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The R problem of electron-positron physics is analyzed within the frameworks of a free-
field theory (parton models) and a field theory with an infrared-stable fixed point. Present
data do not rule out either of these models and hence they both can survive as alternatives to
standard @CD in the R problem.

I. INTRODUCTION

The R problem of electron-positron annihilation
has received considerable attention during recent
years. ' Most of the authors in recent times have
studied it within the framework of QCD. 2 7 Here,
we address ourselves to this problem within the
frameworks of a free-field theory (or equivalently
parton models) and a field theory with an infrared-
stable fixed point. The R problem was studied ear-
lier within these two approaches ' before the
discovery of new particles" ' and was found to be
consistent with CEA and SPEAR data. ' '7 It is

therefore tempting to restudy the problem using the
present high-energy e+e data"s and to check
whether these two approaches can be accommodated
or ruled out. Thus the present analysis will check if
existing scaling models of R other than standard
QCD can survive in the present high-energy e+e
data.

In Sec. II, we discuss the problem within the con-
text of a free-field theory, while Sec. III is devoted
to a similar analysis with a field theory with an
infrared-stable fixed point. Section IV contains
comments and conclusions.

II. FREE-FIELD THEORY

A. Five-quark model

1/2
4mb

1 /2
4m, 2mb

+@s—spr) —1+
2mc

R =3
3 +0(s —spy) 1+2 4

S
(2.1)

Here s is the (c.m. energy) and Qsp~-3. 1 GeV and Qsp~ —9. 1 GeV corresponding to 4' and Y thresholds.
From experimental values of R,

In the standard five-quark model with u, d, s,c,b quarks of masses m„,m„m„m„mb and three varieties of
color, one has

r r

R =3.0+0.25 at v s =4 GeV(spy' (s (sp~),
R =3.66+0.5 at Vs =27.5 GeV (s )spz),

(2.2)

we get

m, =1.68+0.03 GeV, mb =4.95+1.24 GeV, (2.3)

which are quite consistent with the estimates by Barnett et al. Here and below, we have taken the calculated
error to be equal to

[(statistical error) +(systematic error) ]'~

In Fig. 1, we draw the R-8'plot of Eq. (2.1) where 8 =Vs.
In Eq. (2.1), we have neglected light-quark masses (m„,m4, m, ). Giving them a common value mL, Eq. (2.1)
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is modified to

2R = —1+
2 2 1/2

2mL 4mL1— 4 2m'
+g(s —spy, )—1+

1/2
4m,1—

1+8(s —sp~ )— 1+
2

' 1/2
2mb 4m',1— (2.4)

From the experimental input"

R t
——1.95+0.2 at ~st ——2 GeV (si &sp+, sp~),

R2 ——3.0+0.25

R3 ——3.66+0.5

we get

at ~s2 ——4 GeV (spy &s (sp~),
(2.5)

at ~$3 ——27.5 GeV (s3 & spr )

mI ——0.48+0. 1 GeV,

m, =1.68+0. 1 GeV,

mb =5.08+1.23 GeV .

(2.6)

B. general free-quark model

Let us now consider a general free-field theory
over and above the specific parton model discussed
above. For this purpose, we consider a parton

The corresponding R- W plot is shown in Fig. 2.
From Figs. 1 and 2, we see that the standard

five-quark model is in overall agreement with the
mean experimental data. However, we note that a
significant fraction of data in the continuum region
is scattered away from the prediction of the model.

n

R =l+Q, ' 1+
1/2

2m; 4m;1—

XO(s —sp» (2.7)

where sp s are the thresholds associated with quarks
Q s. We can make phenomenological use of (2.7),
without specifying the values of Q, , . . . , Q„,
m i, . . . , m„, and l, if we make a free-quark expan-
sion with a few nonleading tei-iiis above all thresh-
olds (s »sp s). This is due to the reason that Eq.
(2.7) contains unspecified number of quark parame-
ters (mass, charge, color) and only a free-quark ex-
pansion can reduce the number of parameters to the
order of the expansion to be discussed below.

C. Free-quark expansion

Expanding Eq. (2.7) up to second, third, and
fourth order, respectively, one has

model with quarks of masses mi, . . . , m„having
charges Qi, . . . , Q„with a color group SU, (l).

The most general formula for R in a free-parton
model is
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FIG. 2. R (s) vs W with a five-quark model with mL, &0.

Rn(s)=R 1—
S

6x
Rgv(s) =R 1—

S

Here

6y 6z
S' S4

6x 6yRin(s) =R 1—
2 3

(2.8)

(2.9)

(2.10)

Rn(s) =R 1 —6x (2.16)

with b &0. In Eq. (2.15) we have neglected terms
0 (1/s ) (which are common to a parton model and
QCD) compared with the logarithmic one.

We now use Eqs. (2.8)—(2.10) for the high-energy
R data above the experimental thresholds and find
best fits with these three forms. To use above the Y
threshold, we recast Eqs. (2.8)—(2.10) in the foiIIis

2 2
P7~

g, 'm, '
2

(2.11)
Rrn(s) =R 1=6x

2 2
Pl~

3207~—6y
S

and

4 gg, 'm, '
yg2
g, 'm, '

R =l+g2 .

(2.12)

(2.13)

(2.14)

22

R&v(s) =R 1 —6x
S

4
m~

with

(2.17)

(2.18)

Equations (2.8)—(2.10) show that in a free-field
theory the approach to asymptopic behavior is a
power law in s and from below [i.e., R (si) &R(s2)
for st &sz]. ' This behavior is to be contrasted
with that of QCD, where the approach to the limit-
ing value of R is from above [i.e., R (s|)(R(s2) for
s& & sz] and logarithmic in s, since

3'3'=
m~

(2.19)

R=R 1+
ln(s/p )

(2.15)

Here x,y, z are dimensionless quantities and mz is
the mass of the Y particle m~ ——9. 1 CxeV. We now
record our main results.
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(a) Analysis with Eq. (2.16). Using" s

R(s~)=4.0+0.44 at ~st ——30.4 GeV,

R (sz) =3.9+0.56 at ~sz ——27.5 GeV,

we obtain the best fit with

R =4.2+0.19,
x =Q.42+0.32

in the continuum region above the Y threshold.
(b) Analysis with Eq. (2.17). Using" s

R(s~)4.0+0.44 at ~s~ ——30.4 GeV,

(2.20)

(2.21)

(2.22)

(2.23)

R (s3)=3.4+0.8 at ~s3 ——22 GeV,

we obtain the best fit with

R =4.2+0.06,
x =0.83+0.01,
y =2.88+0.88 .

(c) Analysis with Eq. (2.18). Using" s

R(s&)=4.1+0.51 at ~s& ——31.6 GeV,

(2.25)

(2.26)

(2.27)

(2.28)

R (s2) =3.9+0.56 at ~sq ——27.5 GeV, (2.24)

we obtain the best fit with

R =4.4+1.1,
x = 1.36+0.18,

y =0.97+0.31,
z =1.17&(10 +0.22)& 10

(2.30)

(2.31)

(2.32)

(2.33)

,~ =1—6x
2

'2
m~

(2.34)

Using Eq. (2.22) we find the 99% saturation (ener-
gy) to be

The R-W plot using Eqs. (2.16), (2.17), and (2.18) is
shown in Fig. 3. Our result shows that the present
formalism can explain the continuum data of R in
the high-energy end suggesting that the free-quark
expansion cannot be extrapolated down to the Y
threshold. It also suggests the asymptotic limit of R
to be R & 4.0—4.4, to be compared with the QCD
limit of R = —, . We can also make an estimate of
(c.m. energy) where R would be saturated. Let this
saturation (energy) be defined as s„. Then using
Eq. (2.16), R will reach its 99% saturation point at
s defined to be

R (s2) =4.Q+0.44 at y sz ——3Q.4 GeV,

R(s3)=3.9+0.56 at ~sq ——27.5 GeV,

R (sz) =3.4+0.8 at ~sz ——22 GeV,

(2.29)
Ol

s =2028 GeV

Qs„=45.03 GeV .

(2.35)

(2.36)
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FIG. 3. R (s) vs W with a free-quark expansion. Solid, dotted, and dashed curves correspond to expansions O(1/s ),
O(1/s ), and 0 (1/s ), respectively.
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Similar analysis of Eqs. (2.17) and (2.18), respective-
ly, yields 99% saturation energy at Qs =44.2
GeV and Qs =49.8 GeV, respectively. We note
that the present PETRA energy is limited to 40.5
GeV'.

D. Positivity analysis with free-quark expansion

Thus, the allowed region of R is given by

R (si )si —R (sz)sz (R„
Sl —S2

R(si)s, —R(sz)sz
2 2Si —S2

(2.43)

Further phenornenological application of Eq. (2.7)
can be obtained if we use the truncated expressions
(2.8)—(2.10) or (2.16)—(2.18) to determine the al-
lowed domain of R from the positivity constraints
of x,y, z (or equivalently x, y, z). ' We note that all
(mass) and (charge) are positive, x,y, z are neces-
sarily positive. The advantage of this approach lies
in the fact that it can accommodate more data in the
continuum region within a general free-field hy-
pothesis, Eq. (2.7).

Let us first consider Eq. (2.8). Let R (s&) be an
experimental value of R at s =s ). One then has

1x = (R„di ni)—,6R„ is
i

1y=
i

( —R„dz+nz)
R s

(2.44)

(2.45)

for fixed R (s ~ ), R (sz ), s ~, and sz.
Let us now demonstrate that in the fourth-order

case, Eq. (2.10), if x, y, and z are positive, then R
has also restrictive allowed domains. Let R(s, ),
R (sz), and R (s3) be three experimental values of
R(s), such that s& )sz &s3. We then obtain the fol-
lowing expressions for x, y, and z:

2 R (s))1—
R

(2.37)

S )$253z= (R „d3 n3), —
6R„ is

i

(2.46)

Positivity of x here implies the trivial inequality

R )R (si) . (2.38)

We now demonstrate that in the third-order case,
Eq. (2.9), the condition that x and y are positive will
constrain R in a nontrivial allowed domain. To
see this let R (s

& ) and R (sz) be two different experi-
mental values of R (s) such that s& &sz. One then
has

where

» —S2)(S2 S3)(S1 S3)

n, =R(s~)S& (sz —s3) —R (sz)sz (s~ —s3)4 4

+R(s3)s3 (s( —sz),

(2.47)

(2.48)

d&
——s& (sz —s3) —sz (s& —s3)+s3 (sl —sz), (2.49)4

nz ——R(s&)s& (sz —s3 ) —R(sz)sz (s& —s3 )
4 2 2 4 2 2

X= 1
IR (s, —sz)3 3

6R (s i
—sz)

+R(s3)s3 (sf sz )

dz =s t (sz —$3 ) —sz (s )
—$3 ) +s3 (s

&

—sz )

(2.50)

—[R(s))S) —R(sz)S2 ]I,
(2.39)

n3 ——R (s~ )s& (sz —s3) —R(sz)S23(s& —s3)3

+R(s3)$3 (s) —sz),

(2.51)

(2.52)

$1S2y= — —
I
—R (s& —sz )

6R (s, —sz

+ [R(s ) )s ) —.R (s2)sz ] I .

(2.40)

Positivity of x yields

d3 ——s, (sz —s3) —sz (s& —s3)+$3 (s, —sz) . (2.53)3 3 3

From Eqs. (2.44)—(2.53) we observe that x, y, and z
will be positive if only (n &, d& ), (nz, dz), and (n3, d3)
satisfy certain conditions discussed below.

(a) Constraints from positivity of x. Case 1. If
R(s)), R(sz), R(s3) and s), sz, S3 are such that
n

& & 0, d ~ & 0, then positivity of x yields

R (s& )s& —R (sz)szoo)R )
5] —$2

(2.41)
nI

oo )R (2.54)

while that of y yields

R (s, )Si —R (sz)sz0&R„&
S) —S2

(2.42)

If n ~ (0, d t (0, then positivity of x
yields

(2.55)
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n2
0&R (2.56)

Case 2. If d2 &0, n2 &0, then positivity of y gives

Case 3. If dI (0, n»0, then x cannot be posi-
tive.

Case 4. If d» 0, n I &0, then positivity of x can-
not give any nontrivial constraints on R

(b) Constraints from positivity of y. Case l. If
d2 & 0, n 2 & 0, then positivity of y yields

perimental input"

R (sI )=4.Q+0.44 at ~st ——30.4 GeV,

R (sz)=3.9+0.56 at ~sq =27.5 CzeV,

which yields, using Eqs. (2.39)—(2.43),

4. 12+0.3 (R &4.2+0.2,
0.02&K &0.19,
5.79(y &6.13 .

(2.60)

(2.61)

(2.62)

(2.63)

(2.57) (ii) Positiuity analysis with Eq. (2.l8). We take ex-
perimental input"

(2.58)

Case 2. If n3 &0, d3 &0, then positivity of z
yields

n,
(2.59)

Case 3. For d2 &0, nz &0, positivity of y cannot
yield any nontrivial constraints of R

Case 4. For d2 & 0, n2 & 0, y cannot be positive.
(c) Constraints from positivity of z. Case 1. If

d3 & 0, n 3 & 0, then positivity of z yields

R (s I ) =4.0+0.44 at ~st ——30.4 CxeV,

R (s2)=3.9+0.56 at ~s2 ——27.5 CreV,

R (s3)=3.2+0.8 at ~s3 ——22 GeV,

which yields, using Eqs. (2.44)—(2.59),

4. 11+0.21 & R & 4. 14+0.2,
Q. 22&x &0.23,
0.6&y &4.4,
9.9&z &40. 1 .

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

Case 3. For d3 (0, n3 & 0, z cannot be positive.
Case 4. For d3 &0, n3 &0, there are no nontrivial

bounds on R „ from positivity of z.
Let us now discuss our main numerical results

from the present forinalism.
(i) Positiuity analysis with Eq. (2.17). We take ex

In Fig. 4 we plot the positivity domains of the
R (S)-8' with Eqs. (2.17) and (2.18). Comparing
with Fig. 3, we observe that the present analysis can
accommodate more data in the high-energy end of R
within a general free-field hypothesis [Eq. (2.7)].

We also note that 99% saturation of R occurs
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FIG. 4. Positivity domains of R (s) vs $V. The dashed and undashed domains correspond to the expansion 0 (1/s ) and
0 (1/s"), respectively.
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in the (c.m. ) energy Qs

Qs =42.02 GeV,

Qs =39.6 GeV,

(2.71)

(2.72)

has a form given by

B
(4—d 8/2S

(3.1)

using expansion up to third- and fourth-order teriris,
respectively.

III. R IN A FIELD THEORY
%ITH AN INFRARED-STABLE

FIXED POINT

Here, dII is the dimension of 8, the trace of the
(improved) energy-momentum tensor 8„„, and has
the limit 4&de&2 (Ref. 10) from the positivity
properties of anomalous dimensions. Using CEA
and SPEAR data, ' ' Nachtmann obtained a fit
with the following values of parameters:

R =9, B =12, =0.4 . (3.2)
Some time ago, Wilson' had proposed that the

strong interaction at short distances might be
governed by a nontrivial infrared-stable fixed point
of the renormalization group. Subsequently, Nacht-
mann' has shown that in such a field theory, R (s)

I

In order to extrapolate Eq. (3.1) to the present R
data, with 4 and r thresholds at Qspq, ——3. 1 GeV
and QSp~ ——9. 1 GeV, respectively, we assume the
validity of the following simple form:

R —
d )

0(spy —s)+(9(s —spy )0(sp~ —s) RI II

S

BII

(4—dg)/2
S

III BIII
+0(s —sp~ ) R —

(4 d )~2
S

(3.3)

We note the R 's might deviate in general from the
naive values of R =3+Q; in a fixed-point
theory and hence they need not add up. Nor does
the theory give an explicit relationship among them.
Such anomalous behavior of the R 's may presum-
ably be related to the production mechanism of reso-
nances and thresholds in a fixed-point theory, which
are yet to be understood completely.

Taking experimental input" as

R =5.02+1.0 . (3.7)

Using Eqs. (3.5) and (3.6), we find that 90% and
99% saturations of R „are reached at the c.m. ener-

gy Qs given by

Qs =36 GeV (3.8)

Using Eqs. (3.5) and (3.6) in Eq. (3.3) we observe
that a fixed-point theory gives the following
phenomenological asymptotic limit of R:

R(si)=2. 1+0.2 at ~s& ——2.2 GeV,

R (s2) =2.35+0.15 at ~sz —2.95 GeV,

R (s 3 ) =3.25+0.3 at ~sq ——4.23 GeV,

R (s4)=4.3+1.5 at ~s4 ——7 GeV,

R (s5) =4.0+0.5 at ~s5 ——12 GeV,

R (s6) =4.2+0.6 at ~s6 ——17 GeV,

we obtain

R =3.61+0.23, B =2.5+0.45,
R =6.97+1.05, B =9.54+1.45,
R =5.02+1.0, B =5.0+2.5

4 —dg

2
=0.32 .

(3.4)

(3.5)

(3.6)

and

Qs =1308 GeV, (3.9)

respectively. Equations (3.8) and (3.9) are to be
compared with Nachtmann's' 90%%uo and 99% sa-
turation points of

and

Qs =35 GeV

Qs =453 GeV,

(3.10)

(3.11)

respectively. In Fig. 5, we show our prediction with
a fixed-point theory, Eq. (3.3), which is consistent
with data.

IV. CONCLUSIONS

In this paper, we have addressed ourselves to the
R problem within the frameworks of a free-field
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FIG. 5. R (s) vs W in a fixed-point theory.

theory and a field theory with an infrared-stable
fixed point. Present data on R do not rule out either
of these two models. Qur result thus suggests that
both of them survive as alternatives to standard
QCD as far as the present data on R are concerned.
Future experiments can alone determine whether
these alternative models can survive in R data even
at higher energies.
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