56 at1/s,=27.5 GeV ,
which yields, using Egs. (2.39)—(2.43),
4.12+0.3<R_,<4.2+0.2, (2.61)
0.02<x<0.19, (2.62)
5.79<y<6.13 . (2.63)

(ii) Positivity analysis with Eq. (2.18). We take ex-
perimental input!- 3

R(s;)=4.0+0.44 at/s;=30.4 GeV, (2.64)
R(s,)=3.9+0.56 at 1/s,=27.5GeV, (2.65)
R(s3)=3.2+0.8 at 1/s;=22 GeV , (2.66)
which yields, using Egs. (2.44)—(2.59),
4.11+0.21<R_ <4.1410.2, (2.67)
0.22<%<0.23, (2.68)
0.6<y<4.4, (2.69)
9.9<7<40.1. (2.70)

In Fig. 4 we plot the positivity domains of the
R (S)-W with Egs. (2.17) and (2.18). Comparing
with Fig. 3, we observe that the present analysis can
accommodate more data in the high-energy end of R
within a general free-field hypothesis [Eq. (2.7)].

We also note that 99% saturation of R, occurs
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FIG. 4. Positivity domains of R (s) vs W. The dashed and undashed domains correspond to the expansion O (1/s3) and

O(1/s*), respectively.
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in the (c.m.) energy Vs :

Vs, ~42.02 GeV , (2.71)
Vs, ~39.6 GeV , (2.72)

using expansion up to third- and fourth-order terms,
respectively.

III. R IN A FIELD THEORY
WITH AN INFRARED-STABLE
FIXED POINT

Some time ago, Wilson'® had proposed that the
strong interaction at short distances might be
governed by a nontrivial infrared-stable fixed point
of the renormalization group. Subsequently, Nacht-
mann'® has shown that in such a field theory, R (s)

J

BI

R = (4—dg)/2
N

R! _

We note the R ’s might deviate in general from the
naive values of R =32Q,-2 in a fixed-point
theory?® and hence they need not add up. Nor does
the theory give an explicit relationship among them.
Such anomalous behavior of the R ,’s may presum-
ably be related to the production mechanism of reso-
nances and thresholds in a fixed-point theory, which
are yet to be understood completely.
Taking experimental input’!8 as

R(sy)=2.1£0.2 at/s;=2.2 GeV ,
R(s,)=2.35+0.15 at /5,=2.95 GeV,
R(s3)=3.25+0.3 at/5;=4.23 GeV,

R(sq)=4.3%1.5 at1/s,=7 GeV , 34
R(s5)=4.010.5 at1/ss=12 GeV ,
R(s¢)=4.210.6 atV/s¢=17 GeV,

we obtain
R! =3.61+£0.23, B'=2.5+0.45,
RT —6.97+1.05, B"=9.54+1.45, (3.5)
RYM=502+1.0, BM=5.0+2.5

with?!
4=do 3. (3.6)

O(soy —5)+0(s —soy)0(sgy —S5)

has a form given by

B

R(s)=R _——3(4—d9/2 .

(3.1

Here, dgy is the dimension of 0, the trace of the
(improved) energy-momentum tensor 6,,, and has
the limit 4>dg>2 (Ref. 10) from the positivity
properties of anomalous dimensions. Using CEA
and SPEAR data,'*~!7 Nachtmann obtained a fit
with the following values of parameters:

R_=9, B=12,

=0.4. (3.2)

In order to extrapolate Eq. (3.1) to the present R
data, with ¥ and Y thresholds at {/sgy =3.1 GeV
and V' Soyr=9.1 GeV, respectively, we assume the
validity of the following simple form:

gl
((4=dg)72

BII

1 _ m_
R°°_‘S(4—d9)/2 +0(s —sor) R

(3.3)

Using Egs. (3.5) and (3.6) in Eq. (3.3) we observe
that a fixed-point theory gives the following
phenomenological asymptotic limit of R:

R, =5.02+1.0. 3.7)

Using Egs. (3.5) and (3.6), we find that 90% and
99% saturations of R _ are reached at the c.m. ener-
gy V's, given by

Vs, =36 GeV (3.8)
and
V5. =1308 GeV , (3.9)

respectively. Equations (3.8) and (3.9) are to be
compared with Nachtmann’s'® 90% and 99% sa-
turation points of

Vs, =35 GeV (3.10)
and
Vs, =453 GeV , (3.11)

respectively. In Fig. 5, we show our prediction with
a fixed-point theory, Eq. (3.3), which is consistent
with data.

IV. CONCLUSIONS

In this paper, we have addressed ourselves to the
R problem within the frameworks of a free-field
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FIG. 5. R(s)vs W in a fixed-point theory.

theory and a field theory with an infrared-stable
fixed point. Present data on R do not rule out either
of these two models. Our result thus suggests that
both of them survive as alternatives to standard
QCD as far as the present data on R are concerned.
Future experiments can alone determine whether
these alternative models can survive in R data even
at higher energies.
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