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A nonlinear perturbation theory is developed for longitudinal instabilities of a coasting beam in

particle accelerators. In contrast to the linear theory, the present perturbation approach to the
Vlasov equation demonstrates that the part of the particle distribution function averaged over the
azimuthal angle around the ring has the time dependence of second order in perturbed quantities.
A set of differential equations in time is derived for the average distribution (or the energy spread)
and the perturbation amplitude. A mapping of the time derivative of the energy spread onto the
complex impedance plane is obtained and it shows that the region where the energy spread increases
exists even in the stable area. The energy spread for an initially unstable beam is shown to increase
beyond the threshold of the stability and eventually to converge to a final value determined by the
initial energy spread and the threshold value. Quantitative agreements are obtained between the ex-

perimental results at the CERN ISR and the theoretical overshoot formula in the case where the in-
itial energy spread is close to the threshold.

I. INTRODUCTION

The interaction of a high-density coasting beam with its
environments in circular accelerators or storage rings
leads to various collective phenomena of the beam. Elec-
tromagnetic fields created by the beam in vacuum
chambers, resistive walls, etc. , act back on the particles in
the beam and change their distribution. If the initial dis-
turbance is enhanced by this beam-environment interac-
tion, the beam is called unstable. Such collective phenom-
ena are described by the Vlasov equation for the particle
distribution function in the phase space, and beam dynam-
ics is examined by solving it in a self-consistent manner.
Since the self-excited field is a function of the particle dis-
tribution function f, the Vlasov equation is nonlinear in f;
therefore it is very difficult to solve the complete Vlasov
equation exactly. Instead, the linearized Vlasov equation
for the perturbed distribution function is generally used to
calculate its initial growth rate or stability limit. ' Keil
and Messerschmid have demonstrated that the thresholds
of the instability predicted by the linear theory agree well
with those obtained from their computer simulation
which includes nonlinear beam dynamics.

Once an instability occurs, after a sufficient time, the
growing amplitude of the perturbation might reach the re-
gion where nonlinear terms in the Vlasov equation become
important and the linearization is no longer valid. The
evolving disturbance will diffuse the particle distribution
due to these nonlinear effects. Resulting increase in the
energy spread of the beam in turn alters linear properties
of the instability, e.g., its growth rate. However the linear
theory cannot predict whether the energy spread will stop
blowing up or not when the energy spread exceeds the
threshold value of the stability. Experiments with the ex-
perimental cavity at the CERN ISR and computer simu-
lation by Keil and Messerschmid have shown that the en-
ergy spread continues to increase even after it passes the

threshold. In general, final energy spreads are larger for a
beam with smaller initial spread. This phenomenon is
called an overshoot phenomenon and first predicted by
Dory using computer simulations. The following empiri-
cal formula (Dory's law) for the final energy spread af is
commonly used in the case where the initial energy spread
o-; is not too small compared with the threshold o.,h..
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An explanation of the overshoot phenomenon for a
bunched beam has been proposed by Ruggiero with a
model in which several resonating unstable modes are
overlapped in the longitudinal phase space. His method
is, however, not based on the nonlinearity of the Vlasov
equation and the energy spread of a bunched beam is
determined only by the contribution of the perturbed dis-
tribution. Bonch-Osmolovskii et a/. have investigated
the time evolution of the particle distribution in terms of
solving the Vlasov equation numerically.

%'hen the amplitude of the initial disturbance is small
and the instability does not develop too rapidly, we can as-
sume that the nonlinearity modifies the particle distribu-
tion at a rate much smaller than the linear response of the
system. Under this adiabaticity assumption, the perturba-
tion method developed for the linear theory can be em-
ployed even in the nonlinear regime. In this paper, we
shall develop a nonlinear perturbation theory for instabili-
ties of a coasting beam and present an explanation of the
overshoot phenomenon in the blowup of the energy
spread. The mathematical technique used is familiar in
the quasilinear theory "of plasma waves.

The plan of the paper is as follows. In Sec. II the non-
linear Vlasov equation is formulated in parallel with the
conventional linear theory. The dispersion relation is de-
rived in the usual manner. In Sec. III a differential equa-
tion in time for the energy spread is given together with a
subsidiary equation for the perturbation amplitude. In
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Sec. IV we solve the set of equations and discuss the
overshoot phenomenon together with the experimental re-
sults at the ISR. Our conclusions are presented in Sec. V.

(e cop) ao

Re g Z„f h„(e,t)dee'"
277 ~Q

II. NGNLINEAR VLASGV EQUATION

The distribution function f of circulating particles in
the longitudinal phase space is expressed by using the az-
imuthal angle 0 around the machine circumference and its
canonical conjugate variable defined by

= —ecopRe g Z„P„(t)e'"
' n&0

where

P„(t)= J h„(e,t)de

(2.8)

(2.9)

~dEw=2~ J, (2.1)

where E and cu is the energy and the revolution frequency
of a particle, respectively, and E, is the energy of the
center of the distribution. Since a relative energy spread is
rather small and the correction from the revolution fre-
quency to m is still smaller, we replace cu by its value coo of
the synchronous particles and use the energy error
e=E —E, as variable. In a linear approximation we can
write

Bfo ()fi( eO, t) .
g
——O.

Bt B6
(2.10)

and Z„ is the coupling impedance at the frequency
co=n~o. We assume that each Fourier component can be
treated individually and that the nonlinear coupling be-
tween different components can be neglected. Under these
assumptions, we shall consider only a certain Fourier har-
monic n and then drop the suffix n in P„(t), h„(e, t), and
Z„. Averaging the Vlasov equation (2.4) over B, we obtain
a differential equation in time for fp..

CO =COO+ k O6, (2.2) Inserting Eqs. (2.6) and (2.8) into Eq. (2.10) and perform-
ing the average gives

Mp

PE, (2.3)

(2.4)

P is the velocity of the synchronous particles in the unit of
light velocity, g=u —y is the dispersion of the revolu-
tion frequency (defined such that rl &0 above the transi-
tion energy), a is the momentum compaction factor, and
y is the Lorentz factor. The Vlasov equation is

(2.1 1)

The equation for f, is obtained by substituting f = fp+f &

into Eq. (2.4) and by using Eq. (2.10) in a form

r)f) &f) r)fo . Bf) . &f) .
(2.12)

For f&, we use a linear solution to Eq. (2.12) and then
neglect the second-order terms on the right-hand side to
obtain the linearized Vlasov equation:

By a perturbation approach, the particle distribution func-
tion f is divided into two portions fp and f&.

r)f &(e, O, t) Bf&(e, B,t) Bfp(e, t) .
B

+
BO

~+
B

e 0 (2.13)

f=fo+fi . (2.5)

f&(e, B,t)=Re g h„(e,t)e'"
n~O

(2.6)

and each component vanishes when averaged over the an-
gle 0 from 0 to 2~. This fact suggests that we can rede-
fine the distribution function fp as the average of the total
distribution function f over the azimuthal angle around
the ring:

1
fp(e, t) = J f (e, O, t)dB= tf )e . —(2.7)

The definitian (2.7) uniquely separates the distribution
function f into fp and f j which are slowly varying and
rapidly oscillating in time, respectively. The time deriva-
tive i of the particle energy is expressed as

In the linear theory fp is the unperturbed time-dependent
distribution function and f&

is the perturbed distribution
function. The function f& can be decomposed into a
Fourier series without zero harmonics:

fi(e, O, t)=Re[h(e, t, )e ' ], (2.14)

in 8—i Q(.t —t I )e= —ecopRe[ZQ(t, )e ' ], (2.15)

Bfp(e, t) )fr( ote, )

BE'
(2.16)

Substitution of these forms inta Eq. (2.13) yields the ex-
pression for h

. e~oZP(ti )[r)fo(& ti )~r)&1
h(e, t))=i n n(~p+koe)—- (2.17)

where we replace cp by n (coo+koe) using the relation (2.2).
Inserting the above equation into Eq. (2.9), we get

The different point of Eq. (2.13) from the Vlasov equa-
tion in the conventional linear theory is that fp has the
time dependence. However since we assume that the time
change in fp is much slower than in f~, it is reasonable in
a relatively short time interval from t& to put
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where we denote 0—neap ——AQ, +iAQ, ;. In this equation
all time dependent quantities must be evaluated at t =t&.
But since t

&
is arbitrarily chosen, this equation can be un-

derstood as a differential equation for fp. We introduce a
dimensionless quantity A (t) normalized by the square of
the dc current Ip of a beam as

pole at
&=—(—-~ )n o

0

Landau contour

/ for Irp( —) &0
ko

+~

A(t)= )0.
Ip

This quantity obeys the equation

" '" =2SQA(t)
dt

because

(2.21)

(2.22)

FIG. 1. Landau contour below the transition energy to evalu-
ate the integration of the dispersion relation for three different
values of Im(A/ko).

(Bf /Be), de
P(t)) 1 — iZ

2~ Q n(cop+ kp—e)
=0.

(2.18)

In order for ((}(t&) to have a nontrivial solution, the quanti-
ty in the bracket has to vanish:

(ecop) m (Bfo/B&)r, detzj" =0.2' —~ Q n(coo+ ko—e)
(2.19)

The frequency Q=Q(t~) of an oscillatory solution is given
by solving this dispersion relation and it varies slowly in
time together with fo. A remaining problem is a proper
choice of the contour of the integration over e, in particu-
lar, around the pole

e=ep = ——~p
kp n

The above simple method provides no clue to this prob-
lem. However, Landau's method' for solving the Vlasov
equation as an initial-value problem predicts that the con-
tour of the integration always has to pass below (above)
the pole e=ep below (above) transition, as shown in Fig.
1. This set of contours guarantees that the integral in Eq.
(2.19) is continuous across the Im(Q) =0. We employ the
Landau contour to calculate the frequency of coherent os-
cillations after the beam is stabilized. A proper treatment
of the linearized Vlasov equation based on the Landau
prescription is intelligibly explained in Chap. 10 of Ref. 6.
The reader should also refer to Ref. 14 for further details.

The equation for fo can be written by substituting Eq.
(2.17) into Eq. (2.1 1) as

=0. (2.23)

The time development of the particle distribution can be
calculated numerically in principle from the set of dif-
ferential equations (2.22) and (2.23) with Q=Q(t) given by
the dispersion relation (2.19).

For later use, we introduce some normalizations' and
rewrite the dispersion relation (2.19) in a more practical
form. We first introduce a normalized energy error
x =e/o, with the rms of the energy error o,. The rms
spread 5 of revolution frequency is related to a., by

O~5 =o~ko = —g~o P2E
(2.24)

We change the integral variable from e to x and get the
normalized distribution function gp(x t~) by putting
go(x t ] ) =fp(e t~ )2rro &/N so that

f gp(x, t) )dx = 1 (2.25)

where X is the number of particles in a coasting beam.
The dispersion relation can be rewritten as

iIpP Z
1 =sgn(ri)

2m(cr, /E, )
~ q ~

nE, /e

X
(Bgo/Bx ), dx

(2.26)
X —X)

where

0—n cop
X) =

nS
AQ
nS

(2.27)

is the normalized frequency shift' and Ip Necpp/2rr. ——

P(t) =P(t, )e

If we use A (t) and take the real part of the quantity in
square brackets in Eq. (2.20), we have the final form:

Bf, (e~p)2 B ~Q (Bfo/Be)r,

Bt 2 Be (gQ„nk, ,) +gQ,
Ip iZ i

A(ti)
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0.5-

development of the particle distribution can be character-
ized by the change in the energy spread only and that the
shape of the average distribution remains unchanged while
the energy spread is blowing up. This means that the
average distribution can be factorized into the time-
dependent energy spread and the time-independent normal-
ized distribution function:

Im(x() =

-0.5 ~-0.2 ~
-O. l ~
0
O. l ~

I I V

fp(e t) = gp(x) .
2mo, (t). .

The rms energy spread is defined by

g,'(t)= f f ' e'f (e, B,t)dedB

f e fp(e, t)de . (3.1)

Multiplying Eq. (2.11) by e and integrating over e gives

-0 5- der, (t)
dt

1 Re ecopZ*P*(t) f e ' de =0 .p Bh(e, t)
2iV BE

We use the quantities U and V (Ref. 16) instead of the im-
pedance

IpP—
U —iV= lZ

2'(a, /E, )
~ g ~

nE, /e

to get

(2.28)

FICx. 2. The stability diagram below the transition energy for
the distribution function given by Eq. (2.30).

(3.2)

If we use the expression (2.17) for h (e, t) after one integra-
tion by parts, we obtain

fe de= [2eh ] 2f—eh de

(Bf,/Be)d e= —2ietopZP(t) f e
Q n(top+—k pe)

260 (Bfp/Be)d e
P(t)ietopZ

kon Q n(top—+kpe)
(Bgp/Bx ), dx

1=—sgn(71). (U i V) f— (2.29) (3.3)

The mapping of the complex x
&

plane onto the U, V plane
for a given distribution function is called a stability dia-
gram. ' Hubner and Vaccaro, ' and Zotter' have present-
ed stability diagrams for various realistic distribution
functions of a coasting beam. The distribution function
that gives a simple stability criterion, i.e., the one which
has a circular stability limit centered at the origin, is given
b 17

gp(x, t&)= (1—a x )
~ for ~x

~

&—
377 a

where

a 2

(2.30)

The stability diagram below the transition energy is shown
in Fig. 2 with some curves for constant Re(x~) and
Im(x ~ ). The stability limit is given by the contour
Im(x&) =0. The growth rate expressed in terms of Im(x~)
is found to switch sign according as the position of a U, V
pair is inside or outside the stable area.

Bhd 2b, Q () 2
Be kpn etop

(3.4)

If we substitute Eq. (3.4) into Eq. (3.2) and take the real
part of the second term, the equation for cr, is finally
given by

dO

dt
(3.5)

13 E,e
~
P(t)

~

'(Z„EQ„+Z,.bQ, )=0,
gnIo

where Z =Z, +iZ; a.1d AA=AQ„+AQ;. We introduce
D, the square of the relative energy spread,

2
CT~D= (3.6)

Using this new variable and the quantity A (t) defined by
Eq. (2.21), we have the set of differential equations

dD (t) —sgn(g)XA (t)(Z„b Q„+Z;b Q;) =0 (3.7)

Since the frequency Q satisfies the dispersion relation
(2.19), Eq. (3.3) can be rewritten as

III. TIME DEVELOPMENT OF ENERGY SPREAD

We will assume as an approximation to the exact solu-
tion to the set of Eqs. (2.22) and (2.23) that the time

=26Q;A (t),
dt

(3 8)
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IoP'
IvyInE, /e

' (3.9)

The cotnplex frequency shift b,Q is calculated from the
dispersion relation (2.19) and is a function of D (t}only.

The equation for D (t) can readily be solved by inserting
l

Eq. (3.7) into Eq. (3.8) and integrating over t

1 dD
sgn(g)K(Z, b Q, +Z;b Q;) dt

=2
D AQ;dD

+~(0) .
D sgn(q)K(Z, bQ„+Z;b, Q;)

Integrating again, we obtain

(3.10)

EQ;dD
sgn(g)K(Z„b, Q, +Z;b,Q;) 2 fD +&(0)

sgn q K Z„bQ„+Z;AQ;

(3.1 1)

F =sgn(g)K(Z„b Q„+Z;AQ; ) (3.12)

and point out that F can be expressed in terms of U, V and
x

&
instead of Z and AQ as

I

~~

II
C3 )~

I

J
aQ;& 0

F ) 0

aQ, ; &0
F )0

I I
I I

I
I

/
/

FIG. 3. Mapping of F =sgn(g)K(Z, EQ, +Z;EQ;) onto the
U, V plane for the same distribution function as in Fig. 2.

where D; is the initial value of D and the time is chosen
such that D =D; at t =0. To obtain the time asymptotic
( t~ oo ) solution for D, some remarks are necessary on the
sign of each term appearing in the denominator of the in-
tegrand. The result is presented in Fig. 3 in the form of a
mapping of the quantity sgn(g)K(Z„EQ„+Z;b, Q;) onto
the U, V plane as well as that of the complex frequency
shift b,Q for particle distribution function given by Eq.
(2.30). We use here the abbreviation

F = 2nDn—
I
S

I
[VRe(x&)+Ulm(x~)] (3.13)

sgn(g)KZ;b, Q; & 0 ( &0) outside the stable area,

sgn(rt)KZ;bQ; &0 ( &0} inside the stable area,

on the lower (upper) half plane. Above transition all the
directions of inequal sign are reversed.

(iii) We finally find out how the sign of F will be
signed in the U, V plane. %'e restrict our discussion to a
case below transition because the same result can be ob-
tained above transition. From the above arguments, we
see that if the regions F ~ 0 exist, they are inside the stable
area on the lower half plane or outside the stable area on
the upper half plane. We first investigate the former case.

(a) Both the origin (Z„,Z;=0) and the intersection of
the U axis (Z„=O) and the curve b,Q; =0 satisfy
F=sgn(g)K(Z„AQ„+Z;bQ;)=0, while the other points

by use of the definitions (2.24), (2.27), and {3.9). The con-
tours F=O and hQ; =0 are denoted by the thick solid
curve and dashed curve, respectively, in Fig. 3. To help
explanations in what follows, we write down an alterna-
tive expression of Eq. (3.7) in terms of F:

=F(D)A (t) . (3.14)
dt

The important point in Fig. 3 is that the region F &0 ex-
ists only inside the stable area. This fact leads to an in-
teresting conclusion that the energy spread is always going
to be larger for an unstable beam because positive AQ; al-
ways gives positive F. Although the shape of the boun-
dary F=O depends on the particle distribution assumed,
this fact can be confirmed to hold for all the realistic dis-
tribution functions as follows:

(i) Below transition (rt &0), since Re{x&)&0 for V (or
Z„) & 0 as in Fig. 2, we find with help of Eq. (3.13)

sgn(q)KZ„AQ„= 2~Dn S
I
R—e(xl ) V &0 . (3.15)

Above transition, the graph must be reflected about the
horizontal axis' and the sign of Re(x &) remains minus for
V &0. We thus conclude that the first term of F, i.e., the
product sgn(g)KZ„b, Q, is always a positive quantity re-
gardless of the sign of g.

(ii) On the other hand, we can state for the second term
of F below transition that
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FIG. 4. Motion of U, V pairs associated with the blowup of
the energy spread for three different impedances. They never

can get into the region F &0, which is denoted by the dotted

line.

FIG. 5. The quantity AQ;/F as a function of D for (a) the
case 2 and (b) the case B shown in Fig. 4. The areas of the sha-
dowed portions must be the same on both sides of D,h.

that lie on the U axis give negative F because the first
term vanishes and the second term is negative. Noting
that F &0 on the curve b,Q;=0, we find that the region
F &0 indeed exists and its boundary F=O is confined in
the stable area.

(b) Next we turn our investigation to the latter case.
Since b,Q; =0 near the stability limit, if the region F &0
exists, it is expected to be in the region where

~

U
~

and

~

V
~

are large. In the limit of large
~
x&

~

(or
(

U ~, ~

V ~), for all the distribution functions, the in-
tegral of Eq. (2.29) tends to'

(dgo/dx)dx godxf gpdx =
(x —x, )' x, '

and the quantity F can be evaluated by use of Eqs. (2.24),
(2.27), (3.9), and the dispersion relation (2.29) as

F= —sgn(g)ICIm[(Z; iZ„)(b.—Q„id,Q; )]—
=2mDnSIm[ —sgn(g)( U —i V)x

& ]
27TD n co

ri ( x~
~

Im(x&) &0, (3.16)

IV. OVERSHOOT

where the equals sign holds on the intersection of the U
axis and the curve EQ; =0. Therefore it turns out that F
is always positive or zero outside the stable area.

value of D where the denominator of the integrand in Eq.
(3.11) vanishes,

Dy AQ;
F(DI) 2f ' dD+A(0) =0.F D

(4.1)

%'e make an approximation that the normalized distribu-
tion function is unchanged in time. Then as the energy
spread is increasing, the U, V pair for a given impedance is
moving to the origin on the U, V plane along the straight
line connecting the initial position and the origin as shown
in Fig. 4. The energy spread increases beyond the thresh-
old value owing to the presence of the region F~ 0 even
inside the stable area. There are two cases depending on
whether the contour F=O intersects with the straight line
(B case) or not (A case). See Fig. 4. In the latter case,
since F(D) is never zero, we get

Dg bQ;
2 D+A 0 =0.F D

(4.2)

(4.3)

The second term can be thought of as a very small posi-
tive quantity representing the initial perturbation. On in-
spection of Eq. (3.14), the main contribution to the in-
crease of the energy spread is seen to come from the large
A (t) after the unstable perturbation grows sufficiently, so
that we neglect the second term to obtain a simpler form

Let us now study the overshoot phenomenon in the
energy-spread blowup for an initially unstable beam, i.e.,
AQ;&0. The final value D~ at t —+co is given by the

The integrand is plotted in Fig. 5(a) as a function of D for
the initial impedance U= V=0.5 and D,h

——10 where
D,h is the threshold value of D which gives AQ; =0. The
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TABLE I. Experimental results on the overshoot in the blow-

up of the energy spread at the ISR. Momentum spreads were
measured by Schottky scan. Each suffix is used in the same
sense as for the energy spread. Data are taken from Ref. 5.

Beam Current

No. (mA) (Ap /p); (Ap /p), h (Ap/p)f
Ap; Apf

2~pth'

1

2
3
4

6
7
8

9
10

87.5
61.0
40.8
41.3
39.4
22.5
20.6
30.1

26.8
89.2

2 48
2.27
2.30
2.31
1.20
2.50
2.26
3.93

No Schottky
No Schottky

2.71
2.75
2.68
2.03
1.93
2.61
2.22
4.04

scan made
scan made
3.73
5.50
3.35

stable
1.99

stable
2.81
5.50

1.36
2.34
1.15

0.72

1.32
1.40

A(o)

FICx. 6. Sketches of the qualitative behavior of (a) D(t) and

(b) A (t) as a function of time t.

condition (4.3) says that the areas of the shadowed por-
tions are the same on both sides of D,h. If we take a
linear approximation in the neighborhood of D,h

AQ;
b(D —Da»)— (4.4)

2 2 2of +~) =2o~h (4.6)

This is an overshoot formula because the final energy
spread o.f exceeds the threshold value o-,h and becomes
1arger as the initial energy spread o.; is sma11er than the
threshold. Figures 6(a) and 6(b) show the qualitative
behavior of D (r) and A (t) as a function of time t based on
Eqs. (3.7) and (3.8), respectively, from which we see that
the blowup of the energy spread eventually saturates at the
time asymptotic limit where the perturbation dies out.
We shall compare the overshoot formula (4.6) with the ex-
perimental results at the ISR. Measurements were done
for the full momentum spread Ap at half maximum, but it
seems to be quite all right to consider that it is proportion-
al to the rms energy spread. The results are summarized
in Table I. We see from the final column that the relation
~p +~pf'=2p, h' is approximately fulfi11ed for most
cases measured. Of course, the formula (4.6) is not exact-
ly valid for the quantitative analysis of the overshoot
phenomenon because the hne hQ;/F is not linear in gen-
eral. Nevertheless the qualitative relationship between
D;, D,h, and Df is unchanged.

Eq. (4.3) gives a simple relation

&f+D; =2D&h

which can be written in an alternative form by changing
the variable from D to the rrns energy spread 0., as

A similar qualitative relationship can be obtained for
the line 8 in Fig. 4, in which case the final value Df can-
not be larger than D„, the zero of F(D), because the in-

tegral of Eq. (4.1) goes to minus infinity as D approaches
D„as shown in Fig. 5(b). In particular, if the impedance
is pure inductive below transition or pure capacitive above
transition (see line C in Fig. 4), the three quantities

Df Dgh and D, are identical with each other, so that the
overshoot does not occur. This conclusion contradicts
with that of Dory's computer simulation which showed
that the overshoot phenomenon would also take place by
the negative mass instability due to the pure space-charge
effect. Future subjects lie in this region and there are the
following possible explanations to the paradox. (1) Our
conclusion is closely related to the assumption that the
particle distribution shape remains unchanged during
blowing up. If we allow it to change as in computer simu-
lations, the threshold energy spread wi11 be floating and
might take different values at the initial and the final dis-
tribution shapes. (2) The higher-order terms than the
second might be dominant in such a special case. (3) The
adiabaticity assumption and the perturbation method
might break down. In spite of these limitations, the
present method provides a simple and powerful tool to
analyze nonlinear instabilities for most practical cases.

The curve I' =0 is sensitive to the shape of the distribu-
tion function in the neighborhood of the origin. Therefore
it is not always obvious whether a given impedance be-
longs to A type or B type. However taking into account
the fact that the energy spread D becomes very large near
the origin, we need not argue this problem in detail unless
we treat an extremely unstable beam.

When the beam is initially stable, the initial perturba-
tion is reduced. The first term in Eq. (4.2) has the same
minus sign as b,Q; because dD ~F(D) if the range of the
integration is restricted within the stable area. This term
balances the small second term A (0) as soon as the energy
spread begins to change with time according to Eq. (3.14),
with the result that the initial energy spread will vary only
slightly. We remark here that P(0) defined in Sec. II is a
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time asymptotic approximation determined by the normal
modes of oscillation and that it is not exactly the initial
perturbation itself at t =0. In order to estimate a precise
value of the final spread, we have to know the information
of the initial perturbation and have to analyze the time
development of the exact solution to the Vlasov equation.
From the practical point of view, we are not interested in
this problem for an initially stable beam and so we do not
mention it here.

V. CONCLUSIONS

The nonlinear perturbation theory has been developed
for the collective phenomena of a coasting beam and, in
particular, for the overshoot phenomenon in the blowup
of the energy spread. The unperturbed part of the particle
distribution function'in the linear theory is no longer sta-
tionary in the present theory and is redefined as the aver-
age of the actual distribution function over the azimuthal
angle around the ring. The nonlinearity of the Vlasov
equation gives the average distribution the time depen-
dence of second order in perturbed quantities. The linear
growth rate of the instability varies slowly in time togeth-
er with the average distribution through the dispersion re-
lation.

We demonstrated that the time development of the en-
ergy spread obeys Eq. (3.7) with the subsidiary differen-
tial equation (3.8) for the perturbation amplitude. The
systematic investigation of these equations leads to a map-

ping of F which represents the time derivative of the ener-

gy spread onto the U, V plane as shown in Fig. 3. In the
process that the U, V pair for a given impedance moves to
the origin, the energy spread increases beyond the thresh-
old value of the stability owing to the presence of the re-
gion F &0 even inside the stable area, i.e., we find an
overshoot phenomenon. The qualitative relationship may
be simply described as follows: The smaller the initial en-

ergy spread is, the larger the final energy spread becomes.
A quantitative agreement of the experimental results at
the ISR with the theoretical overshoot formula obtained
in this paper is satisfactory for beams with an initial ener-

gy spread close to the threshold value.
We see that the initial energy spread will change only a

little for an initially stable beam. The precise estimation
of the final energy spread requires the details of the time
development of the particle distribution and so is outside
the framework of the present theory.
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