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Non-Abelian solutions of Yang-Mills equations in the strong-coupling limit
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Using the 1/g expansion we find a new class of non-Abelian solutions to the Yang-Mills
equations with sources in the strong-coupling limit. They appear to have a nontrivial topol-
ogy and they can also be viewed as the g ~ oo limit of a wider class of potentials. The exter-
nal source, which was chosen to have a one-maximum strong-coupling limit, has to have a
two-maxima weak-coupling distribution to make the solution exact for an arbitrary value of
the coupling constant.

I. INTRODUCTION

There are several reasons to investigate the classi-
cal Yang-Mills (YM) theory: a possibility of semi-
classical approximations for strong couplings, ' a
common belief that topologically nontrivial solu-
tions to the YM equations can survive after quanti-
zation, or, last but not least, our ignorance about
the nonperturbative region of quantum chromo-
dynamics (QCD).

However, even the classical system of the coupled
Yang-Mills-Dirac equations is highly complicated
and little is known about their solutions. For that
reason attention has been paid to solutions of the
YM equations with c-number sources.

The source may provide an approximate descrip-
tion of a system to which the YM fields are coupled,
and whose dynamics may be ignored. Hence, it is
obvious that the external source and potential can be
complicated functions of the space-time variable and
the coupling constant g.

A significant step in classical chromodynamics
(CCD) was taken by Mandula who showed that the
Abelian solutions to the YM equations becomes un-
stable above the critical value of the coupling con-
stant g =g,„,= 1 and, because of it, they seem to be
physically irrelevant.

Some of the new bifurcating solutions were inves-

tigated numerically and in a vicinity of the bifurca-
tion point. Nevertheless, even CCD remains un-

known in the strong-coupling region. We can only
guess that in this region the most nonlinear (cubic)
terins in the YM equations become dominant.
Hence, owing to the nonlinearity, we expect the YM
potentials to have a nontrivial topology and to be
essentially non-Abelian in this region.

Recently, the 1/g expansion was proposed to in-

vestigate CCD for large values of the coupling con-

stant. It was also shown that the equations for
arbitrary-order coefficients in this expansion are
gauge covariant order by order and they imply the
gauge-invariant total and local screening effect in
the strong-coupling limit: g~ oo.

Here, using the proposed expansion, we investi-
gate the strong-coupling limit of CCD. In the fol-
lowing section the 1/g expansion is introduced and
briefly discussed. In Sec. III a new class of solutions
to the YM equations is found. Section IV is devoted
to the analysis of special solutions from the new
class. They appear to have a non-Abelian holonomy
group and nontrivial topology. The last section con-
tains final remarks In th.e Appendix a class of solu-
tions to the YM equations, dual to those of Sec. III,
is briefly discussed.

II. STRONG-COUPLING EXPANSION

The YM equations are

&t'F„„+gA"XF„„=gj „,
where the field strength tensor is defined by

F„„—:B„A„—B„A„+gA„)&A„.

(2.1)

(2.1')

We are interested in the YM potentials and
sources with a finite strong-coupling limit. Hence,
in this limit, they are to have the form

A„(x,g)=O(g ) as g~ao,
where

(2.2)

cx(0 . (2.3a)

Let us notice that to make the most nonlinear (cu-
- bic) terms in the YM equation dominant we also

have to impose, according to naive power counting,
the following lower limit for a:
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—1&o, . (2.3b)

A„(x,g)= g A„(x)g ", (2.4)

where

In order to satisfy the conditions (2.3), potentials
(and sources) should have, as functions of g, the gen-
eral foiixi

~1 —+p
where j„is not arbitrary if j„is given. As can be
seen from (2.10) the necessary correction to the
source is of order 1/g and it vanishes in the g —+ oo

limit.
In the following section a class of solutions to

(2.8) with the above twofold interpretation will be
given and adequate corrections to the source will be
computed.

a =—maximum I a„ I (2.5) III. NEW STRONG-COUPLING SOLUTIONS

should satisfy (2.3).
We choose a=0 and a„= n, as in—Ref. 6, which

seems to be the simplest and the most plausible
choice (at least from the mathematical point of
view). Then (2.4) has the form

(3.1b)

Before solving Eqs. (2.8) consistency conditions
for (2.8a) will be given. They are

j ~.A=O, (3.1a)
~Q
j aP —0

Ap(x, g)= g Aq(x)g
n=0

and, respectively,

(2.6) Equations (3.1) will be useful in solving (2.8a). It is
interesting to notice that (3.1) imposes restrictions on—+Q
the source term j & of the form

j q(x, g) = g j q(x)g (2.6')

The lowest-order coefficient in (2.6) has been shown
to be'

~(Aa„)—a„a (Aa„)

~1 ~0
+terms with A„= j„, (2.8a)

—+ j ~2 ~1
+terms with A„and A~= j„. (2.8b)

Here the point is that if we impose on the coeffi-~2
cients A„and Az additional restrictions of the form

A XA„=O, (2.9a)

A XA„=O, (2.9b)

A„XA„=O, (2.9c)
—+1 ~2

then the terms in (2.8) which contain A„and A„
coefficients vanish (they are not written explicitly
for brevity). In fact, weaker but more complicated
restrictions are sufficient.

Now Eqs. (2.8) can be be solved if sources are
given. The solution A&(x)=Aa& approximates the
full potential Az(x, g) in the g —+ oo limit. However,
the same A& can also be viewed as an exact solution
to the YM equations with the external source

—+Q ] ~]
3@=3@+ Jp ~ (2.10)

A„(x)=A(x)a„(x), (2.7)

where A(x), a&(x) are arbitrary functions. Then the
first- and second-order equations are

A X (a„a"a„A—a~ "a„A)
a„(x)=5„o . (3.3)

An analogous Ansatz leading to the purely chro-
momagnetic YM field is briefly discussed in the Ap-
pendix.

With (3.1) and (3.3) we have, instead of (2.8a), the
following equations:

jo=o (3 4)

and

a;AxA= j;,
with consistency conditions

(3.5)

A. j;=0, (3.6a)

a;A. j;=0, (3.6b)

where from now on there is no summation over re-
peated Latin indices i,j,k

Notice that, in accordance with the general result
~ Qof Ref. 6, the source term j„is totally and locally

screened by the field current and Eq. (3.5) is exactly
the screening condition.

It is easy to show that Eqs. (3.6) are equivalent to

A j,'=0, (3.7a)

range Ilj, II &3

where jz is treated as a 3X4 matrix with the in-
dices a,p. As can be checked the condition (3.2) is
gauge invariant.

To solve Eq. (2.8a) generally (i.e., without specifi-
cation of the external source) we assume that a& is
of the simple form
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—+0
A j;;=0, (3.7b) The additional source term should be of the form

~0 ~Q ~P
~i= Ji i' Ji X Jiii (3.9)

where j;;—:(8/Bx') j;, no summation. Hence the
general solution to (2.8a) should be of the form

A=A, ; j;)& j;; . (3.8)

The scalar factors A,;(x) are easy to calculate using
(2.8a). We have

~lj;=0,
~p —+

j o=bAo=bA

(3.12)

(3.13)
1 2

with the additional Ansatz for A&,A& of the form
(2.9). Then the full external current is (2.10) and our
solution is exact. But it is approximate (in the
g~ oo limit) for other sources, which tend to j „in
this limit.

As (3 ~ 8) should be valid for i = 1,2,3 it imposes addi-~0
tional restrictions on j;of the form

~0 ~0 ~0 —+0
A, ; j;x j;,;=~k JkX Jkk (3.10)

for each i, k = 1,2,3, unless
~0 ~0
Ji+ Jil —0 (3.11}

0If some of the space components of j; vanish and
(3.11) is satisfied, the potential (3 ~ 8) is Abelian with
respect to the space variable x;, i.e., the x; depen-
dence of the potential is through a trivial, color-
independent factor.

Solutions (3.8) and (3.9) are quite general because
they contain an arbitrary external-source term j;.
Moreover, a source dependence of potentials is very
simple and local (i.e., there is no integration as there
is, for example, in the classical electrodynamics for
smooth sources). This is possible thanks to the
non-Abelian and nonlinear nature of the YM equa-
tions.

The obtained solution (3.8) is an exact solution to
the YM equations in the g~ ao limit only. Howev-
er, as was mentioned earlier, if we add an extra term—+0
to the source j„ then the higher-order equations
(2.7), as well as the full YM equations, are satisfied
with the same potential.

IV. PROPERTIES OF THE NEW SOLUTIONS

In this section properties of the new solutions are
investigated and illustrated on a special example.

Let us start with the Ansatz for the strong-
coupling limit of the external source of a simple
Cxaussjan but non-Abelian form

~o
J @=~@3 3 J (4.1a)

where

a

j —=g'(x, y)e ~ bz/A,

cz~/Jt 2

(4.1b)

p=g(x, y) is a scalar function vanishing at, lnflnlty,
a,a, b,c are real parameters satisfying conditions

a&0, abc ~0, (4.2)

and & is a dimensional parameter: [A,]=length. In-
troduction of at least one dimensional parameter is
necessary if the source is to be localized, with finite
size and energy. It is easy to check that the current
(4.1) satisfies conditions (3.1b) and (3.2).

Using (3.8) and (3.9) we have immediately the fol-
lowing potential generated by our source:

A&=&&o—( —2abc) '~ g(x,y)exp ——zl/A, l
bcz /A, z

—2acz/A, (4.3)

e the sol«jon (4.3) exact accordlllg to (3.12}, and (3.13), an addjtjonal te——should be added fo
external current. It is

j =5 o -( 2abc) exp ———z /g
1 —1/2 CX

2

where

a' a'
~a=— , +

Bx By

a bc' /A, +bc(bzg 5af)z /A, +2bc-
2a acgz3/A, 3 2—ac(+if 3ag}—z/p-

a abltiz /A, +ab(b, zP ag)— (4.4)

p« t'»s a d so «s a e s ooth, locali ed fu ct'o s a jshjng at j f jty pro 'ded th t g js eg
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and tends to zero when x,y~+ Oo.

The field tensor is purely chromoelectric and its only nonzero components are

Fpg ——E;= —8;Ao .

From (4.3) we have

bcz /A,

(4.5)

E„~= — ( 2ab—c) '~
d„~/exp ——z /A, —2acz/A, (4.6a)

E, = ( —2abc) ' /exp ——z /A,

abcz /A, 2bcz—/A,

—2aacz /A, +2ac
J aabz/A, (4.6b)

i.e., E and E~ are parallel in group (color) space to Ao, and E, is parallel to B,Ao. Analogous solutions with
purely chromomagnetic field are given in the Appendix.

A. Special solution

Here we fix free parameters and function g in (4.1b) to analyze the new solutions and their properties. Let
us choose for them the following values:

a=+ —,, a= —1, b=+1, c=+—,

and for function P=f(x,y) the axially symmetric function of the form

g(x,y)=exp( ——,p /A, ),
where p:—x +y—:r —z .

Then the solution and source are axially symmetric and they have the simple form

(4.7)

(4.7')

j =exp( ——,r /A, ) z/A,

—,z /A,

(4.8)

and, using (4.3),

Ao ———exp( ——,r /A, )

—,z /A,

z/X
—1

(4.9)

The additional source telrrl (4.4) is
T

z /A, ~+ (p'/A, '—14)z'/A, '+ 8

j~——5po 3
—exp( —4r /k ) 2z /A, +2(p /A, —20)z/A,

—2z /A, —(2p /A, —12)

(4.10)

Q—= J dx jo(x) (4.11)

and it breaks the local screening effect.
The leading terxn in the source for strong cou-

~ 0
plings, j„, is suppressed for weak couplings by the
telrn (1/g) j &. However, the total color charge de-
fined as

remains unchanged and it vanishes:

Q=O. (4.12)

To visualize the g dependence of the exter-
nal source the Lorentz- and gauge-invariant q= j&. j is plotted as a function of the variable
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z for strong and weak couplings [Figs. 1(A) and
1(B), respectively]. We set p equal to zero. The in-
variant q is of the Gaussian foi-iii in the strong-
coupling limit [Fig. 1(A)], whereas it has apparent
two-maxima distribution for weak couplings (at the
symmetry axis).

The field energy density, defined as usual by

[fix'), i E(zii(-o

.500

8'—:—,(Ek Ek+BI, Bk), (4.13)

is independent of the coupling constant and it is
concentrated near the Oz axis. For p=0 it has the
foria plotted in Fig. 2. The total field energy is

(4.14)

I

1 1.84 2.64

FIG. 2. The field energy density distribution at the Oz

axis.

B. Holonomy group and topology

Now we are going to prove that the solution (4.9)
is essentially non-Abelian, i.e., it is not gauge
equivalent to an Abelian one. At first a holonomy
group will be investigated.

The holonomy group is non-Abelian if at least one
of the commutators of the F„„components is
nonzero:

[E„y,E,]&0 . (4.15')

Owing to the field equation (3.5) the condition
(4.15') is fulfilled when we have

B„tti(x,y)&0 or B~g(x,y)&0, (4.16)

The only nonzero commutators of the type (4.15) are
in our case

[Fp„,F p]+0 .

[ll& I 1 q fz) O

(0)

(4.15)
where g was introduced in (4.1b).

If (4.16) is satisfied the commutator (4.15') is pro-
portional to the external source term j. Hence the
non-Abelian character of the new solutions is
proved.

Our solutions also have interesting topological
properties. Discussed potentials and sources nor-
malized to the unit (color) vectors have well-defined
limit when z~+ co. We have

hm A/~ A
~

= lim A/~ A
(
=const (4.17)

[1Ig2Ã] ~~ q(Z)

and the same for the source j = j (z). This enables
us to compactify the real axis R&z into the one-
dimensional sphere S'. Then A(z) and j (z) can be
viewed as a mapping: z ES'~S CSUN. Owing to
this property potentials and sources can be classified
by a topological invariant called the winding num-

er 'o

It is easy to check that for our potentials and
sources the winding number is equal to 1. Hence
they cannot be continuously deformed (e.g., by a
gauge transformation) to the topologically trivial
ones with one group (color) direction and the zero
winding number, as is the case for the Abelian po-
tentials and sources.

FIG. $. Distribution of the invariant q at the Oz axis (a)
for strong couplings, g &~ 1, (b) for weak couphngs,

g «&.

V. FINAL REMARKS

Within the framework of the 1/g expansion the
strong-coupling limit of the YM potentials obeying
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(2.6) was investigated. Their explicit foi-iri in this
limit was obtained with the use of additional simpli-
fying Ansatze (2.9) and (3.3). They appeared to be
local functions of the smooth external current (here
local means that there is no integration).

Moreover, they obey the full YM equations for ar-
bitrary vaiues of the coupling constant g if the extra
terrrLs (3.12) and (3.13), vanishing in the g —+ 00 limit,
are added to the source. A special class of localized,
axially symmetric, non-Abelian and topologically
nontrivial solutions of such kind is discussed in Sec.
IV. The solutions also exhibit the local screening ef-
fect.

It is interesting to note that the external current
(more precisely the invariant q built of the current)
has the one-maximum form in the strong-coupling
limit [Fig. 1(a)], whereas for weak couplings it has
the distinct two-maximum distribution [Fig. 1(b)].
This is due to the nonzero charge density (but with
zero total charge) from the correction (4.10) to the
external source. This correction becomes the leading
term for g ~&1.

In this place we are tempted to speculate that the
source from Sec. IV mimics hadrons, which are also
seen as the one-particle objects for low energies
(strong couplings) but as two- or three-particle ob-
jects for high energies (weak couplings) in the quark
model.

Further investigations can be continued in at least
two directions. More general and physically
relevant solutions can be searched analytically and
numerically within the proposed approach. Their

quantum meaning and possible applications in QCD
should also be considered.

APPENDIX

Using the Ansatz

a„(x)=5„t (A1)

instead of (3.3), chromomagnetic solutions are ob-
tained and have the following fortn:

E;=0, Bi ——0,
B2 3

——+83 2A,

where B; is defined as usual by

(A2)

(A3)

(A4)

Then the field equations, analogous to (3.4) and
(3.5), are

~Q ~0jo= j i=0 (A5)

—+ ~0
B2AXA=

-+ ~ ~0
B3AXA= j 3 .

(A6)

(A7)

Equations (A6) and (A7) are the same as (3.5).
Hence the chromomagnetic solutions have proper-
ties analogous to the chromoelectric solutions of
Sec. IV. To have the exact correspondence we~p
should choose j z ——0.
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