
PHYSICAL REVIEW D VOLUME 28, NUMBER 8 1S OCTOBER 1983

Monte Carlo studies of Wilson loops in SU(5) gauge theory
in four dimensions
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Monte Carlo simulations on a 6 lattice are used to calculate wilson loops, and hence the string tension,
for pure SU(5) gauge theory. A bound is obtained for the string tension.

In some recent papers, we studied pure SU(3) (Refs. 1

and 2) and SU(4) (Refs. 3 and 4) gauge theories with the
Wilson action on a hypercubical lattice in four space-time
dimensions. The Wilson loops were measured, the string
tension was presented, and the corresponding asymptotic-
freedom scale parameters Ap were measured. In the present
paper, we wish to extend these measurements to the gauge
group SU(5). As a result of this analysis, we would like to
establish that SU(5) color is confined and show how Ao, the
asymptotic-freedom scale parameter, varies with the number
of colors N. The first-order transition in the theory tends to
mask the asymptotic-freedom scaling and thus we are able
only to put a bound on the string tension.

The details of our calculational procedure have already
been presented in the literature and so will not be repeat-
ed here. A hypercubical lattice in four Euclidean dimen-
sions was used in our study. Between the nearest-neighbor
lattice sites denoted by i and j we form a link {ij } to which
is attached an N xN unitary-unimodular matrix U& of the
group SU(At') such that

Up= (UJ)

Our partition function is defined by

t

Z(P) = „'~ gdUi exp( —PS[U])
kJ)

t

where P is directly proportional to the inverse coupling con-
stant squared, p=2N/g02, with go the bare coupling con-
stant. The measure dU» in the definition of the partition
function is the normalized invariant Haar measure for
SU(W). We define our action S as the sum over all
unoriented plaquettes Q such that

S[U]= XSo= X 1 ——Re TrUo1

o o,
where Uo is the parallel transporter around a plaquette. We
imposed periodic boundary conditions throughout our calcu-
lations and equilibriated our lattice by the method of
Metropolis et aI. In order to make our calculations
manageable, they are carried out on the CDC CYBER 205,

a pipelined vector processor. For the rest of this paper, we
will discuss only SU(5).

Rectangular Wilson loops are defined by the expectation
value

W(I, J ) = —,(Re TrUc)

W(1, 1)= —+O(P ) (2)

respectively. In order to extract the string tension we form
the logarithmic ratios X(I,J) defined by

W(I,J) W(1 —1,J —1)
W(I,J —I) W(1 —I,J)

The relationship between the string tension K, the coeffi-
cient of the area term in the Wilson loops, and the loga-
rithmic ratios X(I,J) is

(IJ) = E 275
A 24m P

1P2/121

exp—24vr p
275

(3)

where a parameter Ap, called the asymptotic-freedom scale
parameter, has been introduced. The leading-order strong-
coupling expansion for the string tension is given by

x(I,J) = —ln +O(p') .
50

(4)

In Fig. 1 we show the Wilson loops up to size 3x 3. Our
calculations were performed by first carrying out 300 itera-
tions through the 6" lattice with 25 Monte Carlo upgrades
per link. This equilibriated our space-time lattice. The Wil-
son loops were then obtained by averaging over the next
100 iterations through the lattice. However, every second

w here C is a rectangle of length I and width J and U~ is the
parallel transporter around C. The leading-order strong-
and weak-coupling expansions for the Wilson loop are

W(I,J) = [1+O(p )]
50

(I)

and
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FIG. 1. The Wilson loops H'(I, J) for pure SU(5) gauge theory
on a 64 lattice as a function of the inverse coupling constant squared
P. The solid upward triangles represent (I,J) = (1, 1), the solid cir-
cles represent (2, 1), the crosses represent (2,2), the solid downward
triangles represent (3,2), and the squares represent (3,3) . The
curves represent the leading-order strong- and weak-coupling expan-
sions of Eqs. (1) and (2), respectively.
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FIG. 2. The string tension X(I,J) for pure SU(5) gauge theory
on a 64 lattice as a function of the inverse coupling constant squared
P. The solid triangles represent (I,J) = (1, 1), the solid circles
represent (2,2), the crosses represent (3,2), and the open circles
represent (3,3). Also shown in the diagram is the leading-order
strong-coupling expansion of Eq. (4).

iteration through the lattice was ignored in order to reduce
the correlation between iterations. Thus, 50 lattice config-
urations were used in our averages. One upgrade per link
took 833 p, sec on the CDC CYBER 205. The transition
point for pure SU(5) gauge theory has previously been mea-
sured9 ' to be p, =16.3+0.3. As a result, we used ordered
starting lattices for p & p, and disordered starting lattices for
P (P,. In Fig. 1, we also show the leading-order strong-
and weak-coupling expansions of Eqs. (1) and (2), respec-
tively.

We present the logarithmic ratios X(I,J ) for
(I.J) = (1, 1), (2,2), (3,2), and (3,3) as a function of the
inverse coupling constant squared P in Fig. 2. The leading-
order strong-coupling expansion of Eq. (4) agrees with the
data up to P =10.0. In this figure, we show curves which
correspond to the behavior of Eq. (3) with AD=4, 6 and
8 x 10 3JK. Note that even for the largest loops the
desired scaling is not observed. The first-order transition
results in a rapid rise of the X ratios as a lattice artifact. We
interpret this behavior as giving an upper bound on the con-
tinuum string tension of

Ao~ Sx 10 JK
In Fig. 3 we present the asymptotic-freedom scale param-

eters Ao, for SU(N) as a function of 1/N for N = 2, 3, 4,
and 5. In a recent quenched reduced Eguchi-Kawai calcula-
tion" it was estimated that the Ao parameter for SU(~) is

A. = (2+1)xlO-'iÃ,
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FIG. 3. The asymptotic-freedom scale parameters Ao for SU(N)
gauge theory as a function of 1/N.

which is also shown in our diagram. Our results for finite N
suggest that this may be artificially small due to artifacts of
the first-order transition.

We note that in an analysis of the SU(2) model with both
fundamental and adjoint couplings, Bhanot and Dashen"
found marked deviations from expected perturbative
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behavior when working in a coupling region near the first-
order transition line appearing with positive adjoint coupling.
The large-X SU(N) transitions have been interpreted in
terms of this line extending across the %'ilson axis with the
larger groups. Thus, the fact that we do not see the desired
asymptotic scaling with the SU(5) model is probably closely
related to the improper scaling seen in Ref. 12 near the ex-
traneous critical point.
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