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Instability of strongly charged sources in classical scalar electrodynamics
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We solve the equations of motion of classical scalar electrodynamics for a fixed source in elec-
tromagnetic interaction with a scalar field. We find that above some critical coupling strength there
exist field configurations corresponding to a partial screening of the external source, which have a
lower energy than the pure Coulomb (with zero scalar field) solution. Thus, in classical scalar elec-
trodynamics, there is an upper limit on the charge of stable external sources.

I. INTRODUCTION II. CLASSICAL FIELD EQUATIONS

The problem of charge screening of an external source
in electromagnetic interaction with a scalar field was re-
cently studied by Klein and Rafelski' and by Mandula in
the case where the scalar particles are massless. While
Mandula solved exactly the classical field equations, Klein
and Rafelski derived self-consistent equations from a
mean-field approximation to the quantum-field-theoretic
problem. Physical interest in this problem is twofold.
First, it provides a theoretical model to study pion conden-
sation due to a priori known strong (albeit long-range
Coulomb) interactions and may be of interest in connec-
tion with the problem of pion condensation in nuclei due
to strong nuclear forces. Second, it has been suggested
that this problem could be relevant to the question of
quark confinement: the unobservability of quarks
would then result from the instability of one-particle
quark states. Our own motivation for the study of this
problem lies more precisely in the question of stability of
strongly charged nuclei. Specifically, we wish to inves-
tigate how the existence of massive charged scalar parti-
cles affects the stability of nuclei, taking only electromag-
netic interactions into account. Like Mandula, we have
chosen to solve exactly the classical field equations of
(massive) scalar electrodynamics for an external source in
electromagnetic interaction with a scalar field. Although
our results cannot be directly compared to those of Klein
and Rafelski, as the latter include a pion self-interaction
and use other field-strength parameters, we nevertheless
also find that, beyond some critical value of the external
charge, partial screening of the external source (pion con-
densation) occurs. That critical value is exactly the value
for which the Klein-Gordon equation for a scalar particle
of mass m in the external Coulomb field of the source
yields bound eigenstates of energy ~= —m. These
partial-screening configurations have a lower energy than
the pure Coulomb (with zero pion field) configuration.
This is to be contrasted with Mandula's results for mass-
less pions, where total screening of the external charge
occurs. We thus find that classical electrodynamics
indeed puts an upper value on the charge of stable strongly
charged sources.

Our paper is organized as follows. In Sec. II, we write
the nonlinear classical equations of motion for a Coulomb
source in electromagnetic interaction with a charged scalar
field. Section III is devoted to a numerical study of these
equations and to a discussion of our results.
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where p(r) is a static prescribed charged distribution corre-
sponding to a total charge Ze distributed on a shell of ra-
dius rp, and working in the radiation gauge

V.A=O,

one can see that Eqs. (2) and (3) have the trivial Coulomb
solution:

eZ
Ao —— (r &ra),4~r

/=A=0 . (7)

The energy density Too corresponding to W from Eq. (1}
is given by
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We now wish to show that Eqs. (2) and (3) have solutions
with P&0 whose corresponding energy is lower than the
energy corresponding to solutions (6) and (7) above some
critical Z value.

As in Ref. 2 we look for spherically symmetric solu-

The Lagrangian density W describing the interaction of
a charged boson field P with the electromagnetic field A&

in the presence of an externally prescribed current j&"' is
given by

W = (B„P ieA„—Q)(B"P*+ieA "P*) mPP*—
——,'(B„A")(8"A }—ej„'"'A" .

From (1), one gets the following equations of motion (we
take a —=e2/4m. = 1/137):
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tions of the form

P(r) =e'"'P(r),

Wo—=Wo(r),

A=0 .

(9)
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Upon writing

eAO+co =
r
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Eqs. (2), (3), and (8) become, respectively,

dg f mr-+ g=0,
dr r 2

df g aZf= —— 5(r —rp),
dr r rp

(12)

(13)

{14)

Zcrit
li

200
I I l I I I

0 400 600 800
z

FIG. 1. Variation of the ratio Q/Z as a function of Z; eQ is
the effective charge of the source while eZ is the bare charge of
the fixed source (i.e., in the absence of any scalar field). The
other curve gives the ratio E/E, as a function of Z; E is the en-

ergy of the field while E, is the energy associated with a pure
Coulomb solution. Both curves show that for Z ~ Z,„,=290 the
partially screened solutions (Q &Z) have lower energy than the
Coulomb solution.

E =4' f Tppr dr . (16)

Note that Eqs. (13) and (14) do not really contain two in-
dependent parameters m and rp. The only (dimensionless)
parameter is actually mrp. This can be seen by using
x =mr as a new variable in Eqs. (13) and (14).

If we drop the nonlinear term g in (14), then the radial
Klein-Gordon equation is recovered from Eq. (13):

2

+(eAo —co) —m g =0,2 2

dr
(17)

The total energy E associated with Too is of course given
by

that we expect a total breakdown of the validity of the
one-particle interpretation of the Klein-Gordon equation
for a Z value =—Z,„., such that co= —m '. It is beyond the
scope of this paper to study whether these solutions corre-
spond to an absolute minimum of the field energy.

III. RESULTS AND DISCUSSION

As is well known, ' the Klein-Gordon equation (17) with
A p given by (6) has complex eigenvalues for Z )Z,

Z = 524
3

where Ap is given by Eq. (6).
Guided by the corresponding analysis in the massless

case and our knowledge of the solutions to the linearized
Klein-Gordon equation, we look for solutions to (13) and
(14) satisfying the boundary conditions

eA,

Couiomb

f = mr+ag, —
l' —+ oo

g = Cexp[ —(Smagr)'~ ],P~ oo

f =fir
r~p

g =ger,
r~O

(19)

(21)

where f~, g, , Q, and C are arbitrary constants to be deter-
mined, Q being the effective charge of the source. Equa-
tion {14)also requires

rp
(22)

Continuity of f;g,g together with (22) will determine the
value of the four arbitrary constants.

Our choice of co= —m in (11) is determined by the fact

C) 2 4 6 8
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FICx. 2. Shape of the fields f and g in configuration space
(lower part) for Z =524 ( & Z, , ). Their asymptotic behavior is
as in Eqs. (18)—(21). The upper part gives the electric potential
field A p, which is related to f through relation (11) (solid curve).
The electric potential field corresponding to the pure Coulomb
solution [Eq. (6)] is also shown for comparison. The scale on the
top gives the distance r in pion Compton wavelength units.
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Z & Z,„., =290. The remarkable feature of these solutions
is that they correspond to a partial screening of the exter-
nal source, as shown by curve 1, in contrast with the cor-
responding result for massless pions, where total screening
occurs. Note that our result is in qualitative agreement
with that of Klein and Rafelski' who used a coherent-state
approximation to the quantum-field-theoretic problem.
Figure 2 illustrates the behavior of the solutions f and g
for Z =524& Z,„,. We note that f is practically linear in
a wide range of r. In Fig. 3 we illustrate the importance
of various components to the field energy E by decompos-
ing T in the following way:

Too=Too +T'oo +Too

where

~~X~m ~ I
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FIG. 3. Behavior of the various components to the energy
density Too [Eqs. (25)—(27)], as a function of r, for Z =524. The
energy density corresponding to the pure Coulomb solution [Eq.
(6)] is shown for comparison. It vanishes for r & ro. 2 2 2

T~~t f g —m4 2

(26)

(27)

Specifically, solving (17) in a standard way with m equal
to the pion mass = 139.6 MeV, we find

Zc„.t =290 (23)

fo«o —0.8 fm.
Our choice of ro turns out to be numerically convenient

and has no deeper physical meaning.
Figure 1 shows our results for the total energy E of the

field as a function of the fixed charge Z of the external
source, together with the variation of the effective total
charge Q of the field (including the pion field) as a func-
tion of Z. As stated in Sec. II, the only parameter is mro,
so that the ratio E/E, in Fig. 1 also holds for values of ro
other than the one quoted, provided m is changed in such
a way that mro remains constant. One can see that Eqs.
(13) and (14) have solutions with g&0 that have lower en-
ergy than the Coulomb solution (g =0) for

This decomposition ensures that for Z =0 T oo" is the free
pion field energy density, while, for g =0, Too is the ener-

gy density of the free electromagnetic field. Too then
stands for the interaction energy density.

To conclude, we have found that classical massive sca-
lar electrodynamics with a fixed external source has solu-
tions corresponding to a partial screening of the source for
values of the external charge larger than some critical
value. These solutions have lower energy than the
Coulomb solution, thus implying that, within classical
electrodynamics, there exists an upper limit on the charge
of stable external sources.
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