## Measurements of the spin-correlation parameters $A_{00kk}$ , $A_{00ks}$ , and $A_{00ss}$ in *p*-*p* elastic scattering between 400 and 600 MeV

E. Aprile,\* R. Hausammann,<sup>†</sup> E. Heer, R. Hess, C. Lechanoine-Leluc, W. R. Leo, S. Morenzoni, Y. Onel, and D. Rapin Departement de Physique Nucléaire et Corpusculaire, University of Geneva, 1211 Geneva 4, Switzerland

#### S. Mango

Schweizerisches Institut fur Nuklearforschung, 5234 Villigen, Switzerland (Received 22 Februrary 1983)

We have measured the spin-correlation parameters  $A_{00kk}$ ,  $A_{00ks}$ , and  $A_{00ss}$  in *p*-*p* scattering between 400 and 600 MeV using a longitudinally polarized beam and a butanol target polarized in the horizontal plane. Owing to the restrictive geometrical acceptance of the target, the polarization axis of the target was oriented at an angle  $\alpha$  with respect to beam direction. The parameters  $A_{00kk}$  and  $A_{00ss}$  were therefore measured as a linear combination at 577, 536, 514, 494, and 445 MeV. These experiments were extended to the measurement of  $A_{00ks}$  and  $A_{00ss}$  by using a transversely polarized beam. We present the results, which are compared with phase-shift predictions.

#### I. INTRODUCTION

Proton-proton scattering experiments constitute one of the most direct ways of studying the force between two nucleons. At intermediate energies, the spin-dependent scattering amplitudes are large and of the same magnitude as the spin-independent amplitudes. The spin-averaged total cross section rises with energy,  $\pi$ -production thresholds open at 290 MeV, and spin-dependent effects vary rapidly with scattering angle and energy.

The measurement of the *p*-*p* total-cross-section difference with longitudinally polarized beam and target by the Argonne group<sup>1-3</sup> suggests the existence of two-nucleon resonances. The structure observed in these measurements was recently confirmed by the measurements of the Geneva-Saclay-SIN collaboration.<sup>4</sup> However, if these resonances really exist, they are most probably connected to the N- $\Delta$  system because of their large widths.

As in other areas of hadronic physics, the most exciting recent results have been in the region of large transverse momentum. In particular, the large value of  $A_{00nn}$  observed at Argonne<sup>5</sup> in *p*-*p* elastic scattering near  $\theta_{c.m.} = 90^{\circ}$  indicates that at small distance spin effects are important, even at energies as high as 12 GeV.

Since there is no satisfactory theory of the two-nucleon interaction above the pion threshold, phenomenological approaches, such as potential models, phase-shift analysis, or dispersion relations, are needed to calculate the p-pscattering amplitudes. The reliability of these methods depends both on the inherent assumptions involved and on the quality and amount of experimental data. Rarely measured complex polarization parameters are particularly important here as they provide information about the relative magnitudes and phases of individual amplitudes. However, despite some impressive successes from these methods, much uncertainty still remains in these approaches. At low energies, progress in the construction of a realistic potential by the Paris group has been made,<sup>6</sup> while at high energies, quark and parton models have had a good deal of success.

It was already recognized in early studies of NN scattering that hadronic interactions are complicated. The forces were seen to be strongly spin-dependent, and measurements were crucial keys to unraveling this spin structure. It is a problem of long-standing difficulty to determine the scattering matrix from polarization data in a way that is reliable, efficient, and expedient. At sufficiently low energies, where the scattering is mainly elastic, phase-shift models have been used to advantage. However, because of experimental uncertainties, gaps in data, or incomplete information, the scattering matrix is usually determined subject to both discrete and continuous ambiguities. Such ambiguities may prevent a meaningful comparison of theory with experiment. One suggestion to remove these ambiguities of phase-shift analysis was to do a sufficient number of measurements at each angle and energy for a complete reconstruction of the scattering matrix, up to an overall phase. This suggestion becomes particularly important in the inelastic region, where a large number of phase shifts can contribute. The only unambiguous method, therefore, is to perform a sufficient number of experiments (12-16) at a given angle and energy. Probably the most important factor, and one often overlooked, is the precise effect of experimental error on the determination of the amplitudes. An otherwise reasonable set of experiments may give no useful results if the level of experimental error is too large.

A polarized target and beam are needed for these measurements. In such experiments, the polarizations of the outgoing protons may or may not be observed. In the latter case, the experiment is simpler since there is no requirement for a polarimeter. We have started our program at SIN with this kind of measurement. The parameters  $A_{00nn}$  and  $A_{00n0}$  (see Sec. III for the definition) were determined by measuring the scattering asymmetry of a vertically polarized beam on a vertically polarized target for the  $\theta_{c.m.}$  scattering angles  $30^{\circ}-90^{\circ}$  at seven energies

21

between 400 and 600 MeV.<sup>7</sup> We report here the results of a subsequent experiment, also done at SIN, in which the cryostat of the polarized target was modified to allow a horizontal polarization axis. The solid angle in the horizontal plane was, however, restricted by the coil generating the magnetic field so that in order to observe both the recoil and scattered protons, the polarization orientation of the target was placed at angle  $\alpha$  with respect to beam axis. Therefore, we have measured the spin-correlation parameters  $A_{00kk}$ ,  $A_{00sk}$ , and  $A_{00ss}$  always as two linear combinations, namely,  $(aA_{00kk}+bA_{00ks})$  and  $(cA_{00sk}$  $+dA_{00ss})$ . In the first case, the beam was longitudinally polarized. For the second combination the beam was transversely polarized in the horizontal plane.

In Sec. II, we describe the experimental apparatus. Section III comprises a brief description of the formalism. The reader is referred to Ref. 8 for construction and other details not considered here. In Secs. IV-VI, we discuss the method of taking data and the analysis which produced the results presented in Sec. VII.

## **II. EXPERIMENTAL APPARATUS**

These experiments were performed at the PM1 polarized proton-beam line at SIN using an apparatus which is very similar to the one used for our  $A_{00nn}$  measurement<sup>7</sup> and is sketched in Fig. 1. The technical details can be found in Ref. 8. Polarized protons were produced either by scattering off a beryllium target at 8° (scattered beam) or a polarized ion source (accelerated beam). The beam polarization in the scattered mode was  $(41.65\pm1)\%$  and  $\simeq(85\pm2)\%$  in the accelerated mode. A 5-T superconducting solenoid in combination with deflecting magnets was used to control the orientation of the beam polarization. Orientations along the three orthogonal directions were possible. Typical intensities used in this experiment were on the order of 10<sup>6</sup> protons/sec at all energies.



A conventional butanol target polarized by dynamic nuclear orientation was used. The description of this target is given in Refs. 7-10. To obtain a polarization in the horizontal plane, the superconducting coil and target cavity were rotated by 90° into the horizontal plane and mounted into the vertical cryostat.<sup>9</sup> Figure 2 shows the top view of the target in this position along with trajectories of the incident and outgoing protons. The target cavity and coils could both be rotated about the vertical axis. In this arrangement, the solid angle in the horizontal plane was restricted by the superconducting coils so that the target had to be oriented at an angle with respect to the beam axis, in order to have access to the desired p-p scattering angular range. For this reason, we could only measure linear combinations of the desired spincorrelation parameters. Typical polarizations used in this experiment were about 60%.

The scattered and recoil protons which emerged from the target were detected by two (scattered and recoil) multiwire-proportional-chamber (MWPC) telescopes each mounted on a separate movable platform. The incident proton beam was defined by two counters B and C. These



FIG. 2. (a) A top view of the trajectories for outgoing protons as seen by the MWPC's. (b) An enlarged view of the target region showing the geometrical restrictions of the superconducting coils for detecting the outgoing protons.

were small counters having dimensions  $1 \times 1$  cm<sup>2</sup>. To ensure that the proton passed directly through the polarized target, the *C* counter was positioned directly against the target's protective outer shell. The number of gated coincidences between *B* and *C* then gave directly the number of incident particles. The trigger was *BCXY*.

#### **III. FORMALISM**

The formalism of proton-proton scattering at medium energies has already been treated extensively in the literature and we present here only these formulas relevant to this experiment. A more detailed discussion along with further references may be found in the paper by Bystricky *et al.*,<sup>11</sup> whose notation we use throughout this paper.

If, in the laboratory frame of reference, we define the directions

$$\hat{k}, \ \hat{n} = \hat{k} \times \hat{k}' / |\hat{k} \times \hat{k}'|, \ \hat{s} = \hat{n} \times \hat{k} , \qquad (1)$$

where  $\hat{k}$  and  $\hat{k}'$  are the unit vectors in the direction of the initial and scattered particles, respectively, the differential cross section for the elastic scattering of polarized protons,  $\sigma(\theta)$ , can be written as

$$\sigma(\theta) = \sigma_0(\theta) [1 + P(\theta)(\vec{P}_b \cdot \hat{n} + \vec{P}_t \cdot \hat{n}) + \vec{P}_b \cdot \hat{n} \vec{P}_t \cdot \hat{n} A_{00nn}(\theta) + \vec{P}_b \cdot \hat{s} \vec{P}_t \cdot \hat{s} A_{00ss}(\theta) + (\vec{P}_b \cdot \hat{s} \vec{P}_t \cdot \hat{k} + \vec{P}_b \cdot \hat{k} \vec{P}_t \cdot \hat{s}) A_{00sk}(\theta) + \vec{P}_b \cdot \hat{k} \vec{P}_t \cdot \hat{k} A_{00kk}(\theta)], \qquad (2)$$

where  $\vec{P}_b$  and  $\vec{P}_i$  are the beam and target polarization and we have used the relations  $A_{00ks} = A_{00sk}$  and  $A_{00n0} = A_{000n} = P$ . *P* is the polarization parameter and  $A_{00ij}$  is the correlation parameter between *i* and *j* components of spin and  $\sigma_0(\theta)$  the elastic differential cross section for unpolarized protons. All quantities are expressed as functions of the c.m. scattering angle  $\theta$ . Expression (2) can be rewritten as

$$\sigma(\theta) = \sigma_0(\theta) [1 + P(\theta)(P_b f_{n0} + P_t f_{0n}) + P_b P_t A_{pq}(\theta)]$$
(3)

with

$$A_{pq}(\theta) = f_{nn}A_{00nn}(\theta) + f_{ss}A_{00ss}(\theta) + (f_{sk} + f_{ks})A_{00ks}(\theta) + f_{kk}A_{00kk}(\theta) , \qquad (4)$$

where  $f_{ii}$  are the coefficients defined by

$$f_{ii} = (\vec{\mathbf{P}}_{b} \cdot \hat{i} / |\vec{\mathbf{P}}_{b}|) (\vec{\mathbf{P}}_{t} \cdot \hat{j} / |\vec{\mathbf{P}}_{t}|) .$$
(5)

Because of the magnetic field of the target, the  $\hat{k}$  direction is no longer in the horizontal plane at the center of

the target. At this point, one can define new x, y, z axes such that

$$\hat{z} = k$$
,  
 $\hat{x} = \text{horizontal and perpendicular to } \hat{z}$ , (6)  
 $\hat{y} = \hat{z} \times \hat{x}$ 

Then we can define the azimuthal scattering angle  $\phi$  as

$$\cos\phi = \hat{n} \cdot \hat{y}, \quad \sin\phi = -\hat{n} \cdot \hat{x} \quad . \tag{7}$$

Figure 3 shows an example of the positions of the final-particle trajectories in our last MWPC of each arm for various  $\theta$  and  $\phi$  angles. Here one can see the "turning" effect of the magnetic field.

In terms of the  $\hat{x}, \hat{y}, \hat{z}$  axes, the s, n, k directions are

$$\hat{s} = \hat{x} \cos\phi + \hat{y} \sin\phi ,$$

$$\hat{n} = -\hat{x} \sin\phi + \hat{y} \cos\phi , \quad \hat{k} = \hat{z} .$$
(8)

If  $\vec{P}_b$  and  $\vec{P}_t$  are now referred to the x,y,z axes, then  $f_{ij}$  are functions of  $\phi$  expressed as

$$f_{0n}(\phi) = (P_{by}/P_{b})\cos\phi - (P_{bx}/P_{b})\sin\phi ,$$

$$f_{n0}(\phi) = (P_{ty}/P_{t})\cos\phi - (P_{tx}/P_{t})\sin\phi ,$$

$$f_{nn}(\phi) = (P_{by}P_{ty}/P_{b}P_{t})\cos^{2}\phi + (P_{bx}P_{tx}/P_{b}P_{t})\sin^{2}\phi - (P_{by}P_{tx}/P_{b}P_{t} + P_{bx}P_{ty}/P_{b}P_{t})\sin\phi \cos\phi ,$$

$$f_{ss}(\phi) = (P_{by}P_{ty}/P_{b}P_{t})\sin^{2}\phi + (P_{bx}P_{tx}/P_{b}P_{t})\cos^{2}\phi + (P_{by}P_{tx}/P_{b}P_{t} + P_{bx}P_{ty}/P_{b}P_{t})\sin\phi \cos\phi ,$$

$$f_{sk}(\phi) + f_{ks}(\phi) = (P_{by}P_{tz}/P_{b}P_{t} + P_{ty}P_{bz}/P_{t}P_{b})\sin\phi + (P_{bx}P_{tz}/P_{b}P_{t} + P_{tx}P_{bz}/P_{t}P_{b})\cos\phi ,$$

$$f_{kk} = P_{bz}P_{tz}/P_{b}P_{t} .$$
(9)

By using Eq. (3), the experimental event rate for each  $P_b$  and  $P_t$  configuration can be expressed as

$$N_{P_b P_t}(\theta, \phi) = \sigma_0(\theta) G(\theta, \phi) \{ 1 + P(\theta) [P_b f_{0n}(\phi) + P_t f_{n0}(\phi)] + P_b P_t A_{pq}(\theta, \phi) \} ,$$
(10)

where  $G(\theta, \phi)$  is the acceptance function which takes into account the geometrical acceptance of the measuring apparatus, losses due to particle absorption, etc.

In this experiment, events were integrated over a finite  $\phi$  range  $(\phi_{\min}, \phi_{\max})$  where the acceptance  $G(\theta, \phi)$  was found to be independent of  $\phi$ . Equation (10) then becomes



FIG. 3. An example of the positions of the final-particle trajectories in our detectors for various  $\theta$  and  $\phi$  angles.

$$N_{P_b P_t}(\theta) = \sigma_0(\theta) \overline{G}(\theta) [1 + P(\theta)(P_b \overline{f}_{0n} + P_t \overline{f}_{n0}) + P_b P_t \overline{A}_{pq}(\theta)], \qquad (11)$$

where

$$\overline{A}_{pq}(\theta) = \overline{f}_{nn} A_{00nn}(\theta) + \overline{f}_{ss} A_{00ss}(\theta) + (\overline{f}_{sk} + \overline{f}_{ks}) A_{00ks}(\theta) + \overline{f}_{kk} A_{00kk}(\theta) .$$
(12)

Values of  $\phi_{\min}$ ,  $\phi_{\max}$ ,  $\alpha_{\text{beam-target}}$ ,  $P_b$  and  $P_t$  components, and the consequent  $f_{ij}$  depend on the particular experimental geometry. These are given in Tables I and II.

If  $N_{P_bP_t}(\theta)$  is measured for various beam-target polarization orientations, i.e.,  $(P_b, P_t) = (-, +), (-, -), (-, 0), (+, +), (+, -), \text{ and } (+, 0)$ , one obtains a set of six equations from which the parameter  $A_{pq}$  can be calculated.

## **IV. EVENT RECONSTRUCTION**

Data were reconstructed using a fast on-line eventreconstruction technique.<sup>7,10</sup> The reader is referred to Ref. 12 for the details not considered here. This method, based on a simplification of the reconstruction equations by a linearization method, essentially sacrifices some reconstruction accuracy for a much larger gain in execution speed.

If one considers a detection system such as we have described where the coordinates of the final-state particle trajectories are measured, for each scattering event, there exists a unique set of coordination which corresponds to the set of scattering parameters characterizing the event, i.e., scattering angle, interaction vertex, etc. If we express these scattering parameters as a vector p and the coordinates as another vector x, we can write

$$x = F(p) , (13)$$

where F is the functional relation between p and x.

The reconstruction of p for a scattering event with set of measured coordinates x, then, involves an evaluation of

the inverse relation

$$p = F^{-1}(x)$$
 (14)

The linearization technique consists of approximating F by the first-order expansion

$$x = F(p_0) + \partial F / \partial p \mid_{p_0} (p - p_0) = x_0 + L(p - p_0) ,$$
(15)

where  $p_0$  is some fixed central point,  $x_0 [=F(p_0)]$  is the corresponding central coordinate, and L is the matrix of first derivatives of F evaluated at  $p_0$ .

To reconstruct p from given x, we invert Eq. (15) by using the method of least-squares fit,

$$p - p_0 = (L^T L)^{-1} L^T (x - x_0) = R (x - x_0), \qquad (16)$$

where  $R = (L^T L)^{-1} L^T$ . Event reconstruction is thus reduced to a fast and a simple matrix multiplication. The R matrices were generated off line prior to the experiment with the help of a conventional tracking program. Five scattering parameters  $\theta_{c.m.}$ ,  $\phi$ , and the scattering-vertex coordinates (x,y,z) were reconstructed from the 12 X-Y MWPC readouts of the final-state telescopes. As a test of the quality of reconstruction, a  $\chi^2$  parameter was calculated for each event accepted by this program.

$$S^{2} = [x(\text{measured}) - x(\text{theoretical})]$$
  
$$\cdot [x(\text{meas}) - x(\text{theor})]/v, \qquad (17)$$

where  $\nu$  is the number of degrees of freedom and x(theor) was found by using the inverse of the reconstruction matrix L.

To check the accuracy of the reconstruction, chamber coordinates for known sets of scattering parameters were generated using a tracking program. These coordinates were then fed into the matrix reconstruction program and the results compared to the known parameters. Such a procedure estimated the nonlinearity of the true reconstruction function F. For the first half of the data in this experiment, these nonlinearities could only be corrected off line using the method described in Ref. 7. These nonlinearity corrections required a readjustment of the bin limits in  $\theta$  and  $\phi$ , thus resulting in a slightly different value for the central-bin value (method A).

Towards the latter half of the experiment, the on-line reconstruction program was modified so as to allow the reconstructed parameters to be corrected directly for each event. This was performed using a correction table generated as a function of the reconstructed  $\theta_{c.m.}$  and  $\phi$ . The table was loaded into the computer memory and the corrections "looked up" after each event passed through the matrix multiplication in Eq. (16) (method B).

A further improvement to this matrix procedure can be made by including a covariance matrix C taking into account the finite resolution of the detectors in Eq. (16). In such a case the reconstruction matrix becomes

$$R = (L^{T}CL)^{-1}L^{T}C . (18)$$

the

|                 |               |                  |                                     |                                      | ABLE I. >  | ummary of t | ne data sets | taken in this | experiment |            |                          |                              |
|-----------------|---------------|------------------|-------------------------------------|--------------------------------------|------------|-------------|--------------|---------------|------------|------------|--------------------------|------------------------------|
|                 |               | Beam-            |                                     |                                      |            |             |              |               |            |            |                          |                              |
|                 |               | target<br>angle  | Range in $	heta_{ m c.m}$           | Range in $\phi$                      |            |             |              |               |            |            |                          |                              |
| Energy<br>(MeV) | Set<br>number | $\alpha^{(deg)}$ | (deg)<br>$\theta_0 + \Delta \theta$ | $(\deg)$<br>$\phi_0 \pm \Delta \phi$ | P /P.      | P /P.       | P/P.         | P /P.         | P. /P.     | P /P.      | Reconstruction<br>method | Reconstruction<br>mode       |
|                 |               | ò                |                                     |                                      | 0 - / X0 - | a = 160 =   | 0 - / 20 -   | 1 - / 21 -    | 1-161-     | 1 - / 21 - |                          | ;                            |
| 577             | Ι             | 78.5             | $45\pm 20$                          | $177.5\pm 22.5$                      | 0.002      | 0.131       | 0.991        | 0.980         | -0.009     | 0.200      | A                        | On-line                      |
|                 | Ш             | 32               | 60土32                               | 7.5±22.5                             | 0.001      | 0.067       | 0.998        | 0.530         | -0.019     | 0.848      | Α                        | On-line                      |
|                 | III           | 101.5            | 44±16                               | $-5 \pm 20$                          | 1.000      | 0.002       | 0.003        | 0.980         | 0.00       | -0.200     | В                        | On-line                      |
|                 | IV            | 8                | 76±32                               | 5 ±20                                | 0.974      | -0.225      | -0.003       | -0.139        | 0.006      | 0660       | В                        | On-line                      |
|                 | ٨             | 32               | 60±32                               | 7.5±20                               | 0.975      | -0.223      | 0.012        | 0.530         | -0.019     | 0.848      | В                        | Off-line                     |
| 536             | <u> </u>      | 78.5             | 45 + 20                             | 177.5+22.5                           | 0.044      | 0.133       | 066.0        | 0.980         | -0.009     | 0.200      | V                        | On-line                      |
|                 | II            | 32               | 60+32                               | 7.5 + 22.5                           | 0.042      | 0.058       | 0.997        | 0.530         | -0.020     | 0.848      | V                        | On-line                      |
|                 | N             | 8                | $76\pm16$                           | 5 ±20                                | 0.972      | -0.235      | -0.003       | -0.139        | 0.006      | 0660       | B                        | On-line                      |
|                 | ^             | 32               | $60\pm 32$                          | $7.5\pm 20$                          | 0.972      | -0.223      | 0.013        | 0.530         | -0.020     | 0.848      | B                        | On-line                      |
|                 |               |                  |                                     |                                      |            |             |              |               |            |            |                          |                              |
| 514             | Ι             | 78.5             | <b>45</b> ±20                       | $177.5\pm 22.5$                      | 0.066      | 0.134       | 0.989        | 0.980         | -0.010     | 0.200      | A                        | On-line                      |
|                 | П             | 32               | 60±32                               | 7.5±22.5                             | 0.064      | 0.053       | 0.997        | 0.530         | -0.021     | 0.848      | A                        | On-line                      |
|                 | Ш             | 101.5            | <b>44</b> ±16                       | $-5 \pm 20$                          | 1.000      | 0.002       | 0.003        | 0.980         | 0.010      | -0.200     | B                        | On-line                      |
|                 | IV            | -8               | 76土32                               | 5 ±20                                | 0.971      | -0.241      | -0.003       | -0.139        | 0.006      | 066.0      | В                        | On-line                      |
|                 | Λ             | 32               | 60±32                               | 7.5±20                               | 0.971      | -0.239      | 0.013        | 0.530         | -0.021     | 0.848      | В                        | Off-line                     |
| 494             | Ι             | 78.5             | <b>4</b> 5±20                       | 177.5±22.5                           | 0.088      | 0.135       | 0.987        | 0.980         | -0.010     | 0.200      | Α                        | On-line                      |
|                 | II            | 32               | 60±32                               | 7.5±22.5                             | 0.084      | 0.048       | 0.995        | 0.530         | -0.021     | 0.848      | V                        | On-line                      |
|                 | N             | - 8              | 76±16                               | 5 ±20                                | 0.969      | -0.247      | -0.003       | -0.139        | 0.006      | 066.0      | В                        | On-line                      |
|                 | ٨             | 32               | 60±32                               | 7.5±20                               | 0.969      | -0.245      | 0.014        | 0.530         | -0.021     | 0.848      | B                        | On-line and off-line         |
| 445             | I             | 78.5             | <b>4</b> 5±20                       | 177.5±22.5                           | 0.138      | 0.138       | 0.981        | 0.980         | -0.011     | 0.200      | Α                        | On-line                      |
|                 | Ш             | 32               | 60±32                               | 7.5±22.5                             | 0.133      | 0.036       | 0.991        | 0.530         | -0.023     | 0.848      | Α                        | On-line                      |
|                 | IV            | 8-               | 76土16                               | 5 ±20                                | 0.965      | -0.262      | -0.003       | -0.139        | 0.006      | 066.0      | B                        | On-line                      |
|                 | ^             | 32               | 60±32                               | $7.5\pm 20$                          | 0.965      | -0.260      | 0.015        | 0.530         | -0.023     | 0.848      | B                        | On-line                      |
|                 | ΙΛ            | 32               | 52土24                               | 3 ±15                                | 0.132      | 0.036       | 0.991        | 0.530         | -0.023     | 0.848      | C                        | Off-line with on-line filter |
|                 | IIΛ           | 32               | 52±24                               | 3 ±15                                | 0.966      | -0.260      | 0.015        | 0.530         | -0.023     | 0.848      | C                        | Off-line with on-line filter |
|                 | IIIA          | 101.5            | 44±16                               | -5 ±15                               | 0.123      | 0.139       | 0.982        | 0.980         | 0.011      | -0.200     | U<br>U                   | Off-line with on-line filter |
|                 | XI            | 101.5            | <b>44</b> ±16                       | -5 ±15                               | 0.999      | 0.002       | 0.004        | 0.980         | 0.011      | -0.200     | c                        | Off-line with on-line filter |

TABLE I. Summary of the data sets taken in this experiment.

MEASUREMENTS OF THE SPIN-CORRELATION PARAMETERS ...

| 11 7 2                                                                               | Set V                                                                               | $\Delta A_{pq} / A_{pq} = 0.07^{a}$ |                     | ť, m                   | $d_{c.m.}$ (deg) $A_{pq}$ $\sigma^{b}$ | $\theta_{c.m.}$<br>(deg) $A_{pq}$ $\sigma^b$<br>30 -0.281 0.031 | $\begin{array}{c c} \theta_{c.m.} \\ (deg) & A_{pq} & \sigma^b \\ \hline 30 & -0.281 & 0.031 \\ 1 & 34 & -0.311 & 0.020 \end{array}$ | $\begin{array}{c c} \theta_{\rm c.m.} & \\ ({\rm deg}) & A_{pq} & \sigma^{\rm b} \\ 30 & -0.281 & 0.031 \\ 1 & 34 & -0.311 & 0.020 \\ 5 & 38 & -0.303 & 0.016 \end{array}$ | $\begin{array}{c c} \theta_{\rm c.m.} & & \\ ({\rm deg}) & A_{pq} & \sigma^{\rm b} \\ 30 & -0.281 & 0.031 \\ 1 & 34 & -0.311 & 0.020 \\ 5 & 38 & -0.303 & 0.016 \\ 5 & 42 & -0.304 & 0.014 \end{array}$ | $\begin{array}{c c} \theta_{\rm c.m.} & \\ ({\rm deg}) & A_{pq} & \sigma^{\rm b} \\ 30 & -0.281 & 0.031 \\ 1 & 34 & -0.311 & 0.020 \\ 5 & 38 & -0.303 & 0.016 \\ 5 & 42 & -0.304 & 0.014 \\ 5 & 46 & -0.290 & 0.013 \end{array}$ | $\begin{array}{c c} \theta_{\rm c.m.} & \theta_{\rm c.m.} \\ (deg) & A_{pq} & \sigma^{\rm b} \\ 30 & -0.281 & 0.031 \\ 5 & 38 & -0.303 & 0.016 \\ 5 & 38 & -0.303 & 0.016 \\ 5 & 42 & -0.304 & 0.014 \\ 5 & 46 & -0.290 & 0.013 \\ 5 & 50 & -0.280 & 0.013 \end{array}$ | $\begin{array}{c c} \theta_{\rm c.m.} & \theta_{\rm c.m.} \\ (deg) & A_{pq} & \sigma^{\rm b} \\ 30 & -0.281 & 0.031 \\ 5 & 38 & -0.303 & 0.016 \\ 5 & 38 & -0.303 & 0.016 \\ 5 & 42 & -0.304 & 0.014 \\ 5 & 46 & -0.290 & 0.013 \\ 5 & 50 & -0.280 & 0.013 \\ 5 & 54 & -0.305 & 0.013 \end{array}$ | $\begin{array}{c c} \theta_{\rm c.m.} & \theta_{\rm c.m.} \\ \hline ({\rm deg}) & A_{pq} & \sigma^{\rm b} \\ 30 & -0.281 & 0.031 \\ 5 & 38 & -0.303 & 0.016 \\ 5 & 38 & -0.304 & 0.014 \\ 5 & 46 & -0.304 & 0.014 \\ 5 & 50 & -0.280 & 0.013 \\ 5 & 54 & -0.280 & 0.013 \\ 5 & 54 & -0.252 & 0.013 \\ 6 & 58 & -0.252 & 0.013 \end{array}$ | $\begin{array}{c c} \theta_{\rm c.m.} & \theta_{\rm c.m.} \\ \hline ({\rm deg}) & A_{pq} & \sigma^{\rm b} \\ 30 & -0.281 & 0.031 \\ 5 & 38 & -0.311 & 0.020 \\ 5 & 38 & -0.303 & 0.016 \\ 5 & 42 & -0.304 & 0.014 \\ 5 & 46 & -0.290 & 0.013 \\ 5 & 50 & -0.280 & 0.013 \\ 5 & 54 & -0.305 & 0.013 \\ 6 & 58 & -0.252 & 0.013 \\ 7 & 62 & -0.266 & 0.013 \end{array}$ | $\begin{array}{c c} \theta_{\rm c.m.} & \theta_{\rm c.m.} \\ \hline ({\rm deg}) & A_{pq} & \sigma^{\rm b} \\ \hline 30 & -0.281 & 0.031 \\ 5 & 38 & -0.311 & 0.020 \\ 5 & 38 & -0.303 & 0.016 \\ 5 & 42 & -0.304 & 0.014 \\ 5 & 46 & -0.290 & 0.013 \\ 5 & 50 & -0.280 & 0.013 \\ 6 & 58 & -0.252 & 0.013 \\ 7 & 66 & -0.253 & 0.013 \end{array}$ | $\begin{array}{c c} \theta_{\rm c.m.} & \theta_{\rm c.m.} \\ \hline ({\rm deg}) & A_{pq} & \sigma^{\rm b} \\ \hline 30 & -0.281 & 0.031 \\ 5 & 38 & -0.303 & 0.016 \\ 5 & 38 & -0.304 & 0.014 \\ 5 & 46 & -0.304 & 0.014 \\ 5 & 50 & -0.304 & 0.013 \\ 5 & 56 & -0.280 & 0.013 \\ 6 & 58 & -0.280 & 0.013 \\ 7 & 66 & -0.253 & 0.013 \\ 7 & 66 & -0.253 & 0.013 \\ 8 & 70 & -0.263 & 0.013 \\ \end{array}$ | $\begin{array}{c c} \begin{array}{c} \theta_{\rm c.m.} \\ ({\rm deg}) \\ \hline \end{array} \\ \begin{array}{c} {\rm (deg)} \\ 30 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c c} \theta_{\rm c.m.} & \theta_{\rm c.m.} \\ (deg) & A_{pq} & \sigma^{\rm b} \\ 30 & -0.281 & 0.031 \\ 5 & 38 & -0.311 & 0.020 \\ 5 & 38 & -0.303 & 0.016 \\ 5 & 42 & -0.304 & 0.014 \\ 5 & 50 & -0.290 & 0.013 \\ 5 & 56 & -0.280 & 0.013 \\ 5 & 56 & -0.280 & 0.013 \\ 6 & 58 & -0.266 & 0.013 \\ 7 & 66 & -0.253 & 0.013 \\ 8 & 70 & -0.266 & 0.013 \\ 8 & 70 & -0.266 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.249 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7 & -0.240 & 0.013 \\ 7$ | $\begin{array}{c c} \theta_{\rm c.m.} & \theta_{\rm c.m.} \\ \hline ({\rm deg}) & A_{pq} & \sigma^{\rm b} \\ \hline 30 & -0.281 & 0.031 \\ \hline 33 & -0.303 & 0.016 \\ \hline 5 & 38 & -0.303 & 0.016 \\ \hline 5 & 46 & -0.304 & 0.014 \\ \hline 5 & 50 & -0.306 & 0.013 \\ \hline 5 & 56 & -0.280 & 0.013 \\ \hline 6 & 58 & -0.280 & 0.013 \\ \hline 7 & 66 & -0.252 & 0.013 \\ \hline 7 & 66 & -0.253 & 0.013 \\ \hline 8 & 70 & -0.266 & 0.013 \\ \hline 8 & 70 & -0.266 & 0.013 \\ \hline 8 & 70 & -0.264 & 0.013 \\ \hline 8 & 70 & -0.263 & 0.013 \\ \hline 8 & 70 & -0.264 & 0.013 \\ \hline 8 & 70 & -0.249 & 0.013 \\ \hline 8 & -0.249 & 0.013 \\ \hline 8 & -0.249 & 0.013 \\ \hline \end{array}$ | $\begin{array}{c c} \theta_{\rm c.m.} & \theta_{\rm c.m.} \\ \hline ({\rm deg}) & A_{pq} & \sigma^{\rm b} \\ \hline 30 & -0.281 & 0.031 \\ \hline 33 & -0.311 & 0.020 \\ \hline 5 & 38 & -0.303 & 0.016 \\ \hline 5 & 42 & -0.304 & 0.014 \\ \hline 5 & 56 & -0.290 & 0.013 \\ \hline 5 & 56 & -0.280 & 0.013 \\ \hline 6 & 58 & -0.280 & 0.013 \\ \hline 7 & 66 & -0.252 & 0.013 \\ \hline 7 & 66 & -0.253 & 0.013 \\ \hline 7 & 66 & -0.253 & 0.013 \\ \hline 7 & 66 & -0.253 & 0.013 \\ \hline 8 & 70 & -0.266 & 0.013 \\ \hline 7 & -0.249 & 0.013 \\ \hline 8 & -0.249 & 0.013 \\ \hline 8 & -0.264 & 0.013 \\ \hline 8 & -0.264 & 0.013 \\ \hline 8 & -0.264 & 0.013 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------|---------------------|------------------------|----------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| :0.06 <sup>a</sup> $\Delta A$                                                        | -0.06 <sup>a</sup> ΔA                                                               |                                     | $\theta_{c.m.}$     | $\sigma^{\rm b}$ (deg) |                                        | 30                                                              | 30<br>0.021 34                                                                                                                       | 30<br>0.021 34<br>0.016 38                                                                                                                                                 | 30<br>0.021 34<br>0.016 38<br>0.015 42                                                                                                                                                                  | 30<br>0.021 34<br>0.016 38<br>0.015 42<br>0.015 46                                                                                                                                                                               | 30<br>0.021 34<br>0.016 38<br>0.015 42<br>0.015 46<br>0.015 50                                                                                                                                                                                                          | 30<br>0.021 34<br>0.016 38<br>0.015 42<br>0.015 46<br>0.015 50<br>0.015 54                                                                                                                                                                                                                         | 30<br>0.021 34<br>0.016 38<br>0.015 42<br>0.015 46<br>0.015 50<br>0.015 54<br>0.016 58                                                                                                                                                                                                                                                     | 30<br>0.021 34<br>0.016 38<br>0.015 42<br>0.015 46<br>0.015 56<br>0.015 58<br>0.016 58<br>0.017 62                                                                                                                                                                                                                                                                    | 30<br>0.021 34<br>0.016 38<br>0.015 42<br>0.015 46<br>0.015 56<br>0.015 58<br>0.016 58<br>0.017 62<br>0.017 62                                                                                                                                                                                                                                    | 30<br>0.021 34<br>0.016 38<br>0.015 42<br>0.015 46<br>0.015 56<br>0.015 58<br>0.016 58<br>0.017 62<br>0.017 62<br>0.017 62                                                                                                                                                                                                                                                                                 | 30<br>0.021 34<br>0.016 38<br>0.015 42<br>0.015 46<br>0.015 56<br>0.015 58<br>0.016 58<br>0.017 65<br>0.018 70<br>0.018 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30<br>0.021 34<br>0.016 38<br>0.015 42<br>0.015 46<br>0.015 56<br>0.015 58<br>0.016 58<br>0.017 65<br>0.017 65<br>0.018 70<br>0.018 70<br>0.018 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30<br>0.021 34<br>0.016 38<br>0.015 42<br>0.015 46<br>0.015 56<br>0.015 58<br>0.016 58<br>0.017 65<br>0.017 65<br>0.018 70<br>0.018 70<br>0.018 70<br>0.018 70<br>0.018 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30<br>0.021 34<br>0.016 38<br>0.015 42<br>0.015 46<br>0.015 56<br>0.015 58<br>0.017 65<br>0.017 65<br>0.018 70<br>0.018 70<br>0.018 70<br>0.018 82<br>82<br>82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\Delta A_{pq} / A_{pq} = 0.06^a$                                                    | $\Delta A_{pq} / A_{pq} = 0.06^{a}$                                                 | ~                                   | •                   | $bd_{V}$               |                                        |                                                                 | 0.011 (                                                                                                                              | 0.011 0.036 0                                                                                                                                                              | 0.011 0.036 0.039 0.039                                                                                                                                                                                 | 0.011<br>0.036<br>0.039<br>0.047                                                                                                                                                                                                 | 0.011<br>0.036<br>0.039<br>0.039<br>0.047<br>0.051                                                                                                                                                                                                                      | 0.011<br>0.036<br>0.039<br>0.047<br>0.051<br>0.047                                                                                                                                                                                                                                                 | 0.011<br>0.036<br>0.039<br>0.047<br>0.051<br>0.047<br>0.069                                                                                                                                                                                                                                                                                | 0.011<br>0.036<br>0.039<br>0.047<br>0.051<br>0.047<br>0.069<br>0.069                                                                                                                                                                                                                                                                                                  | 0.011<br>0.036<br>0.039<br>0.047<br>0.047<br>0.047<br>0.069<br>0.069<br>0.062                                                                                                                                                                                                                                                                     | 0.011<br>0.036<br>0.039<br>0.047<br>0.047<br>0.047<br>0.047<br>0.069<br>0.069<br>0.062<br>0.119                                                                                                                                                                                                                                                                                                            | 0.011<br>0.036<br>0.036<br>0.047<br>0.047<br>0.069<br>0.069<br>0.062<br>0.119<br>0.089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.011<br>0.036<br>0.039<br>0.047<br>0.047<br>0.069<br>0.062<br>0.062<br>0.119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.011<br>0.036<br>0.039<br>0.047<br>0.047<br>0.069<br>0.069<br>0.119<br>0.089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.011<br>0.036<br>0.039<br>0.047<br>0.047<br>0.069<br>0.062<br>0.119<br>0.089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $	heta_{ m e.m.}^{	extsf{deg}}$                                                      | ${\displaystyle \begin{array}{c} \Delta A_{p} \\ \theta_{c.m.} \end{array}}$ (deg)  | $\theta_{\rm c.m.}$ (deg)           | (deg)               |                        |                                        | 54                                                              | 2                                                                                                                                    | 58                                                                                                                                                                         | 58<br>62                                                                                                                                                                                                | 58<br>62<br>66                                                                                                                                                                                                                   | 58<br>66<br>70                                                                                                                                                                                                                                                          | 58<br>66<br>70<br>74                                                                                                                                                                                                                                                                               | 58<br>66<br>74<br>78<br>78                                                                                                                                                                                                                                                                                                                 | 5 8<br>6 6<br>7 7 0<br>8 2<br>8 2<br>8 2<br>8 2<br>8 2<br>8 2<br>8 2<br>8 2<br>8 2<br>8 2                                                                                                                                                                                                                                                                             | 8 2 2 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                         | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                      | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 8<br>6 6<br>7 7 6<br>8 2<br>8 2<br>8 6<br>8 8<br>9 0<br>9 0<br>9 0<br>9 0<br>9 0<br>9 0<br>9 0<br>9 0<br>9 0<br>9 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 8<br>6 6<br>7 7 6<br>8 7<br>8 8<br>8 7<br>8 9<br>9 6<br>9 6<br>9 7<br>9 7<br>9 7<br>9 7<br>9 7<br>9 7<br>9 7<br>9 7<br>9 7<br>9 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 8<br>6 6<br>7 7<br>7 8<br>8<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06ª 0b                                                                               | 06 <sup>4</sup><br>0 <sup>b</sup>                                                   | م <sub>ه</sub>                      | σ <sup>b</sup>      |                        | 0.014                                  | 0.010                                                           |                                                                                                                                      | 0.00                                                                                                                                                                       | 00.0<br>0.009                                                                                                                                                                                           | 00.0<br>0.009<br>0.009                                                                                                                                                                                                           | 000.0<br>600.0<br>600.0                                                                                                                                                                                                                                                 | 0.009<br>0.009<br>0.009<br>0.014                                                                                                                                                                                                                                                                   | 0.009<br>0.009<br>0.009<br>0.014<br>0.125                                                                                                                                                                                                                                                                                                  | 0.009<br>0.009<br>0.009<br>0.014<br>0.125                                                                                                                                                                                                                                                                                                                             | 0.009<br>0.009<br>0.009<br>0.014<br>0.125                                                                                                                                                                                                                                                                                                         | 0.009<br>0.009<br>0.009<br>0.014<br>0.125                                                                                                                                                                                                                                                                                                                                                                  | 0.009<br>0.009<br>0.009<br>0.014<br>0.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.009<br>0.009<br>0.009<br>0.014<br>0.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.009<br>0.009<br>0.009<br>0.014<br>0.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.009<br>0.009<br>0.009<br>0.014<br>0.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\Delta A_{pq} / A_{pq} = 0.06$ $A_{pq} = -0.06$ $-0.218$ $-0.218$                   | $\Delta A_{pq} / A_{pq} = 0.0t$ $A_{pq}$ $-0.218$                                   | А <sub>р</sub><br>—0.218            | $A_{pq}$<br>-0.218  | -0.218                 |                                        | -0.254                                                          | -0.287                                                                                                                               |                                                                                                                                                                            | -0.296                                                                                                                                                                                                  | -0.296<br>-0.329                                                                                                                                                                                                                 | -0.296<br>-0.329<br>-0.337                                                                                                                                                                                                                                              | -0.296<br>-0.329<br>-0.337<br>-0.355                                                                                                                                                                                                                                                               | -0.296<br>-0.329<br>-0.337<br>-0.355<br>-0.408                                                                                                                                                                                                                                                                                             | -0.296<br>-0.329<br>-0.337<br>-0.355<br>-0.408                                                                                                                                                                                                                                                                                                                        | -0.296<br>-0.329<br>-0.337<br>-0.355<br>-0.408                                                                                                                                                                                                                                                                                                    | -0.296<br>-0.329<br>-0.357<br>-0.408                                                                                                                                                                                                                                                                                                                                                                       | -0.296<br>-0.329<br>-0.355<br>-0.408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.296<br>-0.329<br>-0.355<br>-0.408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.296<br>-0.329<br>-0.355<br>-0.408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.296<br>-0.329<br>-0.355<br>-0.408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c} \Phi_{\rm c.m.}\\ \theta_{\rm c.m.}\\ ({\rm deg})\\ 30\end{array}$ | $\begin{array}{c} \Delta\\ \theta_{\mathrm{c.m.}}\\ (\mathrm{deg})\\ 30\end{array}$ | θ <sub>c.m.</sub><br>(deg)<br>30    | (deg)<br>30         | 30                     |                                        | 34                                                              | 38                                                                                                                                   |                                                                                                                                                                            | 42                                                                                                                                                                                                      | 42<br>46                                                                                                                                                                                                                         | 42<br>50<br>50                                                                                                                                                                                                                                                          | 46<br>50<br>54<br>54                                                                                                                                                                                                                                                                               | 54 45<br>54 55<br>58 54                                                                                                                                                                                                                                                                                                                    | 42<br>54<br>53<br>88                                                                                                                                                                                                                                                                                                                                                  | 42<br>56<br>58<br>58                                                                                                                                                                                                                                                                                                                              | 4 4 4 5 5 5 4 4 2 5 8 5 5 8 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 5 6 5 5 5 5                                                                                                                                                                                                                                                                                                      | 4 4 4 5 5 5 4 4 5 5 8 5 5 8 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 | 4 4 4 4 6 5 0 5 4 4 6 5 0 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 4 5 5 0 5 4 4 5 5 8 5 5 8 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 5 6 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\sigma^{b}$                                                                         | $\sigma^{\rm b}$                                                                    | a <sup>b</sup>                      | αp                  | L100                   | /10.0                                  | 0.017                                                           | 0.017                                                                                                                                |                                                                                                                                                                            | 0.016                                                                                                                                                                                                   | 0.016<br>0.016                                                                                                                                                                                                                   | 0.016<br>0.016<br>0.016                                                                                                                                                                                                                                                 | 0.016<br>0.016<br>0.016<br>0.017                                                                                                                                                                                                                                                                   | 0.016<br>0.016<br>0.016<br>0.017<br>0.017                                                                                                                                                                                                                                                                                                  | 0.016<br>0.016<br>0.017<br>0.017<br>0.017<br>0.017                                                                                                                                                                                                                                                                                                                    | 0.016<br>0.016<br>0.016<br>0.017<br>0.017<br>0.017<br>0.018                                                                                                                                                                                                                                                                                       | 0.016<br>0.016<br>0.016<br>0.017<br>0.017<br>0.017<br>0.018<br>0.019                                                                                                                                                                                                                                                                                                                                       | 0.016<br>0.016<br>0.017<br>0.017<br>0.017<br>0.018<br>0.018<br>0.019<br>0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.016<br>0.016<br>0.017<br>0.017<br>0.017<br>0.018<br>0.018<br>0.019<br>0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.016<br>0.016<br>0.017<br>0.017<br>0.017<br>0.018<br>0.019<br>0.020<br>0.021<br>0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.016<br>0.016<br>0.017<br>0.017<br>0.017<br>0.018<br>0.019<br>0.020<br>0.021<br>0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $A_{pq}/A_{pq}=0.1$                                                                  | $A_{pq}/A_{pq}=0.1$                                                                 | -                                   | Ŧ                   | $bd_V$                 | 0.252                                  | 0.245                                                           |                                                                                                                                      | 0.238                                                                                                                                                                      | 0.238<br>0.237                                                                                                                                                                                          | 0.238<br>0.237<br>0.223                                                                                                                                                                                                          | 0.238<br>0.237<br>0.223<br>0.229                                                                                                                                                                                                                                        | 0.238<br>0.237<br>0.223<br>0.229<br>0.233                                                                                                                                                                                                                                                          | 0.238<br>0.237<br>0.223<br>0.229<br>0.233                                                                                                                                                                                                                                                                                                  | 0.238<br>0.237<br>0.223<br>0.229<br>0.233<br>0.201<br>0.201                                                                                                                                                                                                                                                                                                           | 0.238<br>0.237<br>0.223<br>0.229<br>0.233<br>0.201<br>0.162<br>0.162                                                                                                                                                                                                                                                                              | 0.238<br>0.237<br>0.223<br>0.229<br>0.233<br>0.233<br>0.201<br>0.162<br>0.162                                                                                                                                                                                                                                                                                                                              | 0.238<br>0.237<br>0.223<br>0.229<br>0.233<br>0.201<br>0.201<br>0.162<br>0.162<br>0.141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.238<br>0.237<br>0.223<br>0.229<br>0.201<br>0.201<br>0.201<br>0.201<br>0.201<br>0.201<br>0.201<br>0.141<br>0.171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.238<br>0.237<br>0.223<br>0.229<br>0.201<br>0.201<br>0.201<br>0.201<br>0.201<br>0.201<br>0.188<br>0.162<br>0.171<br>0.173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.238<br>0.237<br>0.223<br>0.229<br>0.201<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.233<br>0.237<br>0.237<br>0.237<br>0.237<br>0.237<br>0.237<br>0.237<br>0.237<br>0.237<br>0.237<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.223<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.229<br>0.2200<br>0.229<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200<br>0.2200000000 |
| $\theta_{c.m.}$                                                                      | $\theta_{c.m.}$                                                                     | $\theta_{c.m.}$                     | (400)               | (dcg)                  | 38.64                                  | 41.84                                                           | 15 01                                                                                                                                | 14.04                                                                                                                                                                      | 49.88                                                                                                                                                                                                   | 49.88<br>49.88<br>53.90                                                                                                                                                                                                          | 42.24<br>49.88<br>53.90<br>57.93                                                                                                                                                                                                                                        | 49.91<br>49.88<br>53.90<br>57.93<br>61.96                                                                                                                                                                                                                                                          | 42.21<br>49.88<br>53.90<br>57.93<br>61.96<br>66.00                                                                                                                                                                                                                                                                                         | 42.21<br>49.88<br>53.90<br>61.96<br>66.00<br>70.04                                                                                                                                                                                                                                                                                                                    | 49.24<br>49.88<br>57.93<br>61.96<br>66.00<br>70.04<br>74.01                                                                                                                                                                                                                                                                                       | 49.24<br>49.88<br>57.93<br>61.96<br>66.00<br>74.01<br>77.94                                                                                                                                                                                                                                                                                                                                                | 42.24<br>49.88<br>57.93<br>61.96<br>66.00<br>74.01<br>71.94<br>81.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.24<br>49.88<br>57.93<br>66.00<br>66.00<br>74.01<br>81.88<br>83.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.24<br>49.88<br>57.93<br>66.00<br>66.00<br>74.01<br>81.88<br>83.66<br>89.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42.24<br>49.88<br>57.93<br>66.00<br>66.00<br>74.01<br>77.94<br>81.88<br>83.66<br>89.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10ª                                                                                  | 10 <sup>a</sup> ,                                                                   | 4                                   | Ŧ                   | σ                      | 0.021                                  | 0.019                                                           | 0000                                                                                                                                 | 212.0                                                                                                                                                                      | 0.020                                                                                                                                                                                                   | 0.020                                                                                                                                                                                                                            | 0.020<br>0.020<br>0.021                                                                                                                                                                                                                                                 | 0.020<br>0.020<br>0.021                                                                                                                                                                                                                                                                            | 0.020<br>0.020<br>0.021                                                                                                                                                                                                                                                                                                                    | 0.020<br>0.020<br>0.021                                                                                                                                                                                                                                                                                                                                               | 0.020                                                                                                                                                                                                                                                                                                                                             | 0.020                                                                                                                                                                                                                                                                                                                                                                                                      | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\Delta A_{pq}/A_{pq} = 0.2$                                                         | $\Delta A_{pq}/A_{pq}=0.1$                                                          |                                     |                     | $A_{pq}$               | 0.252                                  | 0.219                                                           | 0 161                                                                                                                                | 0.101                                                                                                                                                                      | 0.153                                                                                                                                                                                                   | 0.153                                                                                                                                                                                                                            | 0.153<br>0.153<br>0.132<br>0.132                                                                                                                                                                                                                                        | 0.153<br>0.135<br>0.132                                                                                                                                                                                                                                                                            | 0.153<br>0.135<br>0.132                                                                                                                                                                                                                                                                                                                    | 0.153<br>0.135<br>0.132                                                                                                                                                                                                                                                                                                                                               | 0.135<br>0.135<br>0.132                                                                                                                                                                                                                                                                                                                           | 0.135<br>0.135<br>0.132                                                                                                                                                                                                                                                                                                                                                                                    | 0.133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                      |                                                                                     | ⊲                                   | $\theta_{\rm c.m.}$ | (deg)                  | 36.36                                  | 41.13                                                           |                                                                                                                                      | 46.09                                                                                                                                                                      | 46.09<br>51.21                                                                                                                                                                                          | 46.09<br>51.21<br>56.33                                                                                                                                                                                                          | 46.09<br>51.21<br>56.33<br>61.32                                                                                                                                                                                                                                        | 46.09<br>51.21<br>56.33<br>61.32                                                                                                                                                                                                                                                                   | 46.09<br>51.21<br>56.33<br>61.32                                                                                                                                                                                                                                                                                                           | 46.09<br>51.21<br>56.33<br>61.32                                                                                                                                                                                                                                                                                                                                      | 46.09<br>51.21<br>56.33<br>61.32                                                                                                                                                                                                                                                                                                                  | 46.09<br>51.21<br>56.33<br>61.32                                                                                                                                                                                                                                                                                                                                                                           | 46.09<br>51.21<br>56.33<br>61.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.09<br>51.21<br>56.33<br>61.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.09<br>51.21<br>56.33<br>61.32<br>61.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46.09<br>51.21<br>56.33<br>61.32<br>61.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

TABLE II. Measured values of  $A_{pq}$  at 577, 536, 514, 494, and 445 MeV.

Set I  $A_{pq} = 0.007A_m - 0.006A_s - 0.944A_{sk} + 0.198A_{kk}$ Set II  $A_{pq} = -0.006A_m + 0.006A_{ss} + 0.517A_{sk} + 0.846A_{kk}$ Set III  $A_{pq} = -0.045A_m + 0.935A_{ss} - 0.192A_{sk} - 0.001A_{kk}$ Set IV  $A_{pq} = -0.010A_m - 0.127A_{ss} + 0.923A_{sk} - 0.003A_{kk}$ Set V  $A_{pq} = -0.049A_m + 0.473A_{ss} + 0.783A_{sk} + 0.010A_{kk}$ 

|                      |                                     |                           |                     |                                     | TABLE II.             | (Continued.)        |                                     |                |                     |                                 |                       |
|----------------------|-------------------------------------|---------------------------|---------------------|-------------------------------------|-----------------------|---------------------|-------------------------------------|----------------|---------------------|---------------------------------|-----------------------|
|                      |                                     |                           |                     |                                     | 536 M                 | eV (±3)             |                                     |                |                     |                                 |                       |
|                      | Set I                               |                           |                     | Set II                              |                       |                     | Set IV                              |                |                     | Set V                           |                       |
|                      | $\Delta A_{pq} / A_{pq} = 0.06^{a}$ |                           |                     | $\Delta A_{pq} / A_{pq} = 0.06^{a}$ |                       |                     | $\Delta A_{pq} / A_{pq} = 0.06^{a}$ |                |                     | $\Delta A_{pq}/A_{pq}=0.06^{a}$ |                       |
| $\theta_{\rm c.m.}$  |                                     |                           | $	heta_{ m c.m.}$   |                                     |                       | $\theta_{\rm c.m.}$ |                                     |                | $\theta_{\rm c.m.}$ |                                 |                       |
| (deg)                | $A_{pq}$                            | $\sigma^{\rm b}$          | (deg)               | $A_{pq}$                            | $\sigma^{\mathrm{b}}$ | (deg)               | $A_{pq}$                            | م <sup>ه</sup> | (deg)               | $A_{pq}$                        | $\sigma^{\mathrm{p}}$ |
| 36.39                | 0.261                               | 0.020                     | 37.46               | 0.245                               | 0.025                 |                     |                                     |                |                     |                                 |                       |
| 41.23                | 0.254                               | 0.018                     | 41.95               | 0.242                               | 0.024                 | 62                  | -0.027                              | 0.016          | 34                  | -0.309                          | 0.026                 |
| 46.23                | 0.248                               | 0.018                     | 45.85               | 0.250                               | 0.023                 | <del>6</del> 6      | 0.010                               | 0.016          | 38                  | -0.310                          | 0.021                 |
| 51.30                | 0.213                               | 0.018                     | 49.88               | 0.221                               | 0.023                 | 70                  | 0.004                               | 0.017          | 42                  | -0.290                          | 0.020                 |
| 56.37                | 0.154                               | 0.017                     | 53.90               | 0.237                               | 0.023                 | 74                  | 0.017                               | 0.017          | 46                  | -0.314                          | 0.020                 |
| 61.37                | 0.086                               | 0.018                     | 57.94               | 0.226                               | 0.023                 | 78                  | 0.054                               | 0.017          | 50                  | -0.296                          | 0.021                 |
|                      |                                     |                           | 61.99               | 0.217                               | 0.023                 | 82                  | 0.036                               | 0.018          | 54                  | -0.286                          | 0.022                 |
|                      |                                     |                           | 66.04               | 0.169                               | 0.023                 | 86                  | 0.042                               | 0.018          | 58                  | -0.293                          | 0.023                 |
|                      |                                     |                           | 70.06               | 0.177                               | 0.023                 | 90                  | 0.079                               | 0.019          | 62                  | -0.341                          | 0.024                 |
|                      |                                     |                           | 74.06               | 0.138                               | 0.024                 |                     |                                     |                | 99                  | -0.268                          | 0.024                 |
|                      |                                     |                           | 78.00               | 0.139                               | 0.025                 |                     |                                     |                | 70                  | -0.286                          | 0.024                 |
|                      |                                     |                           | 81.91               | 0.068                               | 0.026                 |                     |                                     |                | 74                  | -0.259                          | 0.025                 |
|                      |                                     |                           | 85.78               | 0.112                               | 0.028                 |                     |                                     |                | 78                  | -0.284                          | 0.025                 |
|                      |                                     |                           | 89.63               | 0.144                               | 0.029                 |                     |                                     |                | 82                  | -0.286                          | 0.025                 |
|                      |                                     |                           |                     |                                     |                       |                     |                                     |                | 86                  | -0.284                          | 0.026                 |
|                      |                                     |                           |                     |                                     |                       |                     |                                     |                | 90                  | -0.284                          | 0.027                 |
| Set I A <sub>p</sub> | $q = 0.009A_{nn} + 0.03$            | $3A_{ss} - 0.952A_{sk}$   | $+0.198A_{kk}$      |                                     |                       |                     |                                     |                | **                  |                                 |                       |
| Set II A<br>Set IV   | $l_{pq} = -0.004A_{nn} + 0$         | $0.025A_{ss} + 0.547_{r}$ | $4_{sk} + 0.845A_k$ |                                     |                       |                     |                                     |                |                     |                                 |                       |
| Set V A              | $p_q = 0.050A_{nn} + 0.4$           | $71A_{ss} + 0.781A_{sk}$  | $+0.011A_{kk}$      | ×.                                  |                       |                     |                                     |                |                     |                                 |                       |
|                      |                                     |                           |                     |                                     |                       |                     |                                     |                |                     |                                 |                       |

|                  |                                       |                   |                                |                     |                       | T/                  | ABLE II. (Con                   | tinued.)         |                 |                                 |                       |                     |                                 |                       |
|------------------|---------------------------------------|-------------------|--------------------------------|---------------------|-----------------------|---------------------|---------------------------------|------------------|-----------------|---------------------------------|-----------------------|---------------------|---------------------------------|-----------------------|
|                  |                                       | -                 |                                |                     |                       |                     | 514 MeV (±3                     | 3)               |                 |                                 |                       |                     |                                 |                       |
|                  | Set I                                 |                   |                                | Set II              |                       |                     | Set III                         |                  |                 | Set IV                          |                       |                     | Set V                           |                       |
| 4                | $A_{pq}/A_{pq}=0.0$                   | 6 <sup>a</sup>    | $\Delta A$                     | $I_{pq}/A_{pq}=0.0$ | )6 <sup>a</sup>       | 7                   | $\Delta A_{pq} / A_{pq} = 0.09$ | ) <sup>a</sup>   | 7               | $\Delta A_{pq} / A_{pq} = 0.00$ | 5 <sup>a</sup>        | 7                   | $\Delta A_{pq} / A_{pq} = 0.08$ | -                     |
| $\theta_{c.m.}$  |                                       |                   | $\theta_{\rm c.m.}$            |                     |                       | $\theta_{\rm c.m.}$ |                                 |                  | $\theta_{c.m.}$ |                                 |                       | $\theta_{\rm c.m.}$ |                                 |                       |
| (deg)            | $A_{pq}$                              | م <sub>ه</sub>    | (deg)                          | $A_{pq}$            | $\sigma^{\mathrm{p}}$ | (deg)               | $A_{pq}$                        | $\sigma^{\rm b}$ | (deg)           | $A_{pq}$                        | $\sigma^{\mathrm{b}}$ | (deg)               | $A_{pq}$                        | $\sigma^{\mathrm{b}}$ |
| 36.51            | 0.320                                 | 0.022             | 38.49                          | 0.264               | 0.023                 | 30                  | -0.234                          | 0.023            |                 |                                 |                       |                     |                                 |                       |
| 41.26            | 0.276                                 | 0.019             | 41.89                          | 0.255               | 0.021                 | 34                  | -0.221                          | 0.011            | 54              | -0.063                          | 0.022                 | 34                  | -0.315                          | 0.019                 |
| 46.25            | 0.260                                 | 0.019             | 45.92                          | 0.289               | 0.020                 | 38                  | -0.242                          | 0.009            | 58              | -0.060                          | 0.015                 | 38                  | -0.341                          | 0.015                 |
| 51.32            | 0.226                                 | 0.019             | 49.92                          | 0.265               | 0.020                 | 42                  | -0.275                          | 0.008            | 62              | -0.032                          | 0.014                 | 42                  | -0.336                          | 0.013                 |
| 56.39            | 0.145                                 | 0.019             | 53.94                          | 0.203               | 0.020                 | 46                  | -0.303                          | 0.008            | 99              | 0.010                           | 0.014                 | 46                  | -0.331                          | 0.012                 |
| 61.38            | 0.159                                 | 0.020             | 57.97                          | 0.224               | 0.019                 | 50                  | -0.343                          | 0.008            | 70              | -0.007                          | 0.014                 | 50                  | -0.316                          | 0.012                 |
|                  |                                       |                   | 62.02                          | 0.143               | 0.019                 | 54                  | -0.356                          | 0.010            | 74              | 0.026                           | 0.014                 | 54                  | -0.307                          | 0.012                 |
|                  |                                       |                   | 66.07                          | 0.175               | 0.019                 | 58                  | -0.431                          | 0.044            | 78              | 0.032                           | 0.015                 | 58                  | -0.301                          | 0.012                 |
|                  |                                       |                   | 70.08                          | 0.130               | 0.020                 |                     |                                 |                  | 82              | 0.041                           | 0.015                 | 62                  | -0.318                          | 0.012                 |
|                  |                                       |                   | 74.07                          | 0.155               | 0.020                 |                     |                                 |                  | 86              | 0.067                           | 0.016                 | 99                  | -0.288                          | 0.012                 |
|                  |                                       |                   | 78.03                          | 0.088               | 0.021                 |                     |                                 |                  | 60              | 0.055                           | 0.017                 | 70                  | -0.294                          | 0.012                 |
|                  |                                       |                   | 81.91                          | 0.058               | 0.022                 |                     |                                 |                  | 94              | 0.069                           | 0.023                 | 74                  | -0.306                          | 0.013                 |
|                  |                                       |                   | 85.83                          | 0.107               | 0.023                 |                     |                                 |                  |                 |                                 |                       | 78                  | -0.289                          | 0.012                 |
|                  |                                       |                   | 89.29                          | 0.098               | 0.024                 |                     |                                 |                  |                 |                                 |                       | 82                  | -0.310                          | 0.013                 |
|                  |                                       |                   |                                |                     |                       |                     |                                 |                  |                 |                                 |                       | 86                  | -0.273                          | 0.013                 |
|                  |                                       |                   |                                |                     |                       |                     |                                 |                  |                 |                                 |                       | 88.2                | -0.262                          | 0.014                 |
| Set I A.         | ,=0.011 <i>A</i> +                    | -0.0544           | $0.955A_{st} + 0.$             | 197 <i>A</i> tt     |                       |                     |                                 |                  |                 |                                 |                       |                     |                                 |                       |
| Set II $\vec{A}$ | $p_q = -0.002A$                       | $n_n + 0.035A$    | $_{\rm s} + 0.562A_{\rm sk}$ - | $+0.845_{kk}$       |                       |                     |                                 |                  |                 |                                 |                       |                     |                                 |                       |
| Set III ,        | $4_{pq} = 0.045 A_{nn}$               | $+0.935A_{ss}$    | $-0.192A_{sk} -$               | $0.001A_{kk}$       |                       |                     |                                 |                  |                 |                                 |                       |                     |                                 |                       |
| Set IV /         | $4_{pq} = -0.010$                     | $4_{mn} - 0.1262$ | $I_{ss} + 0.92 IA_{sk}$        | $-0.003A_{kk}$      |                       |                     |                                 |                  |                 |                                 |                       |                     |                                 |                       |
| - DC             | <sup>nu</sup> WI CO O – <sup>bd</sup> | + 0. +07A_SS -    | -0.110Ask +0                   | 1.ULLA kk           |                       |                     |                                 |                  |                 |                                 |                       |                     |                                 |                       |

28

|                     |                                |                       |                                    |                                           |                 | TA              | BLE II. (Con          | tinued.)         |                     |                                 |                       |                 |                      |                |
|---------------------|--------------------------------|-----------------------|------------------------------------|-------------------------------------------|-----------------|-----------------|-----------------------|------------------|---------------------|---------------------------------|-----------------------|-----------------|----------------------|----------------|
|                     |                                |                       |                                    |                                           |                 |                 | 494 MeV (±            | 3)               |                     |                                 |                       |                 |                      |                |
|                     | Set I                          |                       |                                    | Set II                                    |                 |                 | Set IV                |                  | 01                  | et V (scattered                 | ()                    | Se              | t V (accelerate      | (p             |
|                     | $\Delta A_{pq} / A_{pq} = 0.0$ | )6 <sup>a</sup>       | 4                                  | $A_{pq}/A_{pq}=0.0$                       | )6 <sup>a</sup> |                 | $A_{pq}/A_{pq} = 0.0$ | 6 <sup>a</sup>   | 7                   | $\Delta A_{pq} / A_{pq} = 0.06$ | a_                    | ⊲               | $A_{pq}/A_{pq}=0.07$ | a              |
| $\theta_{\rm c.m.}$ |                                |                       | $	heta_{ m c.m.}$                  |                                           |                 | $\theta_{c.m.}$ |                       |                  | $\theta_{\rm c.m.}$ |                                 |                       | $\theta_{c.m.}$ | :                    |                |
| (deg)               | $A_{pq}$                       | $\sigma^{\mathrm{p}}$ | (deg)                              | $A_{pq}$                                  | م <sup>ه</sup>  | (deg)           | $A_{pq}$              | $\sigma^{\rm p}$ | (deg)               | $A_{pq}$                        | $\sigma^{\mathrm{b}}$ | (deg)           | $A_{pq}$             | o <sup>b</sup> |
| 36.74               | 0.330                          | 0.026                 | 38.04                              | 0.322                                     | 0.024           |                 |                       |                  |                     |                                 |                       |                 |                      |                |
| 41.30               | 0.350                          | 0.021                 | 41.99                              | 0.318                                     | 0.022           | 62              | -0.001                | 0.022            | 34                  | -0.404                          | 0.036                 | 34              | -0.433               | 0.036          |
| 46.28               | 0.281                          | 0.020                 | 45.96                              | 0.316                                     | 0.021           | 99              | -0.008                | 0.021            | 38                  | -0.348                          | 0.024                 | 38              | -0.330               | 0.027          |
| 51.34               | 0.224                          | 0.020                 | 49.96                              | 0.317                                     | 0.021           | 70              | 0.027                 | 0.022            | 42                  | -0.355                          | 0.021                 | 42              | -0.388               | 0.023          |
| 56.41               | 0.188                          | 0.020                 | 53.98                              | 0.283                                     | 0.021           | 74              | 0.029                 | 0.022            | 46                  | -0.338                          | 0.021                 | 46              | -0.364               | 0.022          |
| 61.41               | 0.171                          | 0.021                 | 58.01                              | 0.292                                     | 0.021           | 78              | 0.081                 | 0.022            | 50                  | -0.345                          | 0.021                 | 50              | -0.366               | 0.022          |
|                     |                                |                       | 62.05                              | 0.246                                     | 0.020           | 82              | 0.084                 | 0.022            | 54                  | -0.335                          | 0.022                 | 54              | -0.347               | 0.021          |
|                     |                                |                       | 60.99                              | 0.229                                     | 0.020           | 86              | 0.063                 | 0.022            | 58                  | -0.322                          | 0.022                 | 58              | -0.342               | 0.021          |
|                     |                                |                       | 70.11                              | 0.205                                     | 0.021           | 90              | 0.106                 | 0.022            | 62                  | -0.320                          | 0.023                 | 62              | -0.314               | 0.022          |
|                     |                                |                       | 74.08                              | 0.168                                     | 0.022           |                 |                       |                  | 99                  | -0.342                          | 0.023                 | 99              | -0.335               | 0.021          |
|                     |                                |                       | 78.02                              | 0.131                                     | 0.023           |                 |                       |                  | 70                  | -0.351                          | 0.024                 | 02              | -0.322               | 0.022          |
|                     |                                |                       | 81.95                              | 0.129                                     | 0.023           |                 |                       |                  | 74                  | -0.352                          | 0.024                 | 74              | -0.302               | 0.022          |
|                     |                                |                       | 85.72                              | 0.118                                     | 0.024           |                 |                       |                  | 78                  | -0.334                          | 0.024                 | 78              | -0.282               | 0.021          |
|                     |                                |                       | 89.95                              | 0.108                                     | 0.026           |                 |                       |                  | 82                  | -0.291                          | 0.024                 | 82              | -0.295               | 0.022          |
|                     |                                |                       |                                    |                                           |                 |                 |                       |                  | 86                  | -0.321                          | 0.025                 | 86              | -0.308               | 0.022          |
|                     |                                |                       |                                    |                                           |                 |                 |                       |                  | 90                  | -0.310                          | 0.027                 | 90              | -0.269               | 0.025          |
| ,                   |                                |                       |                                    |                                           |                 |                 |                       |                  |                     |                                 |                       |                 |                      |                |
| Set L               | $4_{pq} = 0.011A_{nn}$         | $+0.074A_{ss}$ -      | $-0.958A_{sk} + ($                 | $0.197A_{kk}$                             |                 |                 |                       |                  |                     |                                 |                       |                 |                      |                |
| Set IV              | $A_{pq} = -0.001$              | $A_{nn} + 0.040A$     | Iss + U. J. YA sk                  | c+0.844A <sub>kk</sub>                    |                 |                 |                       |                  |                     |                                 |                       |                 |                      |                |
| Set V               | $A_{pq} = -0.051A_{m}$         | $A_{nn} = 0.120$      | $A_{\rm ss} + 0.777A_{\rm st} + 0$ | <u>k</u> — и. ииза <i>kk</i><br>0.012.4 ш |                 |                 |                       |                  |                     |                                 |                       |                 |                      |                |
|                     | 11 bd                          | SS                    |                                    | XX-T-CO                                   |                 |                 |                       |                  |                     |                                 |                       |                 |                      |                |

# MEASUREMENTS OF THE SPIN-CORRELATION PARAMETERS ....

|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                         |                                     | TABLEI                | II. (Continued      |                                     |                       |                     | -                                   |                |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------|-------------------------------------|-----------------------|---------------------|-------------------------------------|-----------------------|---------------------|-------------------------------------|----------------|
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                         |                                     | 445 M                 | 1eV (±3)            |                                     |                       |                     |                                     |                |
|                      | Set I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                                         | Set II                              |                       |                     | Set IV                              |                       |                     | Set V                               |                |
|                      | $\Delta A_{pq}/A_{pq}=0.06^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                         | $\Delta A_{pq} / A_{pq} = 0.06^{a}$ |                       |                     | $\Delta A_{pq} / A_{pq} = 0.06^{a}$ |                       |                     | $\Delta A_{pq} / A_{pq} = 0.06^{a}$ |                |
| $\theta_{\rm c.m.}$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | $\theta_{\rm c.m.}$                     |                                     |                       | $\theta_{\rm c.m.}$ |                                     |                       | $\theta_{\rm c.m.}$ |                                     |                |
| (deg)                | $A_{pq}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o <sup>b</sup>              | (deg)                                   | $A_{pq}$                            | $\sigma^{\mathrm{b}}$ | (deg)               | $A_{pq}$                            | $\sigma^{\mathrm{b}}$ | (deg)               | $A_{pq}$                            | σ <sup>þ</sup> |
| 36.83                | 0.252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.026                       | 37.78                                   | 0.235                               | 0.026                 |                     |                                     |                       | 34                  | -0.411                              | 0.036          |
| 41.35                | 0.311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.019                       | 42.01                                   | 0.249                               | 0.023                 | 62                  | -0.063                              | 0.019                 | 38                  | -0.350                              | 0.027          |
| 46.36                | 0.269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.019                       | 45.96                                   | 0.320                               | 0.022                 | 99                  | -0.037                              | 0.018                 | 42                  | -0.336                              | 0.024          |
| 51.43                | 0.196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.019                       | 49.95                                   | 0.257                               | 0.021                 | 70                  | 0.005                               | 0.019                 | 46                  | -0.313                              | 0.022          |
| 56.48                | 0.134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.019                       | 53.96                                   | 0.249                               | 0.021                 | 74                  | -0.014                              | 0.018                 | 50                  | -0.328                              | 0.022          |
| 61.47                | 0.088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.020                       | 58.02                                   | 0.238                               | 0.020                 | 78                  | 0.075                               | 0.019                 | 54                  | -0.356                              | 0.022          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 62.07                                   | 0.184                               | 0.020                 | 82                  | 0.043                               | 0.019                 | 58                  | -0.299                              | 0.022          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 66.11                                   | 0.119                               | 0.020                 | 86                  | 0.063                               | 0.019                 | 62                  | -0.294                              | 0.024          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 70.13                                   | 0.154                               | 0.020                 | 60                  | 0.098                               | 0.020                 | 99                  | -0.300                              | 0.024          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 74.11                                   | 0.135                               | 0.021                 |                     |                                     |                       | 70                  | -0.298                              | 0.024          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 78.06                                   | 0.117                               | 0.022                 |                     |                                     |                       | 74                  | -0.278                              | 0.025          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 82.01                                   | 0.101                               | 0.022                 |                     |                                     |                       | 78                  | -0.326                              | 0.025          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 85.73                                   | 0.054                               | 0.023                 |                     |                                     |                       | 82                  | -0.291                              | 0.025          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 90.34                                   | 0.066                               | 0.025                 |                     |                                     |                       | 86                  | -0.306                              | 0.025          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                         |                                     |                       |                     |                                     |                       | 90                  | -0.268                              | 0.028          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                         |                                     |                       |                     |                                     |                       |                     |                                     |                |
| Set I A <sub>P</sub> | $q = 0.014A_m + 0.17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $20A_{ss} - 0.962A_{sk}$    | $+0.196A_{kk}$                          |                                     |                       |                     |                                     |                       |                     |                                     |                |
| Set IV A             | $P_{m} = -0.010A_{m} + 0.010A_{m} - 0.00A_{m} - 0.0$ | $0.126A_{ss} + 0.014A_{ss}$ | $k \pm 0.070Ak$<br>$1A_{sk} = 0.003A_k$ | *                                   |                       |                     |                                     |                       |                     |                                     |                |
| Set V A              | $y_{q} = 0.053A_{m} + 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $64A_{ss} + 0.772A_{sj}$    | $k + 0.013A_{kk}$                       | 4                                   |                       |                     |                                     |                       |                     |                                     |                |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                         |                                     |                       |                     |                                     |                       |                     |                                     |                |

30

| MEASUREMENT | IS OF THE SPIN | N-CORRELA | TION PAR | RAMETERS |
|-------------|----------------|-----------|----------|----------|
|             |                |           |          |          |
| م اا        | 84             | 11        |          |          |

|                        |                                 |                                           |                        |                                     | TABLE II. (( | Continued.)         |                                     |       |                |                                             |                  |
|------------------------|---------------------------------|-------------------------------------------|------------------------|-------------------------------------|--------------|---------------------|-------------------------------------|-------|----------------|---------------------------------------------|------------------|
|                        |                                 |                                           |                        |                                     | 445 Me       | ×V (±3)             |                                     |       |                |                                             |                  |
|                        | Set VI                          |                                           |                        | Set VII                             |              |                     | Set VIII                            |       |                | Set IX                                      |                  |
|                        | $\Delta A_{pq} / A_{pq} = 0.05$ | Şа                                        |                        | $\Delta A_{pq}/A_{pq}=0.05^{\rm a}$ |              |                     | $\Delta A_{pq}/A_{pq}=0.05^{\rm a}$ |       |                | $\Delta A_{\rm po}/A_{\rm po}=0.05^{\rm a}$ |                  |
| $\theta_{\rm c.m.}$    |                                 |                                           | $\theta_{\rm c.m.}$    |                                     |              | $\theta_{\rm c.m.}$ |                                     |       | $\theta_{c,m}$ |                                             |                  |
| (deg)                  | $A_{Pq}$                        | م <sub>ه</sub>                            | (deg)                  | $A_{pq}$                            | αp           | (deg)               | $A_{pq}$                            | op    | (deg)          | $A_{pq}$                                    | $\sigma^{\rm b}$ |
| 34                     | 0.127                           | 0.057                                     | 34                     | -0.400                              | 0.047        | 30                  | -0.393                              | 0.057 | 30             | -0.240                                      | 0.084            |
| 38                     | 0.258                           | 0.039                                     | 38                     | -0.374                              | 0.034        | 34                  | -0.439                              | 0.020 | 34             | -0.279                                      | 0.029            |
| 42                     | 0.224                           | 0.033                                     | 42                     | -0.376                              | 0.032        | 38                  | -0.393                              | 0.013 | 38             | -0.324                                      | 0.020            |
| 46                     | 0.326                           | 0.031                                     | 46                     | -0.405                              | 0.033        | 42                  | -0.365                              | 0.013 | 42             | -0.364                                      | 0.019            |
| 50                     | 0.205                           | 0.029                                     | 50                     | -0.352                              | 0.033        | 46                  | -0.335                              | 0.012 | 46             | -0.404                                      | 0.018            |
| 54                     | 0.248                           | 0.029                                     | 54                     | -0.390                              | 0.033        | 50                  | -0.320                              | 0.012 | 50             | -0.430                                      | 0.017            |
| 58                     | 0.244                           | 0.028                                     | 58                     | -0.385                              | 0.034        | 54                  | -0.282                              | 0.012 | 54             | -0.450                                      | 0.017            |
| 62                     | 0.246                           | 0.028                                     | 62                     | -0.336                              | 0.034        | 58                  | -0.289                              | 0.178 |                |                                             |                  |
| 99                     | 0.206                           | 0.027                                     | 99                     | -0.385                              | 0.034        |                     |                                     |       |                |                                             |                  |
| 70                     | 0.151                           | 0.028                                     | 70                     | -0.347                              | 0.035        |                     |                                     |       |                |                                             |                  |
|                        |                                 |                                           | 74                     | -0.354                              | 0.047        |                     |                                     |       |                |                                             |                  |
| Set VI A <sub>1</sub>  | $M_{m} = -0.0002A_{m}$          | $+0.0690A_{ss}+0$                         | ). $6280A_{sk} + 0.84$ | $00A_{kk}$                          |              |                     |                                     |       |                |                                             |                  |
| Set VII A              | $I_{pq} = +0.0160A_n$           | $n + 0.5022A_{ss} + 0.1050A_{ss}$         | $0.8115A_{sk} + 0.0$   | 120A kk                             |              |                     |                                     |       |                |                                             |                  |
| Set IX A <sub>1</sub>  | $A_{pq} = \pm 0.0300A_{nn}$     | $_{xx} + 0.1000A_{xx} + 0.9490A_{xx} - 0$ | $-0.9240A_{sk} - 0.00$ | 1900Akk<br>110Akk                   |              |                     |                                     |       |                |                                             |                  |
| <sup>a</sup> Systemati | ic errors to be ad              | lded quadratical                          | lly.                   |                                     |              |                     |                                     |       |                |                                             |                  |
| <sup>b</sup> Errors ar | e purely statistic              | al.                                       |                        |                                     |              |                     |                                     |       |                |                                             |                  |

The  $\chi^2$  definition is thus improved and becomes

$$\chi^{2} = [x(\text{meas}) - x(\text{theor})]^{T} \times C[x(\text{meas}) - x(\text{theor})]/\nu .$$
(19)

This was used only in the last set of measurements (sets VI, VII, VIII, and IX at 445 MeV) and is described in more detail in Ref. 12 (method C).

Within this program it was possible to make cuts on the reconstructed parameters. As each parameter of p was reconstructed in order, the program would test to see if the calculated value fell within the range defined by the cuts. If not, the event was rejected without further processing. Events which passed all the software cuts were accumulated in a three-dimensional histogram of  $\theta_{c.m.}$ ,  $\phi$ , and S in the computer memory. In addition, the distributions for the other reconstructed parameters, that is, interaction vertex  $(x_v, y_v, z_v)$ , were also saved and could be accessed during a data run as a check of system operation.

This technique could be used either as a true on-line reconstruction program or as an event filter. Most of the data reported here were taken in the former mode (A + B)in Table I). The contents of the parameter histograms accumulated at the end of each run were written onto magnetic tape and further analyzed off line in this form. Since the raw data on the detection coordinates is lost in such a procedure, a careful determination of the cuts applied on the parameters during data acquisition had to be made beforehand. However, a small part of the data (C in Table I) were taken using this method as an event filter. Here only loose cuts were imposed on the reconstructed parameters during acquisition. The raw coordinate data of events which passed these cuts were then rewritten onto magnetic tape. These events were then reconstructed again off line using the same method but with more stringent cuts. The resulting data were analyzed in a similar manner. The method of reconstruction used for each set is summarized in Table I.

#### **V. DATA ACQUISITION**

Measurements were made at five different energies 445, 494, 514, 536, and 577 MeV. These values were measured to within  $\pm 2$  MeV accuracy. Beam spread was typically  $\pm 3$  MeV. Firstly we used a longitudinally polarized beam and obtained sets I and II. Secondly, with a transversely polarized beam, we obtained the sets III, IV, and V. Since phase-shift analyses had difficulties with fitting the preliminary results of certain spin-correlation parameters at 445 MeV (Ref. 13) (see Sec. VII), these data were supplemented by further measurements which were sets VI, VII, VIII, and IX (see Table I).

For each energy, data were taken for the four beamtarget configurations and also for the beam orientations with unpolarized target. The accelerated beam was only used for set V at 577, 514, and 494 MeV.

For the scattered beam, all possible target configurations were taken before changing the beam orientation to avoid changes in the system acceptance due to beam shifts and focusing effects from the solenoid. Moreover, after each change of solenoid current, the beam was carefully recentered on the target. To account for background reactions due to the carbon and helium-3 nuclei in the butanol target, data were also taken with a dummy consisting of carbon and helium-3 alone where the total number of carbon used was determined by the constraint that the ratio of carbon nuclei to helium-3 nuclei be the same as that in the butanol target.

## VI. DATA ANALYSIS

During the off-line analysis each run was corrected for background contamination, chamber efficiency, and normalized to the number of incident particles, before a determination of  $A_{pq}$  was made.

#### A. Chamber efficiency

The efficiency of the chamber telescopes was monitored during each run. This consisted of recording the inefficiency of the chamber planes for each accepted event; i.e., for each chamber plane, the number of times there were none or more than one spark. If one plane was inefficient in one of the telescopes, the missing coordinate was calculated by using the information of the other two chambers before entering in the reconstruction procedure (see Sec. IV). In addition, this was recorded in a histogram as a function of the reconstructed  $\theta_{c.m.}$  for each event. The total efficiency could then be extracted from this information.<sup>8,10</sup> This was found to be very high with values not less than 97%.

#### B. Background subtraction

Background could be subtracted by normalizing the dummy target runs for the difference in the number of carbon atoms and the number of incident protons. However, because of other possible variations between runs, for example, system acceptance, this normalization factor was found by assuming the S distribution for each butanol run could be described by a  $\chi^2$  distribution, plus an additional term for background:

$$S^{2}(\text{butanol}) = Q(x^{2}, v) + \beta s^{2}(\text{dummy}), \qquad (20)$$

where  $Q(x^2, v)$  is the expression for a  $\chi^2$  distribution with v degrees of freedom and  $\beta$  is the normalization factor.

Equation (20) was then fitted to the observed  $S^2$  (butanol) distribution to obtain the normalization  $\beta$ . Values of  $\beta$  found by this method agreed quite well with the simple scaling of incident rates and the number of atoms in the butanol and dummy target, indicating no large variations of system acceptance between runs. Typical values for the background contamination were found to be between 6% and 16% depending on the polarization orientation and the geometrical acceptance.

## C. Extraction of $A_{pq}$

 $A_{pq}$  was determined by a direct solution of the four polarized-target runs, namely, (+, +), (+, -), (-, -), and (-, +). Where unpolarized-target data [(+,0),(-,0)] were available the parameters were extracted by a fitting procedure instead and the results checked by a solution of the equations. In the fitting method the equations were weighted by the measured errors and fitted for  $\sigma_0 \overline{G} A_{pq}$ ,  $\sigma_0 \overline{G}$ ,  $\sigma_0 \overline{G} f_{n0} P$ , and  $\sigma_0 \overline{G} f_{0n} P$  using the usual



FIG. 4.  $A_{pq}$  vs  $\theta_{c.m.}$  at 445 MeV for data sets I, II, IV, V, VI, VII, VIII, and IX. Points from this experimental are shown as  $\bullet$ . The dashed curves represent the Saclay-Geneva phase-shift predictions (Ref. 14). The solid curves are the results of the Saclay-Geneva phase-shift analysis after admission of the data from this experiment.



FIG. 5. (a)–(e)  $A_{00nn}$ ,  $A_{00sk}$ , and  $A_{00kk}$  as a function of  $\cos^2\theta_{c.m.}$  at 577, 536, 514, 494, and 445 MeV. Points from this experiment are shown as  $A_{nn} = \bigvee$ ,  $A_{kk} = \blacktriangle$ ,  $A_{ks} = \diamondsuit$ , and  $A_{ss} = \times$ . The dashed curves represent the Saclay-Geneva phase-shift predictions (Ref. 14). The solid curves are the results of the Saclay-Geneva phase-shift analysis after admission of the data from this experiment. Dispersion-relation calculations are from Ref. 25.

least-squares method. The data were grouped in  $\theta_{c.m.}$  bins of 4° each and were fitted independently for each angle. The central values for each bin were estimated by weighting  $\theta_{c.m.}$  with an acceptance density function calculated by fitting a polynomial through the acceptance differential cross section found from the least-squares procedure and integrating over each bin. In this procedure changes in the values of the  $\theta_{c.m.}$  bin limits caused by the nonlinearities in the reconstruction matrix were also corrected. Off-line nonlinearity corrections for  $\theta_{c.m.}$  and  $\phi$  were only applied to the data sets I and II. For the other data sets the nonlinearity corrections were applied on-line for each event by the procedure which we have already described. The coefficients  $\overline{f}_{nn}$ ,  $\overline{f}_{ss}$ ,  $\overline{f}_{sk}$ ,  $\overline{f}_{ks}$ , and  $\overline{f}_{kk}$  of Eq. (12) were calculated by using the components of beam and target polarization as calculated by the tracking program and the values (21)

of  $\langle \sin\phi \rangle$ ,  $\langle \cos\phi \rangle$ ,  $\langle \cos^2\phi \rangle$ ,  $\langle \sin^2\phi \rangle$ , and  $\langle \sin\phi \cos\phi \rangle$  for the appropriate ranges given in Table I.

A beam-polarization monitor with  $CH_2$  target was used to measure the polarization of the accelerated beam. An absolute calibration of this monitor was performed by an independent measurement of the beam polarization at one energy. For this purpose, data were taken with two unpolarized-target positions (+,0) and (-,0) where the beam was vertically polarized. In this case, Eq. (11) reduces to

and

$$N_{-0} = \sigma_0(\theta) \overline{G}(\theta) [1 - P(\theta) P_b]$$
.

 $N_{+0} = \sigma_0(\theta) \overline{G}(\theta) [1 + P(\theta) P_b]$ 

The ratio over the difference and sum of Eq. (21) gives  $P_b P(\theta)$ . The P parameter is well known from the phase shifts with an accuracy up to 1%. Therefore it was possible to extract  $P_b$  and its value was found to be  $(85\pm2)\%$ , which agreed very well with the measurements of the beam-polarization monitor.

#### D. Consistency tests and systematic errors

The data for each energy were subjected to a number of consistency tests and checks. For each solenoid setting, the quantity

$$P_t(+)/P_t(-) = (N_{P_b,+} - N_{P_b,0})/(N_{P_b,0} - N_{P_b,-}) \quad (22)$$

[where  $P_t(+)$  and  $P_t(-)$ , are, respectively, the target polarization of the plus and minus runs] could be calculated from the data. This was not a very sensitive test because of the large errors on this calculated ratio. However, reasonable agreement was found between NMR values and this ratio. It was also possible to calculate the ratio of the two acceptances directly from the data for runs of different solenoid settings for checking the stability. The target polarization for each run was determined by averaging the measured NMR values over the duration of the run.



FIG. 6. A comparison of  $A_{00kk}$  values at  $\theta_{c.m.} = 90^{\circ}$  with the measurements of Argonne (Ref. 15) and Los Alamos (Ref. 16).

There was a possible relative systematic error of  $\pm$  (6% to 10%), due to the uncertainties in the NMR calibration as shown in Table II. As a check of the background subtraction,  $A_{pq}$  was also determined with several cuts on the  $S^2$  distribution of the data. No significant changes were observed indicating that little or no background contamination remained in the data.

## VII. RESULTS AND DISCUSSION

The results of  $A_{pq}$  vs  $\theta_{c.m.}$  at 445 MeV are shown as an example in Fig. 4 for each set along with predictions for this parameter from the Saclay-Geneva phase-shift program<sup>14</sup> (dashed curve). The numerical values for  $A_{pq}$  at all energies are given in Table II with purely statistical errors. We also provide a relative systematic error for each set of data due to the fluctuation of target and/or beam polarizations.

To see the effects of these new measurements on the phase-shift predictions, these results were admitted into the Saclay-Geneva program and new values were generated. Significant modifications in  $A_{pq}$  were observed at all energies and are shown in Fig. 4 as a solid line. The introduction of these points into the program caused a reduction of about a factor of 2 in the phase-shift errors, indicating a substantial improvement in the reliability of the phase-shift predictions.

At 577 MeV, the sets I, II, III, and V cover the angular region of  $\theta_{c.m.} = 38^{\circ}$  to 60°. For this domain we have extracted the values of  $A_{00kk}$ ,  $A_{00ks}$ , and  $A_{00ss}$  by a linear fit as shown in Fig. 5(a). This fit gave  $\chi^2 = 4.3$  per point indicating that one should take into account the systematic uncertainties due to the fluctuation of target and/or beam polarization. Therefore, we have added the systematic errors quadratically to the statistical errors and the errors on  $A_{00kk}$ ,  $A_{00ks}$ , and  $A_{00ss}$  have increased from (1-2)% to (3-4)%. This fit then gives  $\chi^2 = 1.6$  per point. Data sets II, IV, and V cover the angular range between  $\theta_{c.m.} = 62^{\circ} - 90^{\circ}$ . For this domain we have extracted the values of the individual parameters by using an exact solution of the linear equations. At 514 MeV, we had the same sets as above with the linear fit giving  $\chi^2 = 0.74$  per point. We had only data sets I, II, IV, and V at 536 and



FIG. 7. Longitudinally polarized cross-section differences  $(-\Delta\sigma_L)$  and their elastic content.

| $\theta_{c.m.}$<br>(deg) | $A_{ss}$                                | $A_{sk}$                         | $A_{kk}$                               |
|--------------------------|-----------------------------------------|----------------------------------|----------------------------------------|
|                          |                                         | 577 MeV                          |                                        |
| 38                       | $-0.370\pm0.020$                        | 0.185+0.023                      | $0.413 \pm 0.036$                      |
| 42                       | $-0.370\pm0.020$                        | $-0.165\pm0.023$                 | $0.413\pm0.030$                        |
| 42                       | $-0.380\pm0.020$                        | $-0.100\pm0.021$                 | $0.390 \pm 0.033$                      |
| 50                       | $-0.410\pm0.022$                        | $-0.117\pm0.019$                 | $0.340\pm0.033$                        |
| 54                       | $-0.419 \pm 0.022$                      | $-0.100\pm0.019$                 | $0.341\pm0.033$                        |
| 56                       | $-0.443 \pm 0.024$                      | $-0.107 \pm 0.019$               | $0.324\pm0.032$                        |
| 50                       | $-0.477\pm0.055$                        | $-0.077\pm0.021$                 | $0.318\pm0.032$                        |
| 50                       | $-0.477 \pm 0.0033$                     | $-0.008 \pm 0.022$               | $0.319\pm0.032$                        |
| 62                       | $-0.573\pm0.047$                        | $-0.028 \pm 0.014$               | $0.300 \pm 0.033$                      |
| 70                       | $-0.362 \pm 0.046$                      | $-0.019\pm0.014$                 | $0.25/\pm0.032$                        |
| 70                       | $-0.601\pm0.047$                        | $-0.010\pm0.014$                 | $0.236 \pm 0.031$                      |
| 74                       | -0.547±0.045                            | $-0.016\pm0.014$                 | $0.209 \pm 0.028$                      |
| /8                       | -0.588±0.047                            | $-0.001\pm0.015$                 | $0.32/\pm0.031$                        |
| 82                       | $-0.619\pm0.048$                        | $+0.019\pm0.016$                 | $0.163 \pm 0.027$                      |
| 86                       | $-0.607\pm0.049$                        | $-0.009\pm0.016$                 | 0.216±0.030                            |
| 90                       | $-0.627\pm0.047$                        | $+0.048\pm0.017$                 | $0.183 \pm 0.030$                      |
|                          | : : : : : : : : : : : : : : : : : : : : | 536 MeV                          |                                        |
| 38                       | $-0.407 \pm 0.071$                      | $-0.194 \pm 0.023$               | 0.430+0.034                            |
| 42                       | $-0.375\pm0.067$                        | -0.187 + 0.022                   | 0.421+0.032                            |
| 46                       | $-0.434 \pm 0.068$                      | $-0.182\pm0.021$                 | $0.430\pm0.032$                        |
| 50                       | $-0.436\pm0.067$                        | $-0.157\pm0.020$                 | $0.430\pm0.032$<br>0.378+0.030         |
| 54                       | $-0.453\pm0.067$                        | $-0.135 \pm 0.019$               | $0.370\pm0.030$                        |
| 56                       | $-0.516\pm0.068$                        | $-0.101\pm0.018$                 | $0.358\pm0.030$                        |
| 58                       | $-0.571\pm0.068$                        | $-0.101\pm0.013$                 | $0.338 \pm 0.030$                      |
| 67                       | $-0.571\pm0.008$                        | $-0.071\pm0.017$                 | $0.335 \pm 0.029$                      |
| 66                       | $-0.013\pm0.001$                        | $-0.079\pm0.012$                 | $0.309 \pm 0.029$                      |
| 70                       | $-0.542 \pm 0.057$                      | $-0.050\pm0.010$                 | $0.233 \pm 0.031$                      |
| 70                       | -0.501±0.000                            |                                  | $0.272 \pm 0.030$                      |
| 70                       | $-0.352\pm0.000$                        | -0.048±0.017                     | $0.213 \pm 0.032$                      |
| /0<br>00                 |                                         | $-0.021\pm0.017$                 | $0.199 \pm 0.033$                      |
| 84                       |                                         | $-0.037\pm0.018$                 | $0.126 \pm 0.033$                      |
| 80<br>90                 | $-0.609\pm0.061$<br>$-0.667\pm0.063$    | $-0.032\pm0.018$<br>+0.002±0.018 | $0.174 \pm 0.035$<br>$0.193 \pm 0.038$ |
|                          |                                         | 14 MeV                           |                                        |
| 29                       | 0.342+0.020                             | 0.260+0.026                      | 0.408 + 0.024                          |
| 10                       | $-0.342\pm0.029$                        | -0.200±0.020                     | $0.498 \pm 0.034$                      |
| 72<br>16                 | $-0.309\pm0.030$                        | $-0.222 \pm 0.020$               | $0.403 \pm 0.031$                      |
| 50                       | $-0.394 \pm 0.031$                      | $-0.202 \pm 0.020$               | $0.489 \pm 0.031$                      |
| 54                       | $-0.457\pm0.033$                        | $-0.109\pm0.018$                 | $0.443 \pm 0.030$                      |
| 54<br>56                 | $-0.400\pm0.034$                        | $-0.139\pm0.014$                 | $0.352 \pm 0.027$                      |
| 50                       | $-0.494\pm0.034$                        | $-0.118\pm0.014$                 | $0.348 \pm 0.027$                      |
| 50<br>60                 |                                         | $-0.122\pm0.012$                 | $0.366 \pm 0.027$                      |
| 02<br>66                 | -U.369±U.U34                            | $-0.115\pm0.012$                 | 0.276±0.025                            |
| 70                       | $-0.5/1\pm0.050$                        | $-0.062\pm0.014$                 | $0.273 \pm 0.027$                      |
| 70                       | $-0.563 \pm 0.052$                      | $-0.0/8\pm0.014$                 | $0.231 \pm 0.026$                      |
| /4                       | $-0.633 \pm 0.053$                      | $-0.051\pm0.014$                 | $0.245 \pm 0.028$                      |
| 78                       | $-0.604\pm0.052$                        | $-0.042\pm0.015$                 | $0.158 \pm 0.028$                      |
| 82                       | $-0.649\pm0.054$                        | $-0.040\pm0.015$                 | $0.123 \pm 0.028$                      |
| 86                       | $-0.629\pm0.051$                        | $-0.007\pm0.016$                 | $0.159 \pm 0.030$                      |
| 90                       | $-0.589\pm0.052$                        | $-0.015\pm0.017$                 | $0.151 \pm 0.031$                      |
|                          | 4                                       | 94 MeV                           |                                        |
| 38                       | $-0.380{\pm}0.068$                      | $-0.249\pm0.028$                 | $0.574 \pm 0.037$                      |
| 42                       | $-0.414 \pm 0.063$                      | $-0.270 \pm 0.025$               | 0.585+0.035                            |
| 46                       | -0.472+0.059                            | $-0.211 \pm 0.022$               | $0.545 \pm 0.033$                      |
| 50                       | $-0.561 \pm 0.057$                      | -0.164 + 0.021                   | 0.518+0.033                            |
| 54                       | -0.543+0.055                            | -0.154+0.020                     | $0.470 \pm 0.033$                      |
|                          | 0.550 + 0.055                           | $-0.138 \pm 0.020$               | $0.465 \pm 0.032$                      |

TABLE III. Values of  $A_{00kk}$ ,  $A_{00ks}$ , and  $A_{00ss}$  at five energies as extracted from the data of Table II.

| $\theta_{c.m.}$<br>(deg) | A <sub>ss</sub>    | A <sub>sk</sub>    | $A_{kk}$            |
|--------------------------|--------------------|--------------------|---------------------|
| 58                       | $-0.563 \pm 0.054$ | $-0.129 \pm 0.020$ | $0.464 \pm 0.031$   |
| 62                       | $-0.585 \pm 0.047$ | $-0.104 \pm 0.015$ | $0.404 \pm 0.029$   |
| 66                       | $-0.642 \pm 0.050$ | $-0.090\pm0.019$   | $0.368 {\pm} 0.031$ |
| 70                       | $-0.683 \pm 0.051$ | $-0.058\pm0.020$   | $0.319 \pm 0.032$   |
| 74                       | $-0.664 \pm 0.051$ | $-0.053\pm0.020$   | $0.272 \pm 0.031$   |
| 78                       | $-0.711 \pm 0.050$ | $-0.003\pm0.021$   | $0.195 \pm 0.031$   |
| 82                       | $-0.687 \pm 0.050$ | $+0.003\pm0.021$   | $0.187 \pm 0.032$   |
| 86                       | $-0.693 \pm 0.050$ | $-0.020\pm0.021$   | $0.191 \pm 0.032$   |
| 90                       | $-0.712 \pm 0.050$ | $+0.024\pm0.021$   | $0.151 {\pm} 0.034$ |
|                          |                    | 445 MeV            |                     |
| 38                       | $-0.409 \pm 0.027$ | $-0.267{\pm}0.021$ | $0.520 \pm 0.030$   |
| 42                       | $-0.440 \pm 0.026$ | $-0.248 \pm 0.015$ | $0.506 \pm 0.026$   |
| 46                       | $-0.480 \pm 0.027$ | $-0.202\pm0.015$   | $0.572 \pm 0.026$   |
| 50                       | $-0.508 \pm 0.027$ | $-0.179 \pm 0.014$ | $0.455 \pm 0.023$   |
| 54                       | $-0.546 \pm 0.028$ | $-0.155\pm0.013$   | $0.450 \pm 0.023$   |
| 56                       | $-0.590 \pm 0.050$ | $-0.117 \pm 0.017$ | $0.423 \pm 0.024$   |
| 58                       | $-0.594 \pm 0.050$ | $-0.098 \pm 0.017$ | $0.405 \pm 0.024$   |
| 62                       | $-0.494 \pm 0.050$ | $-0.129\pm0.018$   | $0.379 \pm 0.026$   |
| 66                       | $-0.568 \pm 0.049$ | $-0.111\pm0.017$   | $0.375 \pm 0.038$   |
| 70                       | $-0.598 \pm 0.050$ | $-0.070\pm0.018$   | $0.281 \pm 0.025$   |
| 74                       | $-0.533 \pm 0.059$ | $-0.082\pm0.018$   | $0.262 \pm 0.029$   |
| 78                       | $-0.743 \pm 0.063$ | $-0.014 \pm 0.019$ | $0.207 \pm 0.031$   |
| 82                       | $-0.635 \pm 0.061$ | $-0.034{\pm}0.019$ | $0.195 \pm 0.031$   |
| 86                       | $-0.681 \pm 0.062$ | $-0.020\pm0.019$   | $0.132 \pm 0.031$   |
| 90                       | $-0.673 \pm 0.064$ | $+0.020\pm0.019$   | $0.116 {\pm} 0.034$ |

TABLE III. (Continued.)

494 MeV with set V having been measured twice, once with an accelerated beam and once with a scattered beam at the latter energy. At 445 MeV, we had eight sets, namely, sets I, II, IV–IX. Sets VI and VII had more or less the same combination as sets II and V, respectively, but some normalization problems between the two were observed. The reasons for the discrepancy, after a careful and detailed analysis was found to be some instabilities in a few runs of the former sets. Corrections were made, after which a good agreement was found. An average  $\chi^2$ of 0.4 over the eight sets of data was obtained.

The results for  $A_{00kk}$ ,  $A_{00ks}$ , and  $A_{00ss}$  as a function of  $\cos^2\theta_{\rm c.m.}$  for the various energies are shown in Fig. 5 and Table III, along with  $A_{00nn}$  results from our earlier experiment (further measurements on  $A_{00nn}$  made recently at 577 MeV were added to these data). The dashed curves are the predictions of the Saclay-Geneva phase shifts and the solid line shows the changes in the predictions after these

results were admitted into this phase-shift program. Our results verify the symmetry constraints at  $\theta_{c.m.} = 90^\circ$ , namely,  $A_{00nn} - A_{00ss} - A_{00kk} = 1$  and  $A_{00ks} = 0$  at all energies.

A comparison of our  $A_{00kk}$  values at  $\theta_{c.m.} = 90^{\circ}$  with the measurements of Argonne<sup>15</sup> and Los Alamos<sup>16</sup> are shown in Fig. 6. For this, we have fitted our  $A_{00kk}$  values with a polynomial of the type  $(a + b \cos^2 \theta_{c.m.})$  to smooth the data and the results are shown in Table IV. The agreement of the  $A_{00kk}$  values with the data of Argonne and Los Alamos at all energies is reasonably good.

Recently, we have measured the polarization parameter P, the two-spin-polarization transfer parameters  $D_{n0n0}, K_{n00n}$  and  $D_{s'0s0}, D_{s'0k0}$ , and the three-spin parameters  $M_{s'0sn}, M_{s'0kn}$  for p-p elastic scattering between 34° and 118° center of mass at 579 and 445 MeV (Refs. 17 and 18, respectively), thus totaling 15 observables (between 38° and 90°) and 11 observables (between 38° and 62°) with the

TABLE IV. Values of  $A_{00kk}$ ,  $A_{00ss}$ , and  $A_{00nn}$  at  $\theta_{c.m.} = 90^{\circ}$ , extrapolated from a fit  $(a + b \cos^2 \theta_{c.m.})$  over the values of the neighboring  $\theta_{c.m.}$  angles. Total error is given by total error=statistical error + quadratic addition of systematics errors and shown in parentheses.

| Energy<br>(MeV) | $A_{00ss} \pm \Delta A_{00ss} \text{ at}$<br>$\theta_{c.m.} = 90^{\circ}$ | $A_{00kk} \pm \Delta A_{00kk}$ at<br>$\theta_{\rm c.m.} = 90^{\circ}$ | $\begin{array}{c} A_{00nn} \pm \Delta A_{00nn} \text{ at} \\ \theta_{\text{c.m.}} = 90^{\circ} \end{array}$ | Symmetry relations<br>at 90° c.m.<br>$A_{nn} - A_{ss} - A_{kk} = 1$ |
|-----------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 445             | $-0.661 \pm 0.022(0.038)$                                                 | 0.150±0.015(0.017)                                                    | 0.499±0.019                                                                                                 | 1.01 ±0.032(0.054)                                                  |
| 494             | $-0.713 \pm 0.021(0.030)$                                                 | $0.167 \pm 0.016(0.021)$                                              |                                                                                                             |                                                                     |
| 514             | $-0.636 \pm 0.020(0.045)$                                                 | $0.140 \pm 0.015(0.018)$                                              | $0.495 \pm 0.014$                                                                                           | $0.991 \pm 0.029(0.051)$                                            |
| 536             | $-0.625 \pm 0.025(0.040)$                                                 | $0.159 \pm 0.017(0.019)$                                              | $0.534 \pm 0.012$                                                                                           | $1.00 \pm 0.033(0.050)$                                             |
| 577             | $-0.611 \pm 0.018(0.036)$                                                 | $0.187 \pm 0.015(0.026)$                                              | $0.555 \pm 0.021$                                                                                           | $0.980 \pm 0.031(0.054)$                                            |



FIG. 8. Transversely polarized cross-section differences  $(\sigma_{1 \text{ tot}} = -\Delta \sigma_T/2)$  and their elastic content.

spin-correlation parameters presented in this article. These observables, together with the differential cross section, have allowed a model-independent determination of the scattering matrix.<sup>19,20</sup> There was a very good compatibility between the spin-correlation parameters and the other parameters used in these analyses.<sup>20,21</sup>

The observed structure in the *p*-*p* total-cross-section differences  $(\Delta \sigma_L)$  was the essential evidence in favor of dibaryon resonances<sup>1,2,22</sup> and the preliminary data from the Geneva-Saclay collaboration has confirmed the significant structure observed by the Argonne group in the overlapping energy region.<sup>4</sup> Still there is a great controversy over the interpretation of these results. It has been suggested that this structure could be due to strongly inelastic dibaryon resonances, but the case is yet unproven. An equally likely explanation is that the  $\Delta(1230)$  doorway state in  $\pi d$  and strong inelastic thresholds in the *pp-NN* $\pi$  are responsible for the oscillations in  $(\Delta \sigma_L)$  and  $(\Delta \sigma_T)$ .<sup>23</sup>

We have estimated the elastic contribution for the trans-

TABLE V. Estimation of the elastic content of the longitudinally and transversely polarized cross-section differences  $\Delta \sigma_L$ and  $\Delta \sigma_T$ . Errors are statistical only.

|        | Elastic           | Elastic           |
|--------|-------------------|-------------------|
| Energy | $\Delta \sigma_L$ | $\Delta \sigma_T$ |
| (MeV)  | (mb)              | (mb)              |
| 577    | -14.7±0.7         | 0.11±0.14         |
| 536    | $-14.3\pm0.4$     | $-1.20\pm0.10$    |
| 514    | $-14.0\pm0.3$     | $-1.43 \pm 0.08$  |
| 494    | $-15.6\pm0.3$     | $-1.53\pm0.08$    |
| 445    | $-15.9{\pm}0.4$   | $-0.80 \pm 0.20$  |

versely and longitudinally polarized cross-section differences by using the relation below:

$$\sigma_{1\text{tot}} = -\frac{1}{2}\pi \int_0^\pi (d\sigma/d\Omega) (A_{00nn} + A_{00ss}) \sin\theta \,d\theta , \qquad (23)$$

$$\Delta \sigma_L = -2\pi \int_0^{\pi} (d\sigma/d\Omega) A_{00kk} \sin\theta \, d\theta \;. \tag{24}$$

The spin-correlation parameters presented in this paper are used to calculate the elastic part of  $\Delta \sigma_L$  and  $\Delta \sigma_T$ . Our measurements of the elastic channel which cover the angular range between 36° and 90° allow a good approximation of these integrals, since the remaining solid angle between 0° and 36° is only  $\simeq 19\%$  of the total solid angle. Moreover, for the range between 0° and 36°, we have used the predictions of phase-shift analysis (PSA's) which included *D*, *R*, and *A* parameters at small angles.<sup>24</sup> We present the results of these calculations along with the predictions of the Saclay-Geneva PSA for  $\Delta \sigma_L, \sigma_{1tot}$  (total, elastic) in Figs. 7 and 8 and Table V.

## **ACKNOWLEDGMENTS**

We would like to thank Dr. D. Besset and the many members of the Swiss Institute for Nuclear Research without whom this experiment would have been impossible. We would like to acknowledge the support and continued interest of Professor J. P. Blaser, Director of SIN. Special thanks go to Professor R. Mermod for his constant encouragement during this research. We are indebted to the technical staff of the University of Geneva for their invaluable help and outstanding technical assistance. This work was supported by the Swiss National Science Convention Foundation and the Intercantonale d'Enseignement du Troisième Cycle de la Physique en Suisse Romande.

- \*Present address: High Energy Physics Lab., Harvard University, Cambridge, MA 02138.
- <sup>†</sup>Present address: Physics Department, University of California, Irvine, CA 92717.
- <sup>1</sup>I. P. Auer, E. Colton, H. Halpern, D. Hill, H. Spinka, G. Theodosiou, D. Underwood, Y. Watanabe, and A. Yokosawa, Phys. Lett. <u>67B</u>, 113 (1977).
- <sup>2</sup>I. P. Auer, A. Beretvas, E. Colton, D. Hill, K. Nield, H. Spinka, D. Underwood, Y. Watanabe, and A. Yokosawa, Phys. Lett. <u>70B</u>, 475 (1977).
- <sup>3</sup>I. P. Auer, E. Colton, H. Halpern, D. Hill, H. Spinka, and G. Theodosiou, D. Underwood, Y. Watanabe, and A. Yokosawa, Phys. Rev. Lett. <u>41</u>, 354 (1978).
- <sup>4</sup>E. Aprile, J. Bystricky, J. Deregel, C. Eisenegger, J. M. Fon-

taine, E. Heer, R. Hess, F. Lehar, W. Leo, S. Mango, Y. Onel, F. Perrot, D. Rapin, J. Vrzal, and J. Yonnet, in *High Energy Physics with Polarized Beams and Polarized Targets*, proceedings of the International Symposium, Lausanne, Switzerland, 1980, edited by C. Joseph and J. Soffer (Birkhauser, Basel, Switzerland and Boston, 1981).

- <sup>5</sup>M. L. Marshak, in *High Energy Physics with Polarized Beams and Polarized Targets*, proceedings of the International Symposium, Lausanne, Switzerland, 1980, edited by C. Joseph and J. Soffer (Birkhauser, Basel, Switzerland and Boston, 1981).
- <sup>6</sup>R. Vinh-Mau, in Nucleon-Nucleon Interactions—1977, Proceedings of the Second International Conference on Nucleon-Nucleon Interactions, Vancouver, edited by Harold Fearing, David Measday, and Ada Strathdee (AIP, New

York, 1978).

- <sup>7</sup>D. Besset, Q. H. Do, B. Favier, R. Hausammann, E. Heer, R. Hess, C. Lechanoine-LeLuc, W. Leo, D. Rapin, D. W. Werren, Ch. Weddigen, J. M. Cameron, S. Jaccard, and S. Mango, Nucl. Phys. <u>A345</u>, 435 (1980).
- <sup>8</sup>D. Besset, Q. H. Do, B. Favier, L. G. Greeniaus, E. Heer, R. Hess, C. Lechanoine-LeLuc, D. Rapin, D. W. Werren, M. Daum, S. Mango, E. Steiner, G. Vecsey, and C. Weddigen, Nucl. Instrum. Methods <u>184</u>, 365 (1981).
- 9S. Mango, O. Runolfsen, and M. Borghini, Nucl. Instrum. Methods <u>72</u>, 45 (1965).
- <sup>10</sup>D. Besset, Ph.D. thesis No. 1882, Université de Geneve, 1978 (unpublished).
- <sup>11</sup>J. Bystricky, F. Lehar, and P. Winternitz, J. Phys. (Paris) <u>39</u>, 1 (1978).
- <sup>12</sup>E. Aprile, R. Hausammann, E. Heer, R. Hess, C. Lechanoine-LeLuc, W. Leo, Y. Onel, and D. Rapin, Topical Conference on the Application of Microprocessors to High Energy Physics Experiments, CERN Yellow Report No. 81-07 (unpublished), p. 124.
- <sup>13</sup>R. Hausammann, E. Heer, R. Hess, C. Lechanoine-LeLuc, W. Leo, Y. Onel, D. Rapin, and S. Mango, in *Proceedings of the Eighth International Conference on High Energy and Nuclear Structure*, edited by D. F. Measday and A. W. Thomas (North-Holland, Amsterdam, 1980).
- <sup>14</sup>J. Bystricky, F. Lehar, and C. Lechanoine-LeLuc, Saclay Report No. 79.01, 1979 (unpublished).
- <sup>15</sup>J. Bystricky and F. Lehar, No. 11-1 of Physics Data (Fachin-

formationzentrum, Karlsruhe, 1978).

- <sup>16</sup>S. J. Stuart, Los Alamos Report No. LA-9504-T, 1982 (unpublished).
- <sup>17</sup>E. Aprile, C. Eisenegger, R. Hausammann, E. Heer, R. Hess, C. Lechanoine-LeLuc, W. Leo, Y. Onel, D. Rapin, and S. Mango, in *High Energy Physics with Polarized Beam and Polarized Targets* (Ref. 5).
- <sup>18</sup>E. Aprile-Giboni, G. Cantale, R. Hausammann, E. Heer, R. Hess, C. Lechanoine-LeLuc, W. R. Leo, S. Morenzoni, Y. Onel, D. Rapin, and S. Mango, in *High Energy Spin Physics—1982*, proceedings of the Fifth International Symposium, Brookhaven National Laboratory, edited by G. M. Bunce (AIP, New York, 1983).
- <sup>19</sup>E. Aprile, R. Hausammann, E. Heer, R. Hess, C. Lechanoine-LeLuc, W. Leo, S. Morenzoni, Y. Onel, D. Rapin, and S. Mango, in *High Energy Spin Physics—1982* (Ref. 18).
- <sup>20</sup>E. Aprile, C. Eisenegger, R. Hausammann, E. Heer, R. Hess, C. Lechanoine-LeLuc, W. Leo, S. Morenzoni, Y. Onel, D. Rapin, and S. Mango, Phys. Rev. Lett. <u>46</u>, 1047 (1981).
- <sup>21</sup>R. Hess, in *High Energy Physics with Polarized Beams and Polarized Targets* (Ref. 5).
- <sup>22</sup>N. Hoshizaki, Prog. Theor. Phys. <u>60</u>, 1790 (1978).
- <sup>23</sup>D. V. Bugg, in *High Energy Physics with Polarized Beams and Polarized Targets* (Ref. 5).
- <sup>24</sup>D. Besset, Q. H. Do, B. Favier, L. G. Greeniaus, R. Hess, C. Lechanoine, D. Rapin, D. W. Werren, and C. H. Weddigen, Phys. Rev. D <u>21</u>, 580 (1980).
- <sup>25</sup>W. Grein and P. Kroll, Nucl. Phys. <u>B137</u>, 173 (1978).