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Quantum noise and active feedback

William Bialek*
Department of Biophysics and Medical Physics, University of California, Berkeley,

Berkeley, Calrfornia 94720
and Biology and Medicine Di vision, Lawrence Berkeley Laboratory,

Berkeley, California 94720
(Received 20 June 1983)

Quantum mechanics limits the noise performance of linear amplifiers, and these limits, in turn, restrict
the effects of active feedback on the noise level of any device which uses feedback from such an amplifier.
I present a simple quantum-mechanical characterization of feedback, and use this method to determine the
limiting noise levels of active filters and oscillators. The results clarify the role of the amplifier in the mea-

surement process and illustrate the limits of a Langevin treatment of quantum noise.

An amplifier may be described as a device which trans-
forms some set of input modes into a set of output modes.
Quantum mechanics demands that this transformation be
unitary, and this implies a certain minimum noise level for
any linear amplifier. In a common application of linear am-
plifiers, active feedback, the output modes are coupled back
to the input modes, and several interesting questions arise
regarding noise in such coupled systems:

(1) Active feedback can be used to synthesize reactive
components (e.g. , an effective inductance) and thereby
change the resonant frequency of a detector. To which fre-
quency does the quantum noise (nominally =h'cu) corre-
spond?

(2) Active feedback can narrow the bandwidth of a detec-
tor and thereby reduce the effects of thermal no!se; this
may be described as lowering the effective temperature of
the detector. ' In the limit that the effective temperature is
lowered below Acujkhh, do we recover the appropriate quan-
tum noise?

(3) If the gain of the amplifier is increased, the system
becomes unstable and oscillates. What are the quantum
limits on the stability of these oscillations?

In this Brief Report I show how the unitarity constraints
can be applied self-consistently to the coupled modes of a
system with active feedback. The approach is simple, and
provides some simple answers to the questions posed above.

Consider a simple harmonic oscillator with Hamiltonian

H =tee(a a + —) +iI (a —a) +Hhb

where Hhb is the Hamiltonian of a heat bath and I is a
coordinate of the bath which couples to the oscillator and
generates a damping constant y, some method of treating
dissipation is essential for the analysis which follows, and
this approach is due to Senitzky. Perturbation theory on
the oscillator-bath coupling leads to the equations of motion
(with ht =1)

where 5F and hF are quantum Langevin operators5 with
properties

Jr dre'"'(5F'(t)BF(t —r)) =2yv(A) (3a)

f dre'"'(5F(t)5F (t —r)) =2y[ v(Q) +1] (3b)

and

(5F(t) 5F(t') ) = (5F'(t) 5F'(t')) =0, (3c)

while the dynamics of the amplifier itself are described by

b(t) = dt'M(t —t')a(t') +N(t) (Sa)

b'( t) = „fdh'M'(t —t') a'(t') +N'(t)

where N and N are the operators which express the added
amplifier noise. From these equations, it may be seen that

(sb)

da(t)
dt

= —isa (t) —ya(t) —ig dt'M(t —t') a (t')

+SF(t) —igN(t) (6a)

da'(t) = i~a (t) ya (t)+ig J~ d—h'M (t —t')a (t')
dt

+ 5F"( t) —igN'( t) (6b)

For definiteness, let us imagine that our model Hamil-
tonian describes a system of mass m and stiffness ~, so that
the displacement

where v(A) =(e —1) . If the output modes of the
tO/k~ T

amplifier are created by b and annihilated by 6, then to
simulate active feedback we must add to the Hamiltonian a
term

Hr„~b„~ = g(b a + a b)

da = —i cuba —ya + SF
dt

da = —I'cuba —ya +5F
dt

(2a) q = [ht'/2(mK)' ]' (a +a)
while an external force F adds a term HF= —Fq to the
Hamiltonian. Then it is straightforward to show that Eqs.
(6) imply a response function

q(&) i ( ),h2 1

F(ft) ' 0+cu+gM(II) —iy
I

0 —a& —gM (0) —iy
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where q(O) =f dt e'"'q(t), etc. , while the Langevin terms in Eqs. (6) correspond to an effective noise force with spectral
density

Sr' (0) =2t(m~)'t2 dt e'n'[ {SF(t)5F(0)) + {BF(t)SF(0)) +g (N (t)N(0)) +g (N(t)N (0))]
It may be verified from Eqs. (3) that the force noise in the absence of feedback is given by

Sr (0) =2h(mK)' J dt e'"'[ (8F (t) SF(0) ) + {5F(t)SF (0) ) ] =4y(ma)' [2v( 0) +1]

in accord with the fluctuation-dissipation theorem.
The correlation functions {N (t)N(0)) may be bounded

by applying the quantum-mechanical consistency condition
that the commutation relations of the input and output
modes be the same:

[b'(t), b(t')] =[a'(t),a(t')] (10)

6Sr'"( II ) = ( m K ) 't'ti ( i0 —i0') '
2m

(16)

Application of this constraint to Eqs. (5) is simplified by
passing to the Fourier representation; in this representation
one obtains

[N'(n), N(Q')]=[I —M (&)M(II')][a (II),a(Q')]
(11)

Because all the noise processes are stationary, we must have

{[a'(Q),a(Q')]) = C( fl)27r5(Q —II')
The function C(Q) will be peaked near resonances of the
response function in Eq. {7), and will be concentrated in a
range of frequencies about these resonances comparable to
their bandwidths. C( 0) must also be normalized to

f (d II/2m) C( 0) =1 to preserve the equal-time commuta-
tor [a(t),a'(t)] =1. These relations, together with the
"generalized uncertainty principle"

—,
' (z'z +a~') « —,

'
l {[~',z])l,

imply that the spectral density of the amplifier noise ¹is
s,(n) « —,'l1 M'(n)—M(n)llc(n)l . (13)

From Eq. (8) we then obtain the effective spectral density
of the force noise,

S,'"'(n) = S,"'(n)
+(mK)''lilc(n)lg'l1 —M'(n)M(n)l . (14)

In the limit of a high-gain amplifier (lMl » 1), we find
that the added noise is just

s'F( )II=(mx)' 'iilc(n) llgM(n)l' . (»)
This is a particularly simple result because, from Eq. (7),
gM is just the "self-energy term" in the response function;
that is, gM determines the change in the frequency response
of the system when the feedback is applied. We thus arrive
at the central conclusion: The fninimum noise added upon
feedback from a high gain amplifier -is uniquely related to the
change in frequency response achieved by the feedback.

We can now answer the three questions outlined at the
outset:

(1) If we want to shift the resonance frequency from i0 to
0i', then we must have lgMl = loi —cu'l, so that the
frequency-integrated force noise is

I

assuming that the resonance in the presence of feedback is
reasonably narrow and making use of the normalization
condition on C. Thus we see that if feedback shifts the res-
onance down in frequency by a large amount, then the force
noise added by the feedback amplifier becomes

A ( m K) QJ = Kt( K/m ) ', independent of the resonance
frequency in the presence of feedback. Had we tried to
detect the signal at co'((m in the absence of feedback,
there would have been a quantum displacement noise
(zero-point motion) of (ti/2K)(K/m)' ', while a force F at
oi' would produce a displacement F/~, for an effective force
noise of (~h/2)(K/m)' . It is apparent that the quantum
noise in the amplifier "puts back" all of this quantum noise
which was present before the feedback, and which was
(nominally) removed by going to a much lower operating
frequency. In fact the amplifier results in net doubling of
the quantum noise which was present iri the absence of
feedback, and this factor of 2 is discussed by Caves. '

(2) If we want to narrow the bandwidth of the detector
from y to y —q, then we must have l gM l

= q The.
frequency-integrated force noise from the amplifier is there-
fore = (m~)'t2t7i . Again we can compare to the situation
in the absence of feedback, where the effective quantum
force noise for a signal at resonance is (tiy /2)(me)'i, so
that in the narrow-band (7t y) limit the amplifier noise
once again "puts back" twice the quantum noise which it
filtered out.

(3) In the "bandwidth narrowing" configuration, instabil-
ity results as soon as vj ~ y. Beyond this point the system is
not a filter but an oscillator, emitting some stable signal of
frequency ao and bandwidth Am. The effective spectral den-
sity of the force noise contributed by the amplifier which
powers the oscillator is then SF «(h'y /AQ)(mK)' . If the
oscillator is consuming a power P, then it is as if there were
a force F,rr= (ymP)' ' across the dissipative element which
determines the bandwidth y in the absence of feedback. If
there were no noise, then the zero crossings of the effective
force would simply be spaced by the period of the oscillator,
but the finite noise force results in a jitter in the timing of
these zero crossings, and hence a finite bandwidth of the
oscillator. It is easy to see that Ace/i0=(Srhoi/F, ff) so
that the quantum limit to oscillator stability is given by
Aco/cu «{tickly/P)'t2. Th'is result may be understood as fol-
lows: The energy E stored in the oscillator is dissipated in a
mean time y ', which means that E =P/y; thus the fre-
quency stability is given by hc0/i0«(ta&/E)'t2. But the fre-
quency stability is just a measure of the phase noise,
b, i0/F0=4@, so that we obtain 4P «N 'i2, where N is the
number of quanta stored in the oscillator; this of course is
precisely a factor of 2 more noise than the "standard quan-
tum limit, " 5@«2 N ' 2. Once again the effect of the am-

plifier is simply to double the quantum noise, even when it
serves to qualitatively change the dynamics of the system
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from small amplitude stability to instability.
The physical picture which emerges from this analysis is

straightforward. Active feedback can be used to manipulate
the frequency response of a system, and thereby improve
the ratio of signal to thermal noise. Nominally we expect,
from a Langevin approach, that these changes in frequency
response could also reduce the effects of quantum noise,
but if this were true we could use active feedback to circum-
vent the quantum limits to measurement. In fact, the self-
consistent inclusion of the quantum limit on amplifier noise
corrects this error, and yields the same quantum limits as
would be obtained if the amplifier folio~ed the detector
with no feedback. Thus the limits to measurement imposed
by the need to amplify a quantum signal up to the classical
level are the same whether the amplifier is used in series
with- the detector or as an essential part of the detector (in
feedback), and this is as it must be.

Similarly, a Langevin approach would suggest that, as the
threshold of oscillation is approached and the bandwidth of
the system narrows to zero, all the noise would be filtered
away and the frequency stability of the oscillation could be
infinite. Again this would conflict with the uncertainty
princple, which dictates a minimum phase noise, and again
the self-consistent inclusion of the amplifier noise rectifies
this error.

These conclusions emphasize that, although quantum
noise may sometimes be effectively described by a Langevin

"force operator, " one must be careful in applying this ap-
proach to the quantum noise of amplifiers. Essentially this
is because the quantum noise of amplifiers arises from a
consistency condition between input and output-
unitarity —and the apparent Langevin force changes when-
ever either input or output mode dynamics are changed.
This may be contrasted with the Langevin forces describing
thermal noise, which arise from coupling between the sys-
tem and the heat bath, and therefore change only if this
coupling is changed.

In practical terms, these results imply that amplifiers can
be used in lieu of refrigerators —we can take many broad-
band detectors and apply feedback to synthesize narrow-
band detectors, thereby reducing the effects of thermal
noise —but that, as in normal refrigerators, we can never
freeze out the quantum fluctuations whose presence is dic-
tated by the uncertainty principle.
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